
Extended Abstract

A Completion–Based Method for Adding Equality to

Free Variable Semantic Tableaux

Bernhard Beckert

Institute for Logic, Complexity and Deduction Systems

University of Karlsruhe

Am Fasanengarten 5, 7500 Karlsruhe, Germany

beckert@ira.uka.de

1 Introduction

For both classical and nonclassical first–order logic equality is a crucial feature to increase
expressivity of the object language. It is, therefore, of great importance to have a method
at hand that allows tableau–based theorem provers to handle equality in an efficient way.

In the first approaches to adding equality to semantic tableaux [8, 10, 11] additional
tableau rules were defined that allow the application of equalities occurring on a branch to
other formulas. In [4] a completion–based method has been described; it uses, however, as
the approaches in [8, 10, 11], the ground version of tableaux. Recent methods, described
in [5] and [2, 3], are based on the much more efficient free variable tableau system [5].1

In [3] it has been shown that one of the reasons for the inefficiency of previous ap-
proaches is that they all mix up the application of equalities and of classical tableau rules.
In contrast, the method presented in [3] for closing a tableau branch, consists of two sepa-
rate tableau expansion stages. In the first stage the tableau is expanded using the classical
tableau rules; in the second stage, from a branch B the set of equalities2

EB := {s ≈ t : T (s ≈ t) ∈ B} ,

and the set DisB are extracted; where the latter consists of disjunctions of inequalities.
It is built from the two remaining types of important formulas on B: For every pair
〈TP (s1, . . . , sn),F P (t1, . . . , tn)〉 of atoms, that potentially close B, in DisB there is the
n–place disjunction s1 6≈ t1∨ . . .∨sn 6≈ tn and for every inequality F (s ≈ t) on B, in DisB

there is the (one–place) disjunction s 6≈ t.
Using these two sets, all substitutions that allow to close a branch B can be generated

by computing for each inequality (s 6≈ t) in DisB a complete set of rigid EB–unifiers of s
and t:

1The γ–rule in free variable tableaux does not substitute the bound variable by a “guessed” ground
term, but by a new free variable. Therefore, a free variable tableau can contain equalities that are not
ground. To close a free variable tableau T , one has to find a (ground) substitution σ that allows to close
all branches of T simultaneously, i.e., such that Tσ is closed.

2We use the signed version of tableaux, i.e., the node labels in a tableau are first–order formulas prefixed
with either T (true) or F (false). The equality predicate symbol is denoted by ≈, such that no confusion
with the meta–level equality predicate = can arise.



Definition 1 (Rigid E–Unifier, Complete Set of Rigid E–Unifiers) Let E be a fi-
nite set of equalities and let s and t be terms. A substitution σ is called a rigid E–unifier
of s and t iff

Eσ |= sσ ≈ tσ

where the variables in Eσ, tσ and sσ are treated as constants (held “rigid”), i.e., Eσ |=
sσ ≈ tσ is treated as a ground problem.

A set C(E, s ≈ t) of rigid E–unifiers of s and t is called complete iff for each rigid
E–unifier τ of s and t there is a unifier σ ∈ C(E, s ≈ t) that is more general3 than τ .

In general, there is no finite complete set of rigid E-unifiers; it is, however, always
possible to enumerate one.

Example 2 The following table shows some examples for rigid E–unification problems:

E s t Rigid E–unifiers of s and t

{f(x) ≈ x} f(a) a {x/a}

{f(a) ≈ a} f(x) a {x/a}, {x/f(a)}, {x/f(f(a))}, . . .

{f(x) ≈ x} g(f(a), f(b)) g(a, b) none4

Each rigid E–unifier is as well a non–rigid E–unifier, but, as the last of the above examples
shows, the contrary does not hold true.

With complete sets of rigid E–unifiers for each inequality (s 6≈ t) in DisB at hand
one can easily construct all closing substitutions of the branch B by searching for sub-
stitutions τ that are a specialization of some σi ∈ C(EB , si ≈ ti) (i = 1, . . . , n), where
(s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn) is one of the disjunctions in DisB. These substitutions τ allow to
simultaneously prove all the inequalities in one of the disjunctions to be false.5

The method described in [3] for computing complete sets of E–unifiers is based on
iteratively constructing sets 〈t〉

B
, whose elements t′σ are terms labeled with a most general

substitution that allows to derive them from t using equalities in EB , i.e., if t′σ ∈ 〈t〉
B

and
τ is a specialization of σ, then Eτ |= (t ≈ t′)τ . With that

C(EB , s ≈ t) = {σ : there are s′σ1
∈ 〈s〉

B
, t′σ2

∈ 〈t〉
B

such that s′, t′ are unifiable with
MGU σ3, and σ is a most general specialization of σ1, σ2, σ3 }

is a complete set of rigid E–unifiers of s and t.
Even if this method for handling equality within a first–order analytic tableaux fra-

mework outperforms all previous approaches considerably, it cannot compete with com-
pletion–based equality provers or resolution systems using paramodulation. The main
problem is that for computing the sets 〈t〉

B
equalities are applied unrestricted in both

directions. Therefore, 〈t〉
B

may contain many redundant terms.
In addition, this and all other procedures that allow equalities to be applied unre-

stricted in both directions have another major drawback: They cannot be used to decide
the rigid E–unification problem, i.e., to decide whether a rigid E–unifier of two terms s
and t exists, although this problem is, in fact, decidable [6].6 Therefore, the search might
continue infinitely even if no rigid E–unifier exists.

3σ is more general than τ iff τ = σµ for some substitution µ.
4There is, however, a non–rigid E–unifier of s and t (the empty substitution).
5If τ is a specialization of a rigid E–unifier σ, then τ is a rigid E–unifier as well.
6The problem has been shown to be NP–complete.



2 A Completion–Based Method

All disadvantages mentioned above can be avoided by using a completion based procedure
for computing complete sets of rigid E–unifiers. The algorithm we use is an extension
of the algorithm that Gallier et. al. use in [6] to prove the decidability of the rigid E–
unification problem. It is based on the unfailing completion procedure [1, 9]. The basic
idea — and the main difference to the classical unfailing completion procedure — is that
during the completion process variables are never renamed, even if equalities that have
variables in common are applied to each other. In addition, constraints 〈σ,O〉 consisting
of a substitution σ and a set O of order conditions7 are attached to the reduction rules:
l → r ≪ 〈σ,O〉 means that lτ → rτ is valid in Eτ whenever τ is a specialization of σ and
Oτ is true. If, for example, the commutativity axiom f(x, y) ≈ f(y, x) is valid in E{z/a},
this is represented by f(x, y) → f(y, x) ≪ 〈{z/a}, {x ≻ y}〉. Using these constraints, every
equality is orientable.

The completion algorithm has to be provided with a reduction ordering ≻ that is
complete on the ground terms.8 The algorithm computes a set MC(E, s ≈ t) of mini-
mal rigid E–unifiers. These unifiers are minimal with respect to a (partial) ordering on
the substitutions that is induced by ≻ (therefore MC(E, s ≈ t) depends on the chosen
ordering ≻).

Gallier et. al. proved that MC(E, s ≈ t) is always finite (thus its computation always
terminates); and that MC(E, s ≈ t) is complete in the following way:

Theorem 3 If σ is any rigid E–unifier of s and t, then there is a specialization µ̄ of a
minimal rigid E–unifier µ ∈ MC(E, s ≈ t), such that σ ; µ̄, where the relation ; on
unifiers is defined by

σ ; µ̄ iff for all variables x in E,s,t: Eσ |= σ(x) ≈ µ̄(x)

In other words, σ ; µ̄ means that µ̄ can be generated from σ using the equations in Eσ.
Unfortunately, ; is not symmetric, as the following example illustrates:

Example 4 Supposed E = {x ≈ a}, then {x/b} ; {x/a}, since {x ≈ a}{x/b} |= b ≈ a,
but {x/a} 6; {x/b}.

It is, therefore, not possible to generate a complete set C(E, s ≈ t) of rigid E–unifiers just
by applying to minimal unifiers µ ∈ MC(E, s ≈ t) equalities from Eµ.

Using the set MC(E, s ≈ t), it is, however, possible to efficiently test whether a given
substitution σ is a rigid E–unifier: σ is a rigid E–unifier of s and t iff there is a µ̄ in the
(finite) set {µ̄ : σ ; µ̄, µ̄ minimal} of minimal unifiers that can be generated from σ
such that there is a µ ∈ MC(E, s ≈ t) more general than µ̄.

Based on this test a complete set C(E, s ≈ t) of rigid E–unifiers can be computed in
the following way: First, a complete set P ⊃ C(E, s ≈ t) of possible rigid E–unifiers is ge-
nerated by applying the equalities in E in a non–rigid way to the unifiers in MC(E, s ≈ t).
All the substitutions in P are, then, tested; those that are rigid E–unifiers are used to
build C(E, s ≈ t).

In practice, and in particular in the semantic tableau framework, it is usually not
necessary to generate P, but it suffices to try substitutions that are not taken from P but
that are obtained otherwise, e.g., substitutions that are known to close one or more of the
other branches of the tableau.

7An order condition is of the form s ≻ t, where s and t are terms.
8
≻ is a reduction ordering iff it is well–founded, s ≻ t implies u[s] ≻ u[t], and s ≻ t implies sσ ≻ tσ. A

reduction ordering that is complete on the ground terms exists for all signatures.



3 Conclusion

To our best knowledge, the method presented here is the first that brings together the
advantages of free variable semantic tableaux and those of a completion–based handling of
equality. It can easily be combined with recent tableau proving techniques, such as lemma
generation or the liberalized δ–rule [7].

A problem that remains to be solved is the combination of rigid and non–rigid E–
unification: Given two sets E∀ and E∃ of equalities and terms s and t, compute (in a
complete way) substitutions σ such that

(E∀ ∪ E∃σ) |= sσ ≈ tσ.

A completion–based algorithm solving this problem will allow to efficiently handle equality
in tableaux with universal formulas [3].

References

[1] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion without failure. In
H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, Volume
2, chapter 1. Academic Press, 1989.

[2] Bernhard Beckert. Konzeption und Implementierung von Gleichheit für einen tableau–
basierten Theorembeweiser. IKBS Report 208, Science Center, Institute for Knowledge Based
Systems, IBM Germany, 1991.

[3] Bernhard Beckert and Reiner Hähnle. An improved method for adding equality to free variable
semantic tableau. In Proceedings, 11th Conference on Automated Deduction CADE, Albany,
NY. Springer, LNCS, 1992.

[4] R. J. Browne. Ground term rewriting in semantic tableaux systems for first–order logic with
equality. Technical Report UMIACS–TR–88–44, College Park, MD, 1988.

[5] Melvin C. Fitting. First–Order Logic and Automated Theorem Proving. Springer, New York,
1990.

[6] Jean H. Gallier, Paliath Narendran, Stan Raatz, and Wayne Snyder. Theorem proving using
equational matings and rigid E–unification. Journal of the ACM, 39(2):377–429, April 1992.

[7] Reiner Hähnle and Peter H. Schmitt. The liberalized δ–rule in free variable semantic tableaux.
Journal of Automated Reasoning, To appear 1993.

[8] R. C. Jeffrey. Formal Logic: Its Scope and Limits. McGraw Hill, 1967.

[9] Donald E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebras, pages 263–297. Pergamon Press, Oxford,
1970.

[10] R. J. Popplestone. Beth–tree methods in automatic theorem proving. In Machine Intelligence,
volume 1, pages 31–46. Oliver and Boyd, 1967.

[11] Steve V. Reeves. Adding equality to semantic tableau. Journal of Automated Reasoning,
3:225–246, 1987.


