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1 Introduction

Researchers in Automated Reasoning often complain that there are sparse applications of the techniques they
develop. One reason might be that implementation-oriented research favors huge and highly complex systems
and that this does not suit the needs of many applications.1 It is hard to see how to apply these systems –
besides using them as a black box. Adaptability, however, is an important criterion for applying techniques; this
discrepancy can be overcome by using lean theorem provers.

The idea of lean deduction is to achieve maximal efficiency from minimal means. Every possible effort
is made to eliminate overhead; based on experience in implementing (complex) deduction systems, only the
most important and efficient techniques and methods are implemented. Logic programming languages provide
an ideal tool for implementing lean deduction, as they offer a level of abstraction that is close to the needs for
building first-order deduction systems.

The Prolog program shown in Figure 1, called leanTAP (Beckert & Posegga, 1994b), is an instance of such
a lean deduction system: it implements a complete and sound theorem prover for first-order logic in Skolemized
negation normal form. The underlying calculus is based on free-variable semantic tableaux (Fitting, 1990) (we
shall explain the program in Section 2).

Our approach surely does not lead to deduction systems that are superior to highly sophisticated theorem
provers like Otter (McCune, 1990) or Setheo (Letz et al., 1992); these are better on solving difficult problems.
However, many applications do not require deduction which is as complex as the state of the art in automated
theorem proving. Furthermore, there are often strong constraints on the time allowed for deduction. In such areas
our approach can be extremely useful: it offers high inference rates on simple to moderately complex problems
and a high degree of adaptability.

Another important argument for lean deduction is safety: It is easily possible to verify the couple of lines
of standard Prolog implementing leanTAP (Beckert & Posegga, 1994a; Posegga & Schmitt, 1995); verifying
thousands of lines of C code, however, is hard—if not impossible—in practice.

2 leanTAP : The Program

We will briefly describe the basic working principle of the tableau-based theorem prover leanTAP shown in
Figure 1.2 We assume familiarity with free-variable tableaux (e.g. (Fitting, 1990)) and the basics of programming
in Prolog.

For the sake of simplicity, we restrict our considerations to first-order formulæ in Skolemized negation normal
form. This is not a strong restriction; the prover can easily be extended to full first-order logic by adding the
standard tableau rules. However, Skolemization has to be implemented carefully to achieve the highest possible
performance (Beckert et al., 1993).3�Proc. Workshop on Logic Programming, University of Zürich, Switzerland. Oct. 1994

1Empirical evidence for this claim can easily be given: Hardware and Software Verification are usually listed as the most important
application areas with practical relevance of Automated Deduction. However, when looking closer, one realizes that the implemented systems
in this area either use interactive provers, or application-specific developments. The classical, stand-alone theorem provers seem to be not
flexible enough to be integrated into such systems.

2The interested reader is might wish to consult (Beckert & Posegga, 1994a) for a more detailed explanation.
3A Prolog program for computing an optimized negation normal form, as well as leanTAP ’s source code, is available upon request from

the authors.
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1 prove((A,B),UnExp,Lits,FreeV,VLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VLim).

2 prove((A;B),UnExp,Lits,FreeV,VLim) :- !,
prove(A,UnExp,Lits,FreeV,VLim),
prove(B,UnExp,Lits,FreeV,VLim).

3 prove(all(X,Fml),UnExp,Lits,FreeV,VLim) :- !,
\+ length(FreeV,VLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VLim).

4 prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

5 prove(Lit,[Next|UnExp],Lits,FreeV,VLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VLim).

Figure 1: leanTAP : The Basic Version of the Program

We use Prolog syntax for first-order formulæ: atoms are Prolog terms, “-” is negation, “;” disjunction, and
“,” conjunction. Universal quantification is expressed as all(X,F), where X is a Prolog variable and F is the
scope. Thus, a first-order formula is represented by a Prolog term (e.g., (p(0),all(N,(-p(N);p(s(N)))))
stands for p(0) ^ (8n(:p(n) _ p(s(n))))).

A single Prolog predicateprove(Fml,UnExp,Lits,FreeV,VLim) implements our prover; it succeeds
if there is a closed tableau for the first-order formula bound to Fml. The prover is started with the goal
prove(Fml,[],[],[],VLim), which succeeds if Fml can be proven inconsistent without using more than
VLim free variables on each branch.

The proof proceeds by considering individual branches (from left to right) of a tableau; the parameters Fml,
UnExp, and Lits represent the current branch: Fml is the formula being expanded, UnExp holds a list of
formulæ not yet expanded, and Lits is a list of the literals present on the current branch. FreeV is a list of the
free variables on the branch (Prolog variables, which might be bound to a term). A positive integer VLim is used
to initiate backtracking; it is an upper bound for the length of FreeV.

If a conjunction “A and B” is to be expanded, then “A” is considered first and “B” is put in the list of not yet
expanded formulæ (Clause 1). For disjunctions we split the current branch and prove two new goals (Clause 2).

Handling universally quantified formulæ (-formulæ) requires a little more effort (Clause 3). We first check
the number of free variables on the branch. Backtracking is initiated if the depth bound VLim is reached.
Otherwise, we generate a “fresh” instance of the current -formula all(X,Fml) with copy_term. FreeV
is used to avoid renaming the free variables in Fml. The original -formula is put at the end of UnExp (putting
it at the top of the list destroys completeness: the same -formula would be used over and over again until the
depth bound is reached), and the proof search is continued with the renamed instance Fml1 as the formula to be
expanded next. The copy of the quantified variable, which is now free, is added to the list FreeV.

Clause 4 closes branches; it is the only one which is not determinate. Note, that it will only be entered
with a literal as its first argument. Neg is bound to the negated literal and sound unification is tried against the
literals on the current branch. The clause calls itself recursively and traverses the list in its second argument; no
other clause will match since UnExp is set to the empty list. Note, that the implication “->” after binding Neg
introduces an implicit cut: this prevents generating double negation when backtracking.

Clause 5 is reached if Clause 4 cannot close the current branch. We add the current formula (always a literal)
to the list of literals on the branch and pick a formula waiting for expansion.

leanTAP has two choice points: one is selecting between the last two clauses, which means closing a
branch or extending it. The second choice point within the third clause enumerates closing substitutions during
backtracking.
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Figure 2: Lean versus Large Deduction Systems

Although (or better: because) this prover is so small, it shows striking performance: For example, nearly
all of Pelletier’s problems (Pelletier, 1986) can be solved (the only exceptions are Problem No. 34 “Andrews’
Challenge” and No. 47 “Schubert’s Steamroller”). Running on a SUN SPARC 10 workstation they are proven in
less than 0.2sec, most of them in less than 0.01sec. Some of the theorems, like Problem 38, are quite hard: the
(complex) tableau-based prover 3TAP (Beckert et al., 1992), for instance, needs more than ten times as long. If
leanTAP can solve a problem, its performance is in fact comparable to compilation-based systems that search for
proofs by generating Prolog programs and running them, see (Stickel, 1988; Posegga, 1993a; Posegga, 1993b).

This shows that a first-order calculus based on free-variable semantic tableaux can be efficiently implemented
in Prolog with minimal means. Moreover, leanTAP can be further improved without breaking the rules of lean
theorem proving (Beckert & Posegga, 1994a), e.g., by taking into account “universal formulæ”.

3 The Idea Behind Lean Deduction

Satchmo (Manthey & Bry, 1988) can be seen as the earliest application of what we call lean deduction.
leanTAPwas written in the same spirit, but does not have much in common with Satchmo, besides that it is
also a small Prolog program.4

One could regard programs like Satchmo and leanTAP as a Prolog hack. However, we think they demonstrate
more than tricky use of Prolog: they show why the philosophy of “lean theorem proving” is interesting: It is
possible to reach considerable performance by using extremely compact (and efficient) code instead of elaborate
heuristics. One should not confuse “lean” with “simple”: each line of a “lean” prover has to be coded with a lot
of careful consideration.

It is interesting to consider the principle of lean deduction w.r.t. applications. Deduction systems like ours
have their limits, in that many problems are solvable with complex and sophisticated theorem provers but not
with an approach like leanTAP . However, when applying deduction in practice, this might not be relevant at all:

4Both programs differ significantly from a logical, as well as from an implementation-oriented point of view: leanTAP is based on
free-variable semantic tableaux and works for general first-order formulæ, whereas Satchmo applies a model elimination-like calculus to
range-restricted formulæ in clausal form (CNF). Satchmo extensively uses assert and retract for implementing first-order deduction,
whereas leanTAP relies on Prolog’s clause indexing scheme and backtracking mechanism, and does not change Prolog’s database at all.
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Figure 2 oversimplifies but shows the point; the x-axis gives a virtual value of the complexity of a problem, and
the y-axis shows the runtime required for finding a solution. The two graphs give the performance of lean and
of large deduction systems. We are better off with a system like leanTAP below a certain degree of problem
complexity: it is compact, easier adaptable to an application, and also faster because it has less overhead than
a huge system. Between a break-even point, where sophisticated systems become faster, and the point where
small systems fail, it is not immediately clear which approach to favor: adaptability can still be a good argument
for lean deduction. For really hard problems, a sophisticated deduction system is the only choice. This last
area, however, could indeed be neglectable, depending on the requirements of an application: if few time can
be allowed, we cannot treat hard problems by deduction at all. Thus, lean deduction can be superior in all
cases—depending on the concrete application.

4 Conclusion & Outlook

We showed the principle of lean deduction and presented leanTAP , an instance of it implemented in standard
Prolog. It was argued that lean deduction can ease integrating deduction into applications, as it offers a new basis
for implementations: Rather than going for highly-sophisticated, high performance theorem provers, a flexible
and easily adaptable approach is used. For this, calculi based on semantic tableaux seem to be better suited than
resolution-based systems.

Lean deduction lies somewhere between Logic Programming and Theorem Proving: it is programming logics,
rather than logic programming. Both Automated Deduction and Logic Programming can obviously contribute
a lot to it: experience and know-how in implementing calculi can be gained from Automated Deduction, and
Logic Programming can provide the appropriate implementation basis. We used only standard Prolog, but it is
easy to see that we could take advantage of many enhancements to Prolog. It will be subject to future research
to explore this to a greater extend.
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