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3T
AP is an acronym for 3–valued tableau–based theorem prover. It is based on the

method of analytic tableaux. 3T
AP has been developed at the University of Karlsruhe

in cooperation with the Institute for Knowledge Based Systems of IBM Germany

in Heidelberg. Despite its name 3T
AP is able to deal with “classical” — i.e. two–

valued — first–order predicate logic as well as with any finite–valued first–order logic,
provided the semantics is specified by truth–tables. Currently implemented versions
are working for two–valued and for a certain three–valued first–order predicate logic,
which is a variant of the strong Kleene logic, see [3]. The multiple–valued version
implements the concept of generalized signs. These may be seen as sets of ordinary
tableau signs or prefixes, see [6] and [7] for details. Without generalized signs one
has to build a separate tableau for each non–designated sign to refute a formula.

3T
AP needs to close only one tableau using generalized signs. The system has been

implemented in Quintus Prolog and is running on SUN and IBM PS/2. The use of
Prolog and the modular design makes it easy to extend or modify the prover.

3T
AP ’s input is given by a set of axioms and theorems contained in a database file,

which can be precompiled. The user may specify a theorem to be proved or (s)he
proves the consistency of the database. The formulae need not to be in normal form,
hence the database remains readable. The use of a sort hierarchy in the database
to distinguish terms of different nature is supported. For inspection of proofs some
output formatting utilities allow the indentation of a proof or the conversion to
LaTEX–syntax. During the compilation of a database static links are being built.
These links are used to decide whether a formula can possibly lead to a branch
closure and needs to be used in the tableau or not.

The free variable tableau calculus used by 3T
AP is basically the one described in

[10] or [4] with a few modifications concerning the handling of free variables and the
extension to the multiple–valued case.

Through branch closures free variables become instantiated and they are used
up. Since a formula is often needed with a different substitution of free variables, a
mechanism has been employed that allows to mark formulae as universal with respect
to a variable occurring freely in it. Basically, this is the case when the formula can
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be deduced from the γ–formula that created the free variable without causing any
branching of the tableau. Variables with respect to which formulae are marked as
universal do not become instantiated when they are used in a branch closure. This

feature allows 3T
AP to find shorter proofs for many theorems.

The quantified variable x in a δ–formula is substituted by a new Skolem function,
which depends on exactly the free variables in that formula except x. This version
of the δ–rule generalizes the one in [4], where the newly introduced Skolem function
depends on all free variables introduced so far on the current branch, i.e. our Skolem
function depends on fewer variables and — most important for implementation —
one needs not to keep track of the variables introduced on the branch in focus. That
the liberalized δ–rule preserves completeness is obvious, soundness is proved in [8].

Another feature of 3T
AP may also shorten proofs: The generation of lemmata.

Lemmata may be generated for tableau rules with more than one extension in their
conclusions. If the extensions E1, . . . , En are not logically disjoint and some of the
corresponding branches have already been closed, one can retrieve information from
the intersection of the already closed branches corresponding to, say, Ei1

, . . . , Eik
.

From this information one may extract a formula, which may be added to the next
branch, the one corresponding to Eik+1

say, which possibly rules out some models for
that branch and thus shortens the proof. The generation of lemmata can also be seen
as a kind of analytic cut rule. It lifts proof length complexity in the propositional
case, as is proved for a similar system in [2].

3T
AP is able to deal with equality [1], which is treated as a two–valued predicate in

the multiple–valued case. Many–valued similarity predicates are not yet supported.
For efficiency reasons not the whole tableau is kept in memory, but only the

branch in focus is stored. If a branch has been closed it is discarded.
The classical version of 3T

AP is able to solve most of the problems stated in [9]
in less than one second on a SUN–4.
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