
The leanTAP -FAQ:Frequently Asked Questions about leanTAPBernhard Beckert & Joachim PoseggaUniversit�at KarlsruheInstitut f�ur Logik, Komplexit�at und Deduktionssysteme76128 Karlsruhe, Germanyfbeckert|poseggag@ira.uka.deWWW: http://emmy.ira.uka.de/�posegga/leantap/FAQ.tex,v 1.5 1994/08/04 12:26:12 beckert ExpContentsPreface 2Source Code for the Standard Version of leanTAP : 2Questions and Answers 3Q 1 How can I typeset \leanTAP" in TEX? : 3Q 2 How can leanTAP handle more logical connectives? : : : : : : : : : : : : : : : : : 3Q 3 I have heard that leanTAP has been veri�ed. Is this true? : : : : : : : : : : : : 3Q 4 Can leanTAP be programmed declaratively? : 4Q 5 Is there a way to add equality? : 4Q 6 Can leanTAP be extended to non-classical logics? : : : : : : : : : : : : : : : : : : 4Q 7 Are input formul� required to be closed? : 4Q 8 Don't you need the quanti�ed variables in input formul� to be disjoint? : : 5Q 9 How important is the sequence of arguments in prove? : : : : : : : : : : : : : : 5Q 10 Can I also quantify over more than one variable? : : : : : : : : : : : : : : : : : 5Q 11 What happens if the clauses are reordered? : 5Q 12 Can you please explain the clause in line 11 again? : : : : : : : : : : : : : : : : 6Q 13.1 What happens if I replace the implication in line 12 by a cut? : : : : : : : : : 6Q 13.2 I see. But how about leaving the cut out? : 6Q 14 Why is the -formula in line 9 put at the end of the list? : : : : : : : : : : : : 7Q 15 What is the actual purpose of line 7? : 7Q 16 Is FreeV really a list of the free variables on the current branch? : : : : : : : 7Q 17.1 Is it really correct to use a formula to Skolemize itself? : : : : : : : : : : : : : 7Q 17.2 But don't you get a cyclic term? : 7A How to get the source code and papers on leanTAP 8B Running leanTAP : an example 9References 101

PrefaceDue to the increasing interest in leanTAP we decided to write this document; it provides answersto the most frequent question people have about leanTAP . We assume that the reader is familiarwith (Beckert & Posegga, 1994a) or, even better, with (Beckert & Posegga, 1994b)1.leanTAP (Beckert & Posegga, 1994a) is a complete and sound theorem prover for classical�rst-order logic based on free-variable semantic tableaux. The unique thing about leanTAP isthat it is probably the smallest theorem prover around: The program consists of only about 12lines of Prolog.leanTAP is originally implemented in Sicstus prolog, but runs as well under Quintus Prolog(all warnings of the Quintus compiler can be ignored). It should also be easy to port leanTAP toother Prolog dialects. The source code is distributed free of charge.We appreciate feedback. If you should have suggestions to improve this FAQ, criticism, orany other comments, please contact us. If should you do something interesting with leanTAP ,please do also inform us as well. This could be modifying or extending the program, applying itto some domain, or whatever.There is also a mailing list of people who are interested in hearing about future developmentsof leanTAP . Drop one of us a line if you want to be included.Source code for the standard version of leanTAPWe will often refer to the source code of leanTAP in this paper. Therefore, we repeat the sourcecode for the standard version of leanTAP here:% Conjunction:1 prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,2 prove(A,[B|UnExp],Lits,FreeV,VarLim).% Disjunction:3 prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,4 prove(A,UnExp,Lits,FreeV,VarLim),5 prove(B,UnExp,Lits,FreeV,VarLim).% Universal Quanti�cation:6 prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,7 \+ length(FreeV,VarLim),8 copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),9 append(UnExp,[all(X,Fml)],UnExp1),10 prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).% Closing Branches:11 prove(Lit,_,[L|Lits],_,_) :-12 (Lit = -Neg; -Lit = Neg) ->13 (unify(Neg,L); prove(Lit,[],Lits,_,_)).% Extending Branches:14 prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-15 prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).The program is explained in detail in (Beckert & Posegga, 1994a); here is a very brief outline:The predicateprove(Fml,UnExp,Lits,FreeV,VarLim)1See Appendix A on how to obtain a copy. 2

succeeds if there is a closed tableau for the �rst-order formula bound to Fml. The proof proceedsby considering individual branches (from left to right) of a tableau; the parameters Fml, UnExp,and Lits represent the current branch: Fml is the formula being expanded, UnExp holds a list offormul� not yet expanded, and Lits is a list of the literals present on the current branch. FreeVis a list of the free variables on the branch (these are Prolog variables, which might be bound toa term). The positive integer VarLim is used to initiate backtracking; it is an upper bound forthe length of FreeV.leanTAP uses Prolog syntax for �rst-order formul�: atoms are Prolog terms, \-" is negation,\;" disjunction, and \," conjunction. Universal quanti�cation is expressed as all(X,F), whereX is a Prolog variable and F is the scope. Thus, a �rst-order formula is represented by a Prologterm (e.g., (p(0),all(N,(-p(N);p(s(N))))) stands for p(0) ^ (8n(:p(n) _ p(s(n))))).Questions and AnswersQ 1 How can I typeset \leanTAP" in TEX?The o�cial version is\mbox{{\sf lean}$T^{\!\!\textstyle A}\!\!P$}Q 2 How can leanTAP handle more logical connectives?I would like to extend the program such that I can use additional logical connectives in formul�.Which is the best way for doing this?There are two principle ways for this: you can either extend the program for deriving negationnormal form, or the leanTAP program itself. The former is very straightforward; look at thesource code and you will see how to do it.Extending leanTAP is also not very complicated. The way to do it is to write a new clausewhich handles the new connective according to its tableau rule. Two important points must bekept in mind:1. New clauses for connectives must be placed before the last two clauses (cf. Question Q 11).2. If your connective introduces negation (like equivalences would do), you must extendleanTAP further and include clauses for negated connectives as well.Note, that 2. is a good argument for extending the NNF algorithm instead of leanTAP | unlessyou do want to get rid of the separate NNF derivation and include it into leanTAP , anyway.Q 3 I have heard that leanTAP has been veri�ed. Is this true?Yes, leanTAP has been veri�ed in the sense that it was formally proven (by hand) that1. If the query prove(fml,h,[],[],d) to the program leanTAP returns success as an answer,where fml is a formula, h is a list of formul� and d is a natural number, than :fml is alogical consequence of h.2. If :fml is a logical consequence of h then there is a natural number d such that the queryprove(fml,h,[],[],d) to leanTAP terminates with success.For this, semantics of Prolog based on its computation tree have been used.2 A draft of a paperincluding the veri�cation of leanTAP is available upon request.2Note, that the only occurrence of negation in the program (line 7) is not critical w.r.t. the semantics of Prolog.Cf. Question Q 15. 3

Q 4 Can leanTAP be programmed declaratively?I have heard that Prolog should be used declaratively. leanTAP is not particularly declarative. Canit be modi�ed in this way?Well, it is at least arguable whether Prolog is declarative, or should be used declaratively.Anyway, leanTAP can be programmed declaratively, although it will probably loose some ofits e�ciency.For re-programming leanTAP declaratively, we �rst get rid of all explicit cuts in the �rst threeclauses. We should then ensure that the last two clauses are entered with literals as the �rstargument, only. This can be done by ensuring that the principle functor is not a binary logicalconnective.The last but one clause for closing branches will probably need further revision if we wantto achieve reasonably e�cient, declarative code: the implicit implementation of member shouldbe removed and programmed explicitly. The same applies to the implicit cut. Refer to QuestionQ 12 for details.Q 5 Is there a way to add equality?I would like to use leanTAP for proving formul� from �rst order logic with equality. Due to thehuge search space, it is not a practical solution just to add the equality axioms to the input. Howcan leanTAP be extended to e�ciently handle equality?There is a simple answer to this question: Use E-uni�cation to close branches instead of syntac-tical uni�cation. In practice, however, it is not as easy.To handle equality in free variable tableaux, it is not su�cient to solve classical E-uni�cationproblems, where the equalities are (implicitly) universally quanti�ed; instead, rigid E-uni�cationproblems have to be solved, where in an equational proof the equalities can be used with onlyone instantiation for the free variables they contain. That is, given a set E of equalities, andterms s and t, substitutions � have to be found, such thatE� j=� (s� � t�)(see Question Q 7 for the de�nition of j=�).If a predicate rigid_e_unify(E,s,t) is provided that implements rigid E-uni�cation, i.e.,that enumerates the rigid E-uni�ers of s and t in a complete way, then it is very easy to addthe handling of equality to leanTAP . Unfortunately, we do not know of an su�ciently e�cientimplementation that would be short enough to print it here and that, thus, would be in accordancewith the philosophy of lean deduction.However, there is a \complex" implementation of the completion-based method for solvingrigid E-uni�cation problems described in (Beckert, 1994). The source code is available from theauthors.Q 6 Can leanTAP be extended to non-classical logics?As long as the language underlying a logic is semi-decidable and a complete and sound tableaucalculus is known, it should be possible to adapt leanTAP for deduction in this calculus.More concretely, we know of people who thought about it, but, at least to our knowledge,there is no running program so far. If you should succeed, let us know.Q 7 Are input formul� required to be closed?All standard �rst-order test examples for theorem provers are closed formul�, i.e.: they do notcontain free variables. Contrary to resolution where all clauses are implicitly universally quanti-�ed, a free-variable tableau calculus can also be used on formul� with free variables. What does4

leanTAP do in this case?This is a very �ne logical point; the question (and the answer) is probably not easy to under-stand. First, we must clarify what is meant by \logical consequence". Two versions appear inthe literature:1. A j= B, i.e., for each interpretation I: if valI;�(A) = true for each variable assignment �,then valI;�0 (B) = true for each variable assignment �0;2. A j=� B, i.e., for each variable assignment � and for each interpretation I: if valI;�(A) =true, then valI;�(B) = true.The latter is often called strong consequence relation. Both do not di�er for closed formul�A and B. For other formul� there is a di�erence; here is an example: p(x) j= 8x p(x), butp(x) 6j=� 8x p(x).The strong consequence relation is usually underlying tableau calculi. In this sense, leanTAPbehaves correctly: prove(Fml,: : :) \implements" fml j=� false.However, the Skolemization we use is not correct in this sense: p(x) ^ :(8y p(y)) will beSkolemized to p(x) ^ :p(p(y)); but p(x) ^:(8y p(y)) 6j=� false and p(x) ^ :p(p(y)) j=� false.Q 8 Don't you need the quanti�ed variables in input formul� to bedisjoint?leanTAP uses �rst-order variables as Prolog variables, and vice versa. Thus, the same variable indi�erent scopes (like all(X,p(X)) and all(X,q(X))) is likely to cause problems.Good thinking. However, we took this into account: the original variable appearing in the inputformula is actually never used in a proof. A quanti�ed formula (and the corresponding quanti�edvariable) is only stored in the list UnExp of unexpanded formul�. Before considering it in theproof, the variable is renamed. Therefore, this does not cause problems.Q 9 How important is the sequence of arguments in prove?It does not matter at all if you neglect e�ciency. For e�ciency, it is important that the rightclause of the program is chosen at the right time. As Prolog systems usually perform indexingfor selecting clauses based on the �rst argument, the current formula should be at this place.The positions of other arguments of prove do not matter much.Q 10 Can I also quantify over more than one variable?It would be much more convenient to write something like all([X,Y],p(X,Y)) rather thanall(X,all(Y,p(X,Y))). How can I achieve this?Just do it. It works. No need to change anything.But note, that the limit VarLim for controlling backtracking has di�erent semantics then: inthis case, it does not limit the number of free variables introduced on a branch, but the numberof applications of -rules. However, this should not matter much.Q 11 What happens if the clauses are reordered?Just out of curiosity: What happens if I change the sequence of Prolog clauses in the program?This is a nice puzzle. Let us have a look at some possibilities:The �rst three clauses can be arbitrarily interchanged | their position in the program (rela-tive to each other) is not signi�cant.If clause four and �ve are exchanged, things become more complicated: In this case, theprover will not close branches before the tableau has been fully expanded up to the given limit5

VarLim. Thus, leanTAP remains complete, but becomes ine�cient. This can be seen as a generalrule: Put the clause for closing branches before the one for extending, as it is reasonable to closebranches as early as possible.Now, let us put clause four (for closing branches) at the beginning of the program: In thiscase, leanTAP would always try �rst to close a branch | before expanding the formul� on it. Itwould result in the possibility to clause a branch with complex formul� as well, and not onlyon the level of literals as the original leanTAP does. In fact, this is the standard use in tableaucalculi. However, as leanTAP is assumed to work on negation normal form, it can never happen:there will be no complementary formul� on the branches besides literals. Thus, putting clausefour at the beginning would cause an unnecessary overhead.As a last possibility in this game, we consider putting the last clause at the beginning. Thiscauses again ine�cient behavior: leanTAP will put every formula into the list of literals, �rst.Then, it will be taken out again and expanded.Q 12 Can you please explain the clause in line 11 again?The fourth clause for closing branches seems to be the most obscure one. I do not quite understandwhat is going on, here.Well, there is a trick here: we implicitly implemented a member predicate. A probably morereadable version of this clause would be:prove(Lit,_,Lits,_,_) :-(Lit = -Neg; -Lit = Neg) -> memberunify(Neg,Lits).wherememberunify(Element,[Head|Tail]) :-(unify(Element,Head) ; memberunify(Element,Tail)).When designing leanTAP , we decided not to use a separate clause but encode leanTAP with asingle predicate. It is a matter of taste which version one prefers.Q 13.1 What happens if I replace the implication in line 12 by a cut?It appears to me that replacing(Lit = -Neg; -Lit = Neg) -> : : :by (Lit = -Neg; -Lit = Neg),!, : : :is better Prolog. Would it be the same?It clearly results in incompleteness: the implication \->" is sort of an implicit cut; it does nota�ect the Prolog search tree at the level of the clause where the implication occurs. An explicitcut as proposed would let leanTAP fail as soon as the uni�cation that follows fails once.Q 13.2 I see. But how about leaving the cut out?Thus, you use \(Lit = -Neg; -Lit = Neg), : : :" instead.This will work, but it will generate double negation during backtracking. It does not hurt, butresults in overhead. 6

Q 14 Why is the -formula in line 9 put at the end of the list?I understand that you keep universally quanti�ed formul� in the list of unexpanded formul�,since they may be used more than once. Why do you store them at the end of the list, ratherthan at the beginning? This would save you a call to the append predicate and should be moree�cient.This is a good observation, but it does not work. Backtracking in leanTAP is controlled byrestricting the number of free variables that may be introduced on a branch. It does not matterwhich -formul� these variables come from. Therefore, you must ensure that each -formula hasa chance of being expanded. This is the reason for using a queue and not a stack. The latterwould cause that the same -formula is expanded over and over again and all others would beignored. leanTAP would be incomplete.Q 15 What is the actual purpose of line 7?Literally, the goal in line 7 succeeds if the number of free variables on the current branch is notequal to VarLim. Actually, it functions as a less-than expression: as used, it is equivalent tolength(FreeV,L), L < VarLim.Q 16 Is FreeV really a list of the free variables on the current branch?No, not exactly. The correct characterization is: FreeV is a list of the Prolog terms that the freevariables which have been introduced on the current branch are bound to. Therefore, FreeV cancontain (ground) terms, free variables that have been introduced on other branches, and evenvariables that do not occurr in the anywhere tableau (these stem from applying the -rule toformul� like (8x)p(y)).However, for the correctness of leanTAP , as well as for the understanding of how is works, thisdoes not make any di�erence.Q 17.1 Is it really correct to use a formula to Skolemize itself?In the predicate nnf/2 for computing negation normal form, that comes with leanTAP , to Skole-mize a formula � = (9x)�(x) you use �(x) as a Skolem term. Is this really correct?It is correct, provided the sets of predicate and function symbols are disjoint. In (Beckert et al.,1993) it has been proven to be correct to use a Skolem term that (i) contains all the free va-riables occurring in the formula � to be Skolemized, and that (ii) is unique to the class [�] offormul� that are identical to � up to variable renaming. Thus, if y1; : : : ; yn are the free variablesin �, we could use the Skolem term f[�](y1; : : : ; yn); the result of the Skolemization then wouldbe �(f[�](y1; : : : ; yn)). However, to construct this term, a new symbol has to be generated andthe free variables have to be extracted from �.Instead, we can use the skope �(x) for Skolemization: It is unique to [�] (up to variablerenaming), and it contains the free variables occurring in � (the additional variable x does notdo any harm, because it is never instantiated). Then, the result of Skolemizing the formula(9x)�(x) is �(�(x)).Q 17.2 But don't you get a cyclic term?I see. But doesn't Skolemizing this way result in a cyclic term?The result is not cyclic, because the Prolog variable representing x is substituted by the Prologterm representing �(x) (and not bound to it). 7

A How to get the source code and papers on leanTAPThe easiest way to access the material on leanTAP is opening the pagehttp://emmy.ira.uka.de/�posegga/leantap/on the World Wide Web. With this document you can retrieve the program and the correspon-ding papers online.For those who have no access to this, we describe the access by anonymous ftp in the sequel.If you should not have ftp access, either, contact the authors.The current reference for leanTAP is (Beckert & Posegga, 1994a). This describes the basicversion of leanTAP . Besides this, there is an enhanced version of leanTAP which includes apowerful heuristic called \universal formul�". Both programs are described in the long versionof the paper (Beckert & Posegga, 1994b), which is currently under review. We recommend thatyou read the long paper, rather than the one cited above.The long paper (Beckert & Posegga, 1994b) and the source code for leanTAP are available viaanonymous ftp on Internet from sonja.ira.uka.de (129.13.31.3). Open this host with an ftp-program, log in as \anonymous" and type your email address as password. cd to the directorypub/posegga and switch to binary �le transfer mode. This is usually done by typing binary inyour ftp program.The paper lives in the �le LeanTaP.ps.Z, which is a compressed Postscript �le3. The sourcecode is stored as a compressed shell archive in LeanTaPsrc.shar.Z.Both �les need to be uncompressed �rst. Under Unix, this works with the shell command% uncompress �lenameWhilst the Postscript �le can be printed then then, the source code in the shell archive must beunpacked:% sh LeanTaPsrc.sharx - extracting README (Text)x - extracting leantap.pl (Text)x - extracting leantest.pl (Text)x - extracting nnf.pl (Text)x - extracting unify.pl (Text)The Prolog code in the �le leantest.pl de�nes four predicates which are supposed to be some-thing like a user interface:provefml/1 the standard version of leanTAPincprovefml/1 the standard version using iterative deepeninguv provefml/1 the version with universal variablesuv incprovefml/1 universal variables and iterative deepening.All these predicates get one argument, which is the name of a formula in the database. leanTAPcomes with a database of some of Pelletier's problems (Pelletier, 1986) in leantest.pl.The actual prover lives in the �le leantap.pl and is de�ned as the predicates prove/2 andprove uv/2. See the comments there for details. The documentation for the code is the papermentioned above.The �le nnf.pl contains a program for deriving Skolemized negation normal form, used byleantest.pl. Again, refer to the paper on how nnf.pl works.Depending on the concrete Prolog system you intend to use, you will, or will not need thecode in unify.pl: it contains a predicate unify/2 which performs sound uni�cation, used bythe prover in leantap.pl. If your Prolog system has built-in sound uni�cation, you do not needthis �le if you change the call to unify in leantap.pl appropriately.3You need a printer capable of understanding Postscript-II to print it.8

B Running leanTAP : an example629.dao % sicstusSICStus 2.1 #8: Mon Aug 30 15:43:08 MET DST 1993| ?- compile(leantest).{compiling /home/emmy/posegga/tmp/leantest.pl...}{compiling /home/emmy/posegga/tmp/leantap.pl...}{loading /tools/sicstus2.1/library/lists.ql...}{loaded /tools/sicstus2.1/library/lists.ql in module lists, 60 msec 31888 bytes}{compiling /home/emmy/posegga/tmp/unify.pl...}{compiled /home/emmy/posegga/tmp/unify.pl in module unify, 230 msec 11056 bytes}{compiled /home/emmy/posegga/tmp/leantap.pl in module leantap, 630 msec 55360 bytes}{compiling /home/emmy/posegga/tmp/nnf.pl...}{compiled /home/emmy/posegga/tmp/nnf.pl in module nnf, 190 msec 9680 bytes}{compiled /home/emmy/posegga/tmp/leantest.pl in module leantest, 1820 msec 101040 bytes}yes| ?- provefml(pel28).pel28 proved in 0 msec, VarLim = 3yes| ?- incprovefml(pel28).pel28 proved in 10 msec, found VarLim = 3yes| ?- uv_provefml(pel28).pel28 proved in 10 msec, VarLim = 3yes| ?- uv_incprovefml(pel28).pel28 proved in 9 msec, found VarLim = 3yes| ?- uv_provefml(X),fail.pel1 proved in 0 msec, VarLim = 0pel2 proved in 0 msec, VarLim = 0pel3 proved in 0 msec, VarLim = 0pel4 proved in 0 msec, VarLim = 0pel5 proved in 0 msec, VarLim = 0pel6 proved in 0 msec, VarLim = 0pel7 proved in 0 msec, VarLim = 0pel8 proved in 10 msec, VarLim = 0pel9 proved in 0 msec, VarLim = 0pel10 proved in 0 msec, VarLim = 0pel11 proved in 0 msec, VarLim = 0pel12 proved in 10 msec, VarLim = 0pel13 proved in 0 msec, VarLim = 0pel14 proved in 0 msec, VarLim = 0pel15 proved in 0 msec, VarLim = 0pel16 proved in 0 msec, VarLim = 0pel17 proved in 0 msec, VarLim = 0pel18 proved in 0 msec, VarLim = 2pel19 proved in 0 msec, VarLim = 2pel20 proved in 9 msec, VarLim = 6pel21 proved in 0 msec, VarLim = 2pel22 proved in 0 msec, VarLim = 2pel23 proved in 0 msec, VarLim = 1pel24 proved in 30 msec, VarLim = 6 9

pel25 proved in 0 msec, VarLim = 3pel26 proved in 10 msec, VarLim = 3pel27 proved in 9 msec, VarLim = 4pel28 proved in 10 msec, VarLim = 3pel29 proved in 9 msec, VarLim = 2pel30 proved in 10 msec, VarLim = 2pel31 proved in 9 msec, VarLim = 3pel32 proved in 10 msec, VarLim = 3pel33 proved in 9 msec, VarLim = 1pel34 proved in 109 msec, VarLim = 5pel35 proved in 0 msec, VarLim = 4pel36 proved in 0 msec, VarLim = 6pel37 proved in 20 msec, VarLim = 7pel38 proved in 339 msec, VarLim = 4pel39 proved in 10 msec, VarLim = 1pel40 proved in 9 msec, VarLim = 3pel41 proved in 0 msec, VarLim = 3pel42 proved in 10 msec, VarLim = 3pel43 proved in 109 msec, VarLim = 5pel44 proved in 10 msec, VarLim = 3pel45 proved in 40 msec, VarLim = 5pel46 proved in 100 msec, VarLim = 5no| ?-ReferencesBeckert, Bernhard. 1994. A Completion-Based Method for Mixed Universal and Rigid E-Uni�cation.Pages 678{692 of: Bundy, A. (ed), Proceedings, 12th International Conference on AutomatedDeduction (CADE), Nancy, France. LNCS 814. Springer.Beckert, Bernhard, & Posegga, Joachim. 1994b. leanTAP : Lean Tableau-based Deduction. Submit-ted.Beckert, Bernhard, & Posegga, Joachim. 1994a. leanTAP : Lean Tableau-Based Theorem Proving.Extended Abstract. Pages 793{797 of: Bundy, A. (ed), Proceedings, 12th International Conferenceon Automated Deduction (CADE), Nancy, France. LNCS 814. Springer.Beckert, Bernhard, H�ahnle, Reiner, & Schmitt, Peter H. 1993. The Even More Liberalized�-Rule in Free Variable Semantic Tableaux. Pages 108{119 of: Gottlob, G., Leitsch, A., &Mundici, D. (eds), Proceedings, 3rd Kurt G�odel Colloquium (KGC), Brno, Czech Republic. LNCS713. Springer.Pelletier, Francis Jeffry. 1986. Seventy-Five Problems for Testing Automatic Theorem Provers.Journal of Automated Reasoning, 2, 191{216.
10

