
Lean Theorem Proving:
Maximal Efficiency from Minimal Means

Bernhard Beckert & Joachim Posegga

Universität Karlsruhe
Institut für Logik, Komplexität und Deduktionssysteme

76128 Karlsruhe, Germanyfbeckert|poseggag@ira.uka.de
Researchers in Automated Reasoning often com- 1 prove((A,B),UnExp,Lits,FreeV,VLim) :- !,

prove(A,[B|UnExp],Lits,FreeV,VLim).

2 prove((A;B),UnExp,Lits,FreeV,VLim) :- !,
prove(A,UnExp,Lits,FreeV,VLim),
prove(B,UnExp,Lits,FreeV,VLim).

3 prove(all(X,Fml),UnExp,Lits,FreeV,VLim) :- !,
\+ length(FreeV,VLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VLim).

4 prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

5 prove(Lit,[Next|UnExp],Lits,FreeV,VLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VLim).

plain that there are sparse applications of the tech-
niques they develop. One reason might be that im-
plementation-oriented research favors huge and
highly complex systems. It is hard to see how to
apply these besides using them as a black box.
Adaptability, however, is an important criterion
for applying techniques; this discrepancy can be
overcome by using lean theorem provers.

The idea of lean theorem proving is to achieve
maximal efficiency from minimal means. Every
possible effort is made to eliminate overhead; ba-
sed on experience in implementing (complex) de-
duction systems, only the most important and ef-
ficient techniques and methods are implemented.
Satchmo [4] can be regarded the earliest application of lean theorem proving. The core of Satchmo is about 15 lines
of Prolog code, and for implementing a refutation complete version another 15 lines are required. Unfortunately,
Satchmo works only for range-restricted formulæ in clausal form (CNF).

Another instance of lean theorem proving is listed on the upper right. This Prolog program, called leanTAP [2],
implements a complete and sound theorem prover for first-order logic, based on free-variable semantic tableaux [3]
(see the appendix for a detailed description). Whilst Satchmo extensively uses assert and retract, leanTAP
relies on Prolog’s clause indexing scheme and backtracking mechanism; it exploits the power of Prolog’s inference
engine as much as possible, without changing the database.

Although (or better: because) this prover is so small, it shows striking performance: For example, nearly all of
Pelletier’s problems [5] can be solved (the only exceptions are Problem No. 34 “Andrew’s Challenge” and No. 47
“Schubert’s Steamroller”). Running on a SUN SPARC 10 workstation they are proven in less than 0.2sec, most
of them in less than 0.01sec. Some of the theorems, like Problem 38, are quite hard: the (complex) tableau-based
prover 3TAP [1], for instance, needs more than ten times as long. If leanTAP can solve a problem, its performance
is in fact comparable to compilation-based systems that search for proofs by generating Prolog programs and
running them, see [7, 6].

This shows that a first-order calculus based on free-variable semantic tableaux can be efficiently implemented
in Prolog with minimal means. Moreover, leanTAP can be further improved without breaking the rules of lean
theorem proving [2], e.g., by taking into account “universal variables”.

One could regard programs like Satchmo

R
un

tim
e

Problem Complexity

tractability for applications

lean

large

use lean systems

unclear

large
system

s

and leanTAP as a Prolog hack. However, we
think they demonstrate more than tricky use of
Prolog: they show why the philosophy of “lean
theorem proving” is interesting: It is possible
to reach considerable performance by using ex-
tremely compact (and efficient) code instead of
elaborate heuristics. One should not confuse
“lean” with “simple”: each line of a “lean”
prover has to be coded with a lot of careful
consideration.

It is interesting to consider the principle of
lean deduction w.r.t. applications. Deduction systems like ours have their limits, in that many problems are solvable
with complex and sophisticated theorem provers but not with an approach like leanTAP . However, when applying



deduction in practice, this might not be relevant at all: the above figure oversimplifies but shows the point;
the x-axis gives a virtual value of the complexity of a problem, and the y-axis shows the runtime required for
finding a solution. The two graphs give the performance of lean and of large deduction systems. We are better
off with a system like leanTAP below a certain degree of problem complexity: it is compact, easier adaptable
to an application, and also faster because it has less overhead than a huge system. Between a break-even point,
where sophisticated systems become faster, and the point where small systems fail, it is not immediately clear
which approach to favor: adaptability can still be a good argument for lean deduction. For really hard problems, a
sophisticated deduction system is the only choice. This last area, however, could indeed be neglectable, depending
on the requirements of an application: if few time can be allowed, we cannot treat hard problems by deduction at
all. Thus, lean deduction can be superior in all cases—depending on the concrete application.

References

1. B. Beckert, S. Gerberding, R. Hähnle, and W. Kernig. The tableau-based theorem prover 3TAP for multiple-valued
logics. In Proc., CADE-11, Albany/NY, LNCS. Springer, 1992.

2. B. Beckert and J. Posegga. leanTAP : Lean tableau-based theorem proving. Submitted, 1993.
3. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1990.
4. R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in Prolog. In Proc., CADE-9, Argonne, LNCS.

Springer, 1988.
5. F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. JAR, 2:191–216, 1986.
6. J. Posegga. Compiling proof search in semantic tableaux. In Proc., ISMIS-7, Trondheim, Norway, LNCS. Springer,

1993.
7. M. E. Stickel. A prolog technology theorem prover. In Proc., CADE-9, Argonne, LNCS. Springer, 1988.

Appendix: The Theorem Prover leanTAP
We will briefly describe the tableau-based theorem prover leanTAP listed at the beginning and explain its behavior. We assume
familiarity with free-variable tableaux (e.g. [3]) and the basics of programming in Prolog.

For the sake of simplicity, we restrict our considerations to first-order formulæ in Skolemized negation normal form. This
is not a serious restriction; the prover can easily be extended to full first-order logic by adding the standard tableau rules.
However, Skolemization has to be implemented carefully to achieve the highest possible performance.1

We use Prolog syntax for first-order formulæ: atoms are Prolog terms, “-” is negation, “;” disjunction, and “,” conjunction.
Universal quantification is expressed as all(X,F), where X is a Prolog variable andF is the scope. Thus, a first-order formula
is represented by a Prolog term (e.g., (p(0),all(N,(-p(N);p(s(N))))) stands for p(0) ^ (8n(:p(n) _ p(s(n))))).

A single Prolog predicate prove(Fml,UnExp,Lits,FreeV,VLim) implements our prover; it succeeds if there is a
closed tableau for the first-order formula bound to Fml. The proof proceeds by considering individual branches (from left to
right) of a tableau; the parameters Fml, UnExp, and Lits represent the current branch: Fml is the formula being expanded,
UnExp holds a list of formulæ not yet expanded, and Lits is a list of the literals present on the current branch. FreeV is a
list of the free variables on the branch (Prolog variables, which might be bound to a term). A positive integer VLim is used to
initiate backtracking; it is an upper bound for the length of FreeV.

The prover is started with the goal prove(Fml,[],[],[],VLim), which succeeds if Fml can be proven inconsistent
without using more than VLim free variables on each branch.

If a conjunction “A and B” is to be expanded, then “A” is considered first and “B” is put in the list of not yet expanded
formulæ (Clause 1). For disjunctions we split the current branch and prove two new goals (Clause 2).

Handling universally quantified formulæ (-formulæ) requires a little more effort (Clause 3). We first check the number
of free variables on the branch. Backtracking is initiated if the depth bound VLim is reached. Otherwise, we generate a “fresh”
instance of the current -formula all(X,Fml) with copy_term. FreeV is used to avoid renaming the free variables in
Fml. The original -formula is put at the end of UnExp (putting it at the top of the list destroys completeness: the same-formula would be used over and over again until the depth bound is reached), and the proof search is continued with the
renamed instance Fml1 as the formula to be expanded next. The copy of the quantified variable, which is now free, is added
to the list FreeV.

Clause 4 closes branches; it is the only one which is not determinate. Note, that it will only be entered with a literal as its
first argument. Neg is bound to the negated literal and sound unification is tried against the literals on the current branch. The
clause calls itself recursively and traverses the list in its second argument; no other clause will match since UnExp is set to
the empty list. Note, that the implication “->” after binding Neg introduces an implicit cut: this prevents generating double
negation when backtracking.

Clause 5 is reached if Clause 4 cannot close the current branch. We add the current formula (always a literal) to the list of
literals on the branch and pick a formula waiting for expansion.

leanTAP has two choice points: one is selecting between the last two clauses, which means closing a branch or extending
it. The second choice point within the third clause enumerates closing substitutions during backtracking.

1 A Prolog program for computing an optimized negation normal form, as well as leanTAP ’s source code, is available upon
request from the authors.


