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Manipulation of Boolean functions has important applications in such fields as hardware verification,
non-monotonic reasoning, and decision support. Most often, in such applications, the set of prime
implicates/implicants of a large formula must be computed.

Many algorithms have been proposed to compute the prime implicates of propositionalBoolean formu-
las, e.g. [4, 5]. Most of them assume that the input is in conjunctive/disjunctive normal form (CNF/DNF).

The bottleneck of such algorithms is usually the large number of subsumed (i.e. non-minimal) disjunc-
tive/conjunctive paths through the given formula. Therefore, it is crucial to remove as much redundancy of
this kind as possible, before any explicit enumeration of prime implicates/implicants starts. Even if such
explicit computation of prime implicates/implicants is not an immediate goal, removing any redundancies
due to subsumed disjunctive/conjunctive paths is usually highly desirable.

Among the most successful methods used to deal with this task are binary decision diagrams
(BDDs) [2, 3]. It is, however, well known that BDD methods do not work well on some classes of
formulas, in particular, when they are used to compute prime implicants. Another restriction of BDDs is
that they (at least the efficient versions) essentially produce an XOR-AND normal form, but this is not
always what is needed.

Here, we present a technique based on anti-links for identifying and removing subsumed paths, that
operates on formulas in negation normal form (NNF).1 It is not an alternative to BDDs and other methods
for computing prime implicants, but is intended to be used as a supplementary pre-processing step that
enhances the overall performance of the system.

An anti-link fAX ; AY g consists of occurrencesAX andAY of a literalA in an NNF formulaF . If the
(largest) subformulasX andY ofF that containAX andAY , respectively, are disjunctivelyconnected, we
call fAX ; AY g a disjunctive anti-link. If X and Y are conjunctively connected, then we call fAX ; AY g
a conjunctive anti-link.

If the formula F contains a disjunctive path p that is subsumed by a distinct path p0, then F contains
a disjunctive or a conjunctive anti-link. Unfortunately, the converse is not true: the presence of anti-links
does not imply the presence of subsumed paths. There is, however, a large class of anti-links, that we
call redundant, that is always an indicator for subsumed paths: A disjunctive anti-link fAX ; AY g in F
is redundant if either AX or AY is the argument of a conjunction. In that case certain disjunctive paths
through X and Y that contain AX or AY are subsumed by a disjunctive path in F that contains the
anti-link.

Example 1 Consider the formulaF = ((AX _C) ^B) _ (AY ^ (E _C)) :
The two occurrences ofA form a redundant disjunctive anti-link. The disjunctive pathp = fAX ; C;E;Cg
is subsumed by the path p0 = fAX ; C;AY g (with literal set fA;Cg), that contains the anti-link.

The two occurrences of C are both arguments of disjunctions, and thus comprise a non-redundant
anti-link.�A long version of this abstract is currently under review. Some of the results to be presented in the talk have been published in
preliminary form in [1, 7].

1This restriction is reasonable, since formulas that contain negations, conjunctions, disjunctions, and implications at any level
can be converted to NNF in polynomial time.



Although only redundant disjunctive anti-links contribute directly to subsumed paths, non-redundant
anti-links do not prohibit their existence. However, non-redundant anti-links do not themselves provide
any evidence that such paths are in fact present.

The identification of redundant disjunctive anti-links can be done easily by checking whether at least
one of AX and AY is the argument of a conjunction. After identifying a redundant anti-link, it is possible
to remove it using the disjunctive anti-link dissolvent (DADV) operator;2 in the process, paths throughAX
and AY that are subsumed by a path containing the anti-link are eliminated, and the two occurrences of
the anti-link literal are collapsed into one. All other disjunctive paths remain unchanged, and the resulting
formula is therefore logically equivalent to the formula F . Note, that the DADV operator does not in
general produce a formula in clause form (CNF or DNF).

The operation is closely related to Path Dissolution [6]; DADV is similar to the operator used there to
remove unsatisfiable (or tautological, in the dual case) paths. Path Dissolution works by selecting a link
(i.e., occurrences of a literalA and its negation:A) and restructuring the formula so that all paths through
the link are eliminated. One consequence of eliminating all paths through a link is strong completeness:
Any sequence of dissolution steps will eventually create a linkless formula.

Example 2 Consider again the formula F from Example 1. The result of applying DADV to F is(B _ (A ^ (E _C))) ^ (A _C) :
The path fA;C;E;Cg has been removed, and the path fAX ; C;AY g has been replaced by fA;Cg. All
other disjunctive paths are still present.

The cost of the DADV operation is linear in the size of the smallest subformula of F containing
the anti-link. Also, conjunctively connected literals in F do not become disjunctively connected in
DADV(F ). Thus, truly new disjunctive anti-links are not introduced. However, parts of the formula may
be duplicated, and this may give rise to additional copies of anti-links not yet removed. Nevertheless,
persistent removal of redundant disjunctive anti-links is a terminating process, because the number of
disjunctive paths is strictly reduced at each step.

The general problem of computing, for a given formulaF , an equivalent formula that is minimal w.r.t.
its disjunctive paths is NP-hard. Nevertheless, redundant disjunctive anti-links are easily recognized, and
eliminating their corresponding subsumed paths can be done without direct subsumption checks.

Although prime implicate/implicant problems are intractable in general, our techniques perform
exponentially better than others on certain examples. In addition, we are able to improve performance
greatly on some inherently exponential examples.

Some experimental results of a system based on dissolution and the algorithm PI for computing prime
implicates are reported in [7]. That system is currently being extended; some anti-link operations are
already implemented and have shown to improve performance.

Possible extensions include the generalization of anti-links to many-valued logic, and the application
to identical subformulas instead of literals (based on a generalization of the well-known purity rule for
CNF formulas).
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2Due to space restrictions, we cannot give its general definition here.


