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OCL

Object Constraint Language

e Part of the UML standard.
e Formal Specification Language. Precise semantics.
e (Quite) easy to read syntax.

e Why? Because UML is not enough!
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UML is not enough...

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1

e Possible number of owners a car can have

0..x%

Vehicle

colour:Colour

Car

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Bike

e Required age of car owners

e Requirement that a person may own at most one black car
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Some OCL examples |

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () ZF
setAge (newAge:int) :int -

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

-p4



Some OCL examples |

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >=18
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Some OCL examples |
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Person
name:String . .
age:int buner ownership fjeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >= 18
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Some OCL examples |
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Person
name:String . .
age:int buner ownership fjeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >= 18
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Some OCL examples |
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Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >=18
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Some OCL examples |

KR

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1 0..x%

Vehicle

colour:Colour

Car

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv: self. owner. age >=18

What does this mean, instead?

context Person

inv: self.age >=18
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Some OCL examples |

KR

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1 0..x%

Vehicle

colour:Colour

Car

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv: self. owner. age >=18

“A owner must be at least 18 years old™:

context Car

inv: self.owner.age >= 18
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Some OCL examples I

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car |

Bike

“Nobody has more than 3 vehicles”:
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Some OCL examples I K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<<query>>. ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

“Nobody has more than 3 vehicles”:

context Person or change multiplicity
inv: self.fleet—>size <=3
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Some OCL examples I

Person

name:String

Vehicle

age:int bwner OWnership fleef
<query> 1 0..%
getName () :String

colour:Colour

birthday ()
setAge (newAge:int) :int

T

Car

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Bike

“All cars of a person are black”:
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Some OCL examples I

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“All cars of a person are black”:

context Person
inv: self.fleet—forAll(v | v.colour = #black)
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Some OCL examples I

KR

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1

0..x%

Vehicle

colour:Colour

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Car Bike
“All cars of a person are black”:
context Person
inv: self.fleet—forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:
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Some OCL examples I KRY

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour blE?.Ck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

“All cars of a person are black”:
context Person
inv: self.fleet—forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3
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Some OCL examples lll — iterate K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

What does this mean?
context Person
inv: self.fleet—iterate(v; acc:Integer=0

| if (v.colour=#black)
then acc + 1 else acc endif) <=3
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Some OCL examples IV — oclisKindOf K

i

Person

name:String

bwner OwWnership fijeef

Vehicle

<enumeration>
Colour

age:int
<Lquery>> 1 0..% colour Colour black() :Colour
getName () :String ' white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | i
Car | Bike |
context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))
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Some OCL examples IV — oclisKindOf K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour blE?.Ck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))

“A person younger than 18 owns no cars.”
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Some OCL examples IV — oclisKindOf K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.
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Some OCL examples IV — oclisKindOf K

R

Person
<enumeration>>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int i i

Car | Bike |

context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.

Logical Junctors: and, or, not, implies, if...then...else...endif, =
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Some OCL examples V — allinstances

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1 0..x%

Vehicle

colour:Colour

T

context Car

inv: Car.allinstances()->exists(c | c.colour=#red)

Car

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Bike
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Some OCL examples V — allinstances K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour blE?.Ck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

context Car
inv: Car.allinstances()->exists(c | c.colour=#red)

“There is a red car.”
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OCL pre-/post conditions — Examples

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () ZF
setAge (newAge:int) :int

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car |

Bike

So far only considered class invariants.
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OCL pre-/post conditions — Examples

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () ZF
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

So far only considered class invariants.

OCL can also specify operations:
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OCL pre-/post conditions — Examples KRY

Person

name:String

<enumeration>

Vehicle

Colour

colour:Colour

black() :Colour

white() :Colour
red() :Colour

age:int bwner OWnership fleef

<query> 1 0..%

getName () :String

birthday ()

setAge (newAge:int) :int |
Car

;
|

Bike |

So far only considered class invariants.

OCL can also specify operations:

“If setAge(...) is called with a non-negative argument then the

argument becomes the new value of the attribute age.”

context Person::setAge(newAge:int)

pre: newAge >=0
post: self.age = newAge
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OCL pre-/post conditions — Examples KRY

Person
<enumeration>>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<<query>>. ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

So far only considered class invariants.
OCL can also specify operations:
“Calling birthday() increments the age of a person by 1.”

context Person::birthday()
post: self.age = self.age@pre + 1
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OCL pre-/post conditions — Examples KRY

Person

name:String

<enumeration>

Vehicle

Colour

colour:Colour

black() :Colour

white() :Colour
red() :Colour

age:int bwner OWnership fleef

<query> 1 0..%

getName () :String

birthday ()

setAge (newAge:int) :int |
Car

;
|

Bike |

So far only considered class invariants.

OCL can also specify operations:

“Calling getName() delivers the value of the attribute name.”

context Person::getName()
post: result = name
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Queries K

i

Person
<enumeration>>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

Special to OCL are operations with a <query>>> stereotype:

operations can be used within an OCL expression.
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Queries

Person

name:String
age:int

bwner OwWnership fijeef

KR

<enumeration>

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1

0..x%

Vehicle

Colour

colour:Colour

black() :Colour

white() :Colour
red() :Colour

Car

;
|

Bike |

Special to OCL are operations with a <query>>> stereotype:

operations can be used within an OCL expression.

“Calling getName() delivers the value of the attribute name.”

context Person

inv: self.getName() = name

-p.10



OCL Basics

e OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

KR
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OCL Basics Kﬁy_

e OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.
e OCL expressions use vocabulary of UML class diagram.

e OCL attribute accesses “navigate” through UML class diagram.
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OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)
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OCL Basics Kﬁy_

e OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

e OCL expressions use vocabulary of UML class diagram.

e OCL attribute accesses “navigate” through UML class diagram.

e “context” specifies about which elements we are talking.

e “self” indicates the current object. “result” the return value.
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OCL Basics (cont.)

e OCL can talk about collections (here: sets).
Operations on collections: —

Example operations: select, forAll, iterate

KRY
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OCL Basics (cont.)

e OCL can talk about collections (here: sets).
Operations on collections: —

Example operations: select, forAll, iterate

e “Iterate” can simulate all other operations on collections.

KRY
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OCL Basics (cont.)

e OCL can talk about collections (here: sets).
Operations on collections: —

Example operations: select, forAll, iterate
e “Iterate” can simulate all other operations on collections.

e Queries (= side-effect-free operations) can be used in OCL

expressions.

KRY
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OCL in TogetherCC/KeY KRY

TogetherCC cannot process OCL constraints. It is however possible to

specify textual invariants and pre- and post conditions.

With the KeY extensions to TogetherCC syntax (type) checks of OCL

constraints are possible.
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System state

KRY
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System state KeY

idBlack:Colour

id0815:P .
1d08 ;5‘ — harley17:Bike -
name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed
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System state KeY

idBlack:Colour

id0815:Person harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18
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System state KeY

idBlack:Colour

id0815:Person harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18
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System state

idBlack:Colour

id0815:Person

harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black)



System state

idBlack:Colour

id0815:Person

harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &



System state

idBlack:Colour

id0815:Person

name = ‘‘Jane’’

harley17:Bike
colour = idBlack

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3



System state

idBlack:Colour

id0815:Person

name = ‘‘Jane’’

harley17:Bike
colour = idBlack

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3



System state

idBlack:Colour

id0815:Person

harley17:Bike
colour = idBlack

name = ‘‘Jane’’

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3

inv: Car.allinstances()—exists(c | c.colour=#red)



System state

idBlack:Colour

id0815:Person

harley17:Bike
colour = idBlack

name = ‘‘Jane’’

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) m

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3

inv: Car.allinstances()—exists(c | c.colour=#red) IZI
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