Introduction to OCL

Bernhard Beckert

—t

UNIVERSITAT KOBLENZ-LANDAU

KRY

OCL

Object Constraint Language

e Part of the UML standard.

KRY

-p.2

OCL

Object Constraint Language

e Part of the UML standard.

e Formal Specification Language. Precise semantics.

KRY

-p.2

OCL

Object Constraint Language

e Part of the UML standard.
e Formal Specification Language. Precise semantics.

e (Quite) easy to read syntax.

KRY

-p.2

OCL

Object Constraint Language

e Part of the UML standard.
e Formal Specification Language. Precise semantics.
e (Quite) easy to read syntax.

e Why? Because UML is not enough!

KRY

UML is not enough...

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1

e Possible number of owners a car can have

0..x%

Vehicle

colour:Colour

Car

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Bike

e Required age of car owners

e Requirement that a person may own at most one black car

-p.3

Some OCL examples |

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () ZF
setAge (newAge:int) :int -

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

-p4

Some OCL examples |

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >=18

-p4

Some OCL examples |

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >=18

-p4

Some OCL examples |

KR

Person
name:String . .
age:int buner ownership fjeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >= 18

-p4

Some OCL examples |

KR

Person
name:String . .
age:int buner ownership fjeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >= 18

-p4

Some OCL examples |

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >=18

-p4

Some OCL examples |

KR

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1 0..x%

Vehicle

colour:Colour

Car

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv: self. owner. age >=18

What does this mean, instead?

context Person

inv: self.age >=18

-p4

Some OCL examples |

KR

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1 0..x%

Vehicle

colour:Colour

Car

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Bike

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv: self. owner. age >=18

“A owner must be at least 18 years old™:

context Car

inv: self.owner.age >= 18

-p4

Some OCL examples I

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car |

Bike

“Nobody has more than 3 vehicles”:

-p.5

Some OCL examples I K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<<query>>. ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

“Nobody has more than 3 vehicles”:

context Person or change multiplicity
inv: self.fleet—>size <=3

-p.5

Some OCL examples I

Person

name:String

Vehicle

age:int bwner OWnership fleef
<query> 1 0..%
getName () :String

colour:Colour

birthday ()
setAge (newAge:int) :int

T

Car

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Bike

“All cars of a person are black”:

-p.5

Some OCL examples I

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () 4&
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“All cars of a person are black”:

context Person
inv: self.fleet—forAll(v | v.colour = #black)

-p.5

Some OCL examples I

KR

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1

0..x%

Vehicle

colour:Colour

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

;
|

Car Bike
“All cars of a person are black”:
context Person
inv: self.fleet—forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:

-p.5

Some OCL examples I KRY

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour blE?.Ck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

“All cars of a person are black”:
context Person
inv: self.fleet—forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3

-p.5

Some OCL examples lll — iterate K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

What does this mean?
context Person
inv: self.fleet—iterate(v; acc:Integer=0

| if (v.colour=#black)
then acc + 1 else acc endif) <=3

-p.6

Some OCL examples IV — oclisKindOf K

i

Person

name:String

bwner OwWnership fijeef

Vehicle

<enumeration>
Colour

age:int
<Lquery>> 1 0..% colour Colour black() :Colour
getName () :String ' white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | i
Car | Bike |
context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))

-p.7

Some OCL examples IV — oclisKindOf K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour blE?.Ck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))

“A person younger than 18 owns no cars.”

-p.7

Some OCL examples IV — oclisKindOf K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.

-p.7

Some OCL examples IV — oclisKindOf K

R

Person
<enumeration>>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int i i

Car | Bike |

context Person
inv: age<18 implies self.fleet—forAll(v | not v.ocllsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.

Logical Junctors: and, or, not, implies, if...then...else...endif, =

-p.7

Some OCL examples V — allinstances

Person

name:String
age:int

bwner OwWnership fijeef

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1 0..x%

Vehicle

colour:Colour

T

context Car

inv: Car.allinstances()->exists(c | c.colour=#red)

Car

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Bike

-p.8

Some OCL examples V — allinstances K

i

Person
<enumeration>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour blE?.Ck() :Colour
getName () :String white() :Colour
birthday () 4& red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

context Car
inv: Car.allinstances()->exists(c | c.colour=#red)

“There is a red car.”

-p.8

OCL pre-/post conditions — Examples

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () ZF
setAge (newAge:int) :int

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car |

Bike

So far only considered class invariants.

-p.9

OCL pre-/post conditions — Examples

KR

Person
name:String . .
age:int bwner OwWnership fijeef Vehicle
e ' 0 colour:Colour
getName () : String :

birthday () ZF
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

So far only considered class invariants.

OCL can also specify operations:

-p.9

OCL pre-/post conditions — Examples KRY

Person

name:String

<enumeration>

Vehicle

Colour

colour:Colour

black() :Colour

white() :Colour
red() :Colour

age:int bwner OWnership fleef

<query> 1 0..%

getName () :String

birthday ()

setAge (newAge:int) :int |
Car

;
|

Bike |

So far only considered class invariants.

OCL can also specify operations:

“If setAge(...) is called with a non-negative argument then the

argument becomes the new value of the attribute age.”

context Person::setAge(newAge:int)

pre: newAge >=0
post: self.age = newAge

-p.9

OCL pre-/post conditions — Examples KRY

Person
<enumeration>>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<<query>>. ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

So far only considered class invariants.
OCL can also specify operations:
“Calling birthday() increments the age of a person by 1.”

context Person::birthday()
post: self.age = self.age@pre + 1

-p.9

OCL pre-/post conditions — Examples KRY

Person

name:String

<enumeration>

Vehicle

Colour

colour:Colour

black() :Colour

white() :Colour
red() :Colour

age:int bwner OWnership fleef

<query> 1 0..%

getName () :String

birthday ()

setAge (newAge:int) :int |
Car

;
|

Bike |

So far only considered class invariants.

OCL can also specify operations:

“Calling getName() delivers the value of the attribute name.”

context Person::getName()
post: result = name

-p.9

Queries K

i

Person
<enumeration>>
name:String . Colour
age:int pwner Ownership fjeet Vehicle
1 0..x%
<Lquery>> ' colour Colour bléck() :Colour
getName () :String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | l

Car | Bike |

Special to OCL are operations with a <query>>> stereotype:

operations can be used within an OCL expression.

-p.10

Queries

Person

name:String
age:int

bwner OwWnership fijeef

KR

<enumeration>

<query>

getName () : String
birthday ()

setAge (newAge:int) :int

1

0..x%

Vehicle

Colour

colour:Colour

black() :Colour

white() :Colour
red() :Colour

Car

;
|

Bike |

Special to OCL are operations with a <query>>> stereotype:

operations can be used within an OCL expression.

“Calling getName() delivers the value of the attribute name.”

context Person

inv: self.getName() = name

-p.10

OCL Basics

e OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

KR

-p.11

OCL Basics

e OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

e OCL expressions use vocabulary of UML class diagram.

KR

-p.11

OCL Basics Kﬁy_

e OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.
e OCL expressions use vocabulary of UML class diagram.

e OCL attribute accesses “navigate” through UML class diagram.

-p.11

OCL Basics

OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.
OCL expressions use vocabulary of UML class diagram.
OCL attribute accesses “navigate” through UML class diagram.

“context” specifies about which elements we are talking.

KR

-p.11

OCL Basics Kﬁy_

e OCL is used to specify invariants of objects and
pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

e OCL expressions use vocabulary of UML class diagram.

e OCL attribute accesses “navigate” through UML class diagram.

e “context” specifies about which elements we are talking.

e “self” indicates the current object. “result” the return value.

-p.11

OCL Basics (cont.)

e OCL can talk about collections (here: sets).
Operations on collections: —

Example operations: select, forAll, iterate

KRY

-p.12

OCL Basics (cont.)

e OCL can talk about collections (here: sets).
Operations on collections: —

Example operations: select, forAll, iterate

e “Iterate” can simulate all other operations on collections.

KRY

-p.12

OCL Basics (cont.)

e OCL can talk about collections (here: sets).
Operations on collections: —

Example operations: select, forAll, iterate
e “Iterate” can simulate all other operations on collections.

e Queries (= side-effect-free operations) can be used in OCL

expressions.

KRY

-p.12

OCL in TogetherCC/KeY KRY

TogetherCC cannot process OCL constraints. It is however possible to

specify textual invariants and pre- and post conditions.

With the KeY extensions to TogetherCC syntax (type) checks of OCL

constraints are possible.

-p.13

System state

KRY

-p.14

System state KeY

idBlack:Colour

id0815:P .
1d08 ;5‘ — harley17:Bike -
name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

-p.14

System state KeY

idBlack:Colour

id0815:Person harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

-p.14

System state KeY

idBlack:Colour

id0815:Person harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

-p.14

System state

idBlack:Colour

id0815:Person

harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
< bmw3:Car .

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black)

System state

idBlack:Colour

id0815:Person

harley17:Bike

name = ‘‘Jane’’ colour - idBlack black() = idBlack
age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -

name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &

System state

idBlack:Colour

id0815:Person

name = ‘‘Jane’’

harley17:Bike
colour = idBlack

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3

System state

idBlack:Colour

id0815:Person

name = ‘‘Jane’’

harley17:Bike
colour = idBlack

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3

System state

idBlack:Colour

id0815:Person

harley17:Bike
colour = idBlack

name = ‘‘Jane’’

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) &

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3

inv: Car.allinstances()—exists(c | c.colour=#red)

System state

idBlack:Colour

id0815:Person

harley17:Bike
colour = idBlack

name = ‘‘Jane’’

black() = idBlack

age = 5 white() = idWhite
ownership red() = idRed
idWhite:Colour
id0825:Person ownership
~ bmw3:Car -
name = ‘‘Paul’’ colour = idwhite black() = idBlack
age = 25 white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack
white() = idWhite
red() = idRed

context Vehicle
inv: self.owner.age >= 18

context Person
inv: self.fleet—forAll(v | v.colour = #black) m

context Person
inv: self.fleet—select(v | v.colour = #black)—size <=3

inv: Car.allinstances()—exists(c | c.colour=#red) IZI

	
	OCL
	UML is not enoughldots
	Some OCL examples I
	Some OCL examples II
	Some OCL examples III --- iterate
	Some OCL examples IV --- oclIsKindOf
	Some OCL examples V --- allInstances
	OCL pre-/post conditions --- Examples
	Queries
	OCL Basics
	OCL Basics (cont.)
	OCL in TogetherCC/KeY
	System state

