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Abstract

In this article we give an overview of tool-based verification of hard- and software
systems and discuss the relation between verification and logical reasoning. By ver-
ification we mean reasoning-based methods to establish dependability. This is not
restricted to proofs of functional correctness but includes also other scenarios such as
test generation or bug finding. We describe the main verification scenarios and meth-
ods that are in usage today and the extent to which they depend on logical reasoning.
From this discussion we distill current trends and new opportunities for the interaction
between verification and reasoning.

Keywords: Software/program verification, hardware verification, reasoning about
programs, deduction and theorem proving.

Introduction

Over the last decades the reach and power of verification methods has increased consider-
ably, and there has been tremendous progress in the verification of real-word systems.

Partly, this is based on methodological advances: since the beginning of this century,
formalisms—including program logics for real-word programming languages—that put ver-
ification of industrial software within reach became available. At the same time, suitable
theories of abstraction and composition of systems make it possible to deal with complex-
ity. Finally, increased performance and the degree of automation of verification systems is
also due to the availability of efficient SMT (satisfiability modulo theories) solvers. These
provide efficient reasoning capabilities over combinations of theories—including integers,
lists, arrays, bit vectors, etc.—, which is an ubiquitous sub-task of hard- and software
verification.

Verification systems are now commercially used in industrial applications (see Table 1).
Even highly complex system software can be formally verified when sufficient effort is spent,
as is demonstrated in the L4.verified1 and Verisoft2 projects.

In this article we first describe the main scenarios of how verification is employed
to ensure dependability of real-word systems. Then we give an overview of the various

1www.ertos.nicta.com.au/research/l4.verified
2www.verisoftxt.de

1



Table 1: Examples of commercially successful verification systems

SDV
Microsoft’s Static Driver Verifier

SDV is integrated into Visual Studio and routinely
used to find bugs and ensure compliance of Windows
driver software

Astrée
Abstract interpretation-based
static analyzer

Astrée has been used to prove the absence of run-time
errors in the primary flight-control software of Airbus
planes

ACL2 The ACL2 theorem prover was used to formally verify
correctness of commercial micro processor systems for
high-assurance applications

HOL Light Various floating-point algorithms implemented in
Intel processors have been formally verified with the
HOL Light system

Pex Pex is a glassbox test generation tool for C# and
part of Visual Studio Power Tools

reasoning methods that are in use today. We conclude with an outlook on current trends
in the area of verification. Table 2 summarizes the main results of our analysis.

To stay with the theme of this special issue, we focus on verification scenarios requiring
a non-trivial amount of logical reasoning, i.e., we do not consider static analyses based on
type systems, propagation rules, dependency graphs, etc. For the same reason we do not
discuss runtime assertion checking. There is also a certain emphasis on software (rather
than hardware) verification, which is now growing and maturing rapidly. If it is still lagging
behind applications in hardware or close to hardware, this can be partly explained by the
fact that the hardware industry embraced formal methods already 20 years ago. Another
reason is that less expressive and hence decidable formalisms can be usefully employed to
model hardware, while more expressive formalisms are needed for software verification.

Verification Scenarios

The Overall Picture

Different verification targets and specifications Verification scenarios differ in var-
ious ways. The verification target, i.e., the formal description of the system that is actually
being verified, can be an abstract system model (e.g., an automaton or a transition sys-
tem), it can be program source code, byte code, or machine-level code, or it can be written
in some hardware-description language. Likewise, the requirement specification, i.e., the
formal description of the properties to be verified can take various forms. Specifications
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can be algorithmic (executable), describing how something is to be done, or they can be
declarative, describing what the (observable) output should look like. They may refer only
to the initial and the final state of a system run, i.e., the system’s input/output behavior
(“if the input is x, then the output is x+1”), or they may refer to the system’s intermediate
states and outputs (“if in some state the output is x, then in all later states the output
must be some y with y > x”).

Specification is the bottleneck For many years the term formal verification was al-
most synonymous with functional verification. In the last decade it became more and more
clear that full functional verification is an elusive goal for almost all application scenar-
ios. Ironically, this became clear through the advances of verification technology: with the
advent of verifiers that fully cover and precisely model industrial languages and that can
handle realistic systems, it finally became obvious just how difficult and time consuming
the specification of functionality of real systems is. Not verification but specification is the
real bottleneck in functional verification [1].

Because of this, “simpler” verification scenarios are often used in practice. These relax
the claim to universality of the verified properties, thus reducing the complexity of the
required specifications, while preserving usefulness of the verification result. Examples are
verification methods for finding bugs instead of for proving their absence or methods for
the combination of verification and testing. Verifying generic and uniform properties also
reduces the amount of functional specifications that need to be written.

Finally, the problem of writing specifications is greatly alleviated if the specification
and the verification target are developed (or generated) in tandem. In contrast, writing
specifications for legacy systems is much harder. It is often difficult to extract the required
system knowledge from legacy code and its (typically incomplete) documentation. More
generally, systems that have not been designed with verification in mind may not provide
an appropriate component structure. Even if they obey principles such as information
hiding and encapsulation, their components may not be of the right granularity or may
have too many interdependencies.

Different ways of handling complexity Of course, there is a limit to simplification of
verification scenarios lest they become useless. At some point, one has to face the complex-
ities of real-world systems. There are two fundamental approaches to deal with complex
verification targets (typically used in combination): abstraction and (de-)composition. Ab-
straction means to consider an abstract model of the verification target that is less complex
than the target system itself. Decomposition means that the verification target is sub-
divided into components that are small enough, such that their properties can be verified
separately.

Neither abstraction nor composition come for free: a suitable abstract model, respec-
tively, suitable components must be identified and their properties specified. Both, ab-
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straction and composition, lead to additional sources of errors or to additional effort to
show that an abstract model indeed is a valid abstraction, i.e., that all properties of the
abstract model hold for the actual target system. For composition, one has to show that
the verified properties of the components imply the desired property for the composed
system.

Functional Correctness

To verify functional correctness of a system requires formally proving that all possible runs
of the system satisfy a declarative specification of what the system is supposed to do, i.e.,
of its externally observable behaviour. The system must satisfy the specification for all
possible inputs and initial system states.

The standard approach is to use contract-based specifications. If the input and the
initial state, in which the system is started, satisfy a given pre-condition, then the system’s
final state must satisfy a given post-condition (“if the input is non-negative, then the output
is the square root of the input”). To handle the frame problem, pre-/post-condition pairs
are often accompanied by a description of which variables (or heap locations) a system
is allowed to change (otherwise one would have to specify explicitly that all untouched
variables remain unchanged).

Pre-/post-condition pairs describe the input/output behaviour of programs. They can-
not specify the behavior in intermediate states. This is problematic if the functionality of
concurrent or reactive systems is to be verified, as it is observable what such systems do
in intermediate states. In addition, such systems are not necessarily intended to terminate
(servers, for example). For that reason, extensions of the pre-/post-condition approach
allow to specify properties of whole traces or histories (all states in a system run) or prop-
erties of all the state transitions (two-state invariants).

State-of-the-art verification systems, such as KeY, Why, or KIV3, can prove functional
correctness at the source-code level for programs written in industrial languages such as
Java and C. Programs are specified using formalisms that are specific to the target language,
such as the Java Modeling Language for Java or the ANSI/ISO C Specification Language
(ACSL) and the VCC language for C.

A different approach to functional verification is to formalize both the syntax and the
semantics of the verification target in an expressive logic and formulate correctness as a
mathematical theorem. Besides functional verification of specific programs, this permits
expressing and proving meta properties such as type safety of the target language. For-
malisations exist, for example, for Java and C in Isabelle/HOL.

As explained above, full functional verification is limited by the specification bottleneck.
Non-trivial systems need to be decomposed to handle their complexity. The components are

3Further information on all the verification systems mentioned here is summarized in Table 3. For space
reasons we cannot list all extant systems, but give a representative selection of systems that were historically
influential and/or that represent the state of the art.
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then verified separately (typical components are individual functions, methods, or classes).
This is possible using the tools and methods available today, but auxiliary specifications
need to be created that describe the functional behaviour of the components. Typically,
the amount of auxiliary annotations needed is a multiple (up to about 5 times) of the target
code to be verified (measured in lines of code) [1].

Safety and Liveness Properties

This verification scenario is closely related to model checking techniques [2]. Typically, the
verification target is an abstract system model with a finite state space. The goal is to
show that the system never reaches a critical state (safety), and that the system will finally
reach a desired state (liveness). Specifications are written in variants of temporal logics
that are interpreted over state traces or histories. Mostly, the specifications are written in
decidable logics (i.e., propositional temporal logics, possibly with timing expressions).

Though both the system model and the specification use languages of limited expres-
sivity, the specification bottleneck persists. It can be alleviated by using pattern languages
and specification idioms for frequently used properties (see, e.g., [3]). But even then, model
checking safety and liveness properties is far from being an “automatic” or a “push button”
verification scenario. Often, problems need careful reformulation before model checkers can
cope with them.

Lately, there has been growing interest in the verification of safety and liveness prop-
erties for hybrid systems [4], and various methods and tools have been developed for that
purpose (e.g., HyTech, KeYmaera). Hybrid systems have discrete as well as continuous
state transitions, as is typical for cyber-physical systems, automotive and avionics applica-
tions, robotics, etc. An important instance of hybrid automata are timed automata, where
the continuous variables are clocks representing the passing of time [5].

Refinement

Refinement-driven verification starts out with a declarative specification of the functionality
of the target system. This is, for example, expressed in typed first-/higher-order logic
plus set theory. In a series of refinement steps the specification is gradually turned into
an executable system model. Provided that each refinement step preserves all possible
behaviors, the final result is guaranteed to satisfy the original specification.

The main difference to functional verification is that the refinement spans more levels
and starts at the most abstract level. For non-trivial systems, dozens of refinement steps
might be necessary. The advantage of the higher number of levels is that the “distance”
between adjacent levels is smaller than that between specification and target system in
functional verification. Hence the individual steps in refinement-driven verification tend to
be easier to prove.
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To ensure correctness, only certain kinds of refinement are permitted and each re-
finement step must be accompanied by a proof that behavior is preserved (the required
property is often called the coupling invariant).

The use of many refinement levels can easily lead to an excessive effort for specifica-
tion and proving. To alleviate this, refinement-based methods often work with patterns
and libraries and, for this reason, work best in specific application domains. For exam-
ple, Event-B is optimized for reactive systems while Specware has been used to develop
transport schedulers.

In a refinement-based scenario, one always co-constructs the multi-level specification
and the target system. This avoids the problems related to verifying legacy systems and
is an important reason for the viability of refinement-based methods.

Besides systems that refine from an abstract specification down all the way to executable
code, there are methods and systems for relating different model levels to each other that
are all abstract (e.g., the Alloy Analyzer). This leads to less complex models and proofs as
platform- and implementation language-specific details are not considered. On the other
hand, errors that involve such details cannot be uncovered.

Uniform, Generic and Light-weight Properties

The need to write requirement specifications can be reduced by using generic or uniform
specifications. These specifications do not describe the specific functionality of the target
system but only express properties that are desirable for a general class of system. Besides
reducing the amount of specification overhead for individual systems, this allows the use of
simpler and less expressive specification languages. An important class of generic properties
is the absence of typical errors such as buffer overflows, null-pointer exceptions, division
by zero etc. In the case, of SDV (see Table 1), a set of general properties was devised
such that a device driver satisfying these properties, cannot cause the operating system to
crash. This is possible, because the ways in which a driver may crash the operating system
are known in general and do not depend on a particular driver’s functionality.

Simple, “light-weight” properties can be formalised using (boolean) expressions of the
target programming language without the need for quantifiers or higher-order logic features.
Systems such as Spec# and CBMC allow the verification of light-weight properties that
have been added as assertions to the target program. Verification of light-weight properties
succeeds in many cases without auxiliary specifications.

Non-functional properties can often be specified in a uniform way even if they are not
completely generic. This includes limits on resource consumption such as time, space,
and energy. A further example concerns security properties. A verification target may
be forbidden to call certain methods, or information-flow properties may be specified to
ensure that no information flows from secret values to public output.

An important variation of the generic-property scenario is proof-carrying code (PCC),
where code that is downloaded from an untrusted source (e.g., an applet downloaded from
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an untrusted web site) is accompanied by a verification proof. That proof can be checked
on the host system before running the code to ensure that the code satisfies the host’s
security policies and has other desirable properties. The PCC scenario requires that a
predefined set of properties exists that is shared by the host and the untrusted source.

Relational Properties

Relational properties do not use declarative specifications but relate different systems,
different versions of the same system, or different runs of the same system to each other.

Typically, the verified relation between systems is functional such as a simulation re-
lation (one system is a refinement of the other) or bisimulation (both systems exhibit the
same behaviour), which corresponds to compiler correctness. Another example of a rela-
tional property is non-interference: If it is provable that any two runs of a system that
differ in the initial value of some variable x result in the same output, then consequently
the variable x does not interfere with the output (the system does not reveal information
about the initial value of x).

Verifying relational properties avoids the bottleneck of having to write complex require-
ment specifications. However, verification may still require complex auxiliary specifications
that describe the functionality of sub-components or detail the relation between the two
systems (coupling invariants).

Bug Finding

The idea of the bug-finding scenario is to give up on the claim to the universality of
verification.

One variation on this theme is to use failed proof attempts to generate bug warnings.
If a verification attempt fails because some sub-goals cannot be proved, then instead of
declaring failure, one gives warnings to the user that are extracted from the open sub-goals.
These warnings indicate that there may be a problem at the points in the verification target
related to the open sub-goals. In case the sub-goals could not be closed due to missing
auxiliary specifications or a time-out, even though in fact a proof exists, false positives are
produced. It is important for the usefulness of this scenario that not too many spurious
warnings are created. To do so, some systems (e.g., ESC/Java) give also up on soundness,
i.e., they do not show all possible warnings.

A second variation on bug finding is to not prove correctness for all runs of the program
and all inputs. Then, if the verification succeeds, this only indicates the absence of errors
in many but not in all cases. On the other hand, if a verification attempt fails with a
counter example (and not just a time out), then the counter example indicates a bug in
the verification target (or the specification) and, moreover, describes when and how the
bug makes the system fail.

One instance of the latter approach is bounded verification, i.e., imposing a finite bound
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on the domains of system variables or on the number of execution steps of the target system,
which yields relative verification results that hold only up to the chosen bound. Bounded
verification reduces the need for decomposition and, thus, the need to write auxiliary
specifications such as contracts for sub-components and loop invariants. In particular,
loop invariants are not needed as they can be considered to be induction hypotheses for
proving (by induction) that the loop works for all numbers of required loop iterations.
Since the number of loop iterations is bounded, no induction is needed.

A further use of verification for bug finding is to enhance the debugging process by
using verification technology that is based on symbolic execution to implement symbolic
debuggers. Such symbolic debuggers cover all possible execution paths, and there is no
need to initialise input values.

Test Generation

Verification and testing are different approaches to improve the dependability of software
that can both complement and support each other. There are several scenarios where
verification methods can be used to help with testing.

For example, verification methods such as symbolic execution can be used to generate
tests from the specification and the source code (glass-box testing) or from the specification
of the verification target alone (black-box testing). Using reasoning techniques, one can
generate tests that exercise particular program paths, satisfy various code coverage criteria,
or cover all disjunctive case distinctions in the specification.

There is an important dimension where testing goes beyond verification: the latter
ensures correctness of the target system, but not of the runtime environment or the compiler
backends, however, testing can also exhibit bugs that are not located in the target system
itself. For this reason, testing cannot be replaced by verification in all cases.

Verification Methods

The Overall Picture

Most verification approaches fall into one of four methodologies (deductive verification,
model checking, refinement and code generation, abstract interpretation) that we now
discuss in turn. Let us introduce some dimensions along which they can be classified and
that influence the nature of the reasoning that happens during verification.

Arguably, the main tradeoff that influences the design of a verification method is au-
tomation of proofs search versus expressivity of the logic formalism used for specification
and reasoning. Most verification systems use a logic-based language to express properties.
Common logics, ordered according to their expressivity, include propositional temporal
logic, finite-domain first-order logic (FOL), quantifier-free FOL, full FOL, FOL plus reach-
ability or induction schemata, dynamic logic, higher-order logic, or set theory. The ex-
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pressivity of a logic and the computational complexity of its decision problems are directly
related to each other. For undecidable languages, such as first-order logic, full automation
cannot be expected, but even for decidable languages, such as temporal logic, problems
quickly become infeasible as the size of the target system grows.

There is, however, a difference between the theoretical complexity of the decision prob-
lem of a logic and the efficiency/effectiveness of provers in practice. In reality, typical
instances of undecidable problems are hard—but not impossible—to solve. Theory tells us
that there are instances for which either no (finite) proof or no counter example exists (oth-
erwise the problem would be decidable). But in practice such problem instances are few and
far between. Even for undecidable problems, the real difficulty is to find—existing—proofs.

Verification methods that employ abstraction can take different forms: while abstract
interpretation attempts to find a sound abstraction of the target system, for which the
desired properties are still provable, in model checking one typically works with an abstract
system model from the start, which may have to be refined and adapted many times during
the verification process. As we will see below, it is fruitful to combine both approaches.

Another dimension in the design of verification methods, heavily influenced by expres-
sivity, is the verification workflow: assuming a decidable modeling language and a feasible
target system size, it is possible to automatically verify a system provided that the speci-
fied property actually holds, that the verifier is suitably instrumented, and that the system
is suitably modeled. This approach, typically realized in model checking [2], enables a
batch mode workflow (often mislabelled as “push button” verification) based on cycles of
failed verification attempt, failure analysis, followed by modifications to the target system,
specification, or instrumentation, until a verification attempt turns out to be successful.

Verification systems for expressive formalisms (first-order logic and beyond) require
often more fine-grained human interaction, where a user gives hints to the verifier at certain
points during an attempted proof. Such hints could be quantifier instantiations or auxiliary
specifications, such as loop invariants or induction hypotheses.

A further distinction is the precision of the verification method, i.e., whether it might
yield false positives [6] (and if so, to what extent).

Deductive Verification

Under deductive verification we subsume all verification methods that use an expressive (at
least first-order) logic to state that a given target system is correct with respect to some
property. Logical reasoning (deduction) is then used to prove validity of such a statement.
Perhaps the best-known approach along these lines is Hoare logic [7], but that represents
only one of three possible architectures.

The most general deductive verification approach is to use a highly expressive logical
framework, typically based on higher-order logic with inductive definitions. Such logics
permit the definition of, not only properties, but also the abstract syntax and the seman-
tics of the target language. In systems (sometimes called proof assistants), such as HOL
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or Isabelle, real-life languages of considerable scope have been modelled in this manner,
including, e.g., the floating point logic of x86 processors, a non-trivial fragment of the Java
language, the C language, and an operating system kernel.

A second deductive verification approach is provided by program logics, where a fixed
target language is embedded into a specification language. The latter is normally based
on first-order logic and target language objects occur directly as part of logical expressions
without encoding. The semantics of the target language is reflected in the calculus rules for
the program logic. For example, the task to prove that a program “ if (B) Q else R; S”
is correct relative to a pre-/post-condition pair is reduced to prove correctness of the two
programs “Q; S” and “R; S” respectively, where additional assumptions that the path
condition B, respectively, holds and does not hold, are added to the pre-condition (we
assume that the execution of B has no side effects). There is typically at least one such proof
rule for each syntactic element of the target language. Such calculi have been implemented
for functional (ACL2, VeriFun), as well as for imperative programming languages (KeY,
KIV).

Hoare logic [7] is a representative of a third architecture: here, a set of rewrite rules
specifies how first-order correctness assertions about a given target system are reduced
to purely first-order verification conditions, using techniques such as weakest precondition
reasoning. For example, if an assertion P holds immediately after an assignment “x = e;”,
then this is propagated to the assertion P (x/e) (denoting P where all occurrences of x are
replaced with e) that must hold just before the assignment. This approach is called VCG
(for Verification Condition Generator) architecture and realized, e.g., in Dafny and Why.

Common to all three architectures is that they need detailed and many auxiliary spec-
ifications, including loop invariants and/or induction hypotheses and that they can be
used for proving functional correctness of systems. Due to their general nature and their
expressivity, proof assistants for higher-order logic tend to require more user interaction
than the other two. However, in the last years external automated theorem provers are
increasingly employed to decrease the necessary amount of interaction. To make this work,
one must translate between first- and higher-order logic, hence, a loosely coupled system
architecture is used and the granularity (complexity) of problems handed over to external
reasoners tends to be large.

An interesting fact is that the designers of all verifiers that use a dedicated program
logic felt the need to add sophisticated first-order reasoning capabilities to their systems,
starting with the seminal work by Boyer & Moore in the predecessor of the ACL2 system [8].
This was necessary, because mainstream automated reasoning systems for first-order logic
lacked central features required for verification, such as types, heuristic control, and in-
duction. The coupling of these “internal reasoners” is tight, so that intermediate results
can be constantly simplified without translation overhead (fine problem granularity). The
downside is that internal reasoners are difficult to use independently of their host systems
and often their internal working is not very well documented.

In contrast to logical frameworks and program logics, VCG systems admit workflow
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in batch mode: in the first phase, a verification problem is reduced to a (typically very
large) number of first-order queries. These are then solved by external reasoners, often
run competitively in parallel. The advantage is a modular architecture that can exploit
the latest progress in automated reasoning technology. The disadvantage is that it can be
difficult to relate back the failure of proving a verification condition to its root cause. It is
also hard to implement aggressive simplification of intermediate results.

Model Checking

Model checking [2] is based on the idea to view the execution model of a soft- or hardware
system as a finite transition system, i.e., as a state automaton whose states are propositional
variable assignments. Since finite transition systems are standard models of propositional
temporal logic, to check that a finite transition system T is a model of a temporal logic
formula P means to ensure that every possible execution of the system represented by
T meets the property expressed with P . Hence, model checking can be used for system
verification.

The bottleneck is the explosion of the number of possible states that occurs even for
small systems when an explicit representation of states is chosen. Since the mid 1980s
enormous progresses in state representation were made that in many cases are able to
avoid state explosion. First, encodings based on binary decision diagrams (BDDs) [9]
made vast improvements possible, later Buechi automata, symmetry reduction, abstraction
refinement, modularization and many other techniques pushed the boundaries [2]. Many of
these are implemented in the widely used model checkers SPIN and NuSMV. Systems such
as UPPAAL extended temporal logic with timing conditions and can be used to model
real-time systems.

Traditionally, automata-based techniques and efficient data structures to represent
states played a much more prominent role in model checking than logical reasoning. This
is about to change, as the model checking community strives to overcome the fundamen-
tal limitation to finite state systems of the standard approaches. To go beyond the finite
state barrier (or simply deal with finite but large systems), several techniques have been
suggested: sound abstraction (see also Abstract Interpretation below), abstraction with
additional checks, and incomplete approaches such as bounded model checking [10]. Yet
another possibility is offered by symbolic execution engines that enumerate reachable states
without loss of precision, such as KeY, VeriFast, Java PathFinder, or Bogor. The logic-
based techniques for infinite state representation realized in the latter kind of systems
employ automated reasoning to bound state exploration [11]. We expect the combination
of ideas from deductive verification and model checking to enable further advances in the
coming years.

Lately there has been a trend to subsume verification tools and methods under “model
checking” that use reasoning technology such as SMT and propositional satisfiability (SAT)
solving instead of model checking as defined above (an example is the CBMC system, see
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Table 3). In this article, we use the notion of “model checking” in a more narrow sense
and consider the latter kind of systems under the heading of “deductive verification.”

Refinement and Code Generation

Verification can also be achieved by gradual refinement of an initial system model (that
directly reflects the requirements) into an executable model, provided that each refinement
step preserves the properties of the preceding one. Declarative and highly non-deterministic
concepts, conveniently expressed in set theory, must be refined into operational ones. For
example, there may be a proof obligation relating a set comprehension to an iterator.
Hence, refinement over multiple levels for non-trivial systems creates a large number of
proof obligations over set theory.

Evidently, most proof obligations generated during refinement-based verification can
be discharged with automated theorem provers. Yet the interaction with the automated-
reasoning community has been surprisingly little. This can be partly explained by a mis-
match of requirements: the support for set-theoretic reasoning in mainstream automated
reasoning tools is limited. One industrially successful system, Specware, uses higher-order
logic, and for that reason discharging of proof obligations is outsourced to Isabelle, but not
to first-order provers.

There is almost no work done by the verification community regarding code generation
by compilation and optimization of executable, yet abstract system models. Of course,
there is an abundance of model-driven software development approaches. However, most
of the involved notations (like UML) are not rigorous enough to permit formal verification.
The same is true for code generation from languages like MathWorks, SystemC, VHDL,
or Simulink, although the SCOOT system4 is able to extract abstract models from Sys-
temC. Recently, it has been shown that deductive verification of relational properties is a
promising approach to ensure correct compilation and optimization [12]. We believe that
provably correct (behavior preserving) code generation constitutes a vast potential for the
reasoning and formal verification communities to employ their techniques.

Abstract Interpretation

Abstract interpretation [13] is a method to reason soundly and in finite domains about
potentially infinite state systems. The idea can be simply stated: in the target system
all variables are interpreted not over their original domain (i.e., type), but over a more
abstract, smaller one. For example, an integer variable might only have the values “pos-
itive”, “0”, “negative”, “non-positive”, “non-negative”, and “anything”. Of course, all
operations also must be replaced by operations over the abstract domain, for example,
“positive”+“non-negative” yields “positive”, etc. The abstract domains and operations

4www.cprover.org/scoot
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Table 2: Executive summary of the analysis provided in this article

1. Given enough time and effort, current technology permits the formal verification of even
highly complex systems

2. The main bottleneck of functional verification is the need for extensive specifications
3. Verification of complex systems is never automatic or “push-button”
4. Verification of non-functional properties alleviates the specification problem and is of

great practical relevance
5. Verification, bug finding, and test generation are not alternatives, but complement each

other: all are essential
6. Abstraction and compositional verification are key to handling complexity in verification
7. Model-centric software development and code generation account for huge opportunities

in verification and are under-researched
8. There is a convergence of finite-state/abstract (model checking, abstract interpretation)

and infinite state/precise (deductive verification, refinement) methods
9. Verification, SMT solving, and first-order automated reasoning form a virtuous cycle in

extending the reach of verification technology
10. There are many scenarios and variations of verification, which makes different systems

hard to compare; and there is no single best verification tool

are chosen in such a way that the semantics is preserved: if a property holds in the ab-
stract system, then it must also hold in the original system.

If the abstract domain is finite (or at least has no infinite ascending chains) one can
show that any computation in the abstract system must finitely terminate, because loops
and recursive calls reach a fixpoint after finitely many steps. The price to pay is, of course,
a loss of precision and completeness: not all properties of interest might be expressible
in the abstract domain and, even if they are, a property that holds for the actual system
might cease to hold in its abstraction.

Reasoning in connection with abstract interpretation means constraint solving in spe-
cific abstract domains. However, since abstract interpretation can be seen as a very general
method to render infinite computations finite in a sound manner, it is natural to combine
it with precise verification methods. This has been done since the late 1990s with model
checking, notably in counter-example guided abstraction and refinement (CEGAR), where
a suitable system abstraction is computed incrementally [14]. It is less known that symbolic
program execution can be seen as abstract interpretation, which makes it possible to put
sound abstraction on top of verification systems based on symbolic execution. That has
been realized in the KeY system and allows the exploitation of synergies between abstract
interpretation-style constraint solving and deductive verification-style logical reasoning[15].
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Trends and Opportunities

We close this overview paper by a brief discussion of the main trends and opportunities
for reasoning in the context of verification. The main points of our analysis are also given
in the form of ten concise statements in Table 2.

Non-Functional Properties

From the somewhat sobering insight that full functional verification is too expensive for
most application scenarios due to difficulties and the effort required in achieving functional
specification, new opportunities have arisen: non-functional properties of systems, such
as resource (including energy) consumption or security properties can often be schemat-
ically specified. The required specifications (including invariants) can be in many cases
automatically generated [16].

This is a great opportunity for the verification community: whereas functional ver-
ification is rarely requested by industry and likely to remain a niche for high-assurance
applications, non-functional properties are extremely relevant in every-day scenarios and
can easily be mapped to business cases: e.g., quality-of-service parameters such as response
time or resource consumption of cloud applications [17].

Convergence of Methods

From our discussion of verification methods above one can see that there is much to be
gained from a closer collaboration of the various subcommunities. We give two examples:
first, to verify large industrial systems it is necessary to use both, methods optimized
for finite state systems (such as model checking) and for infinite state systems (such as
deductive verification). Abstract interpretation and symbolic execution seem to be natural
bridges. Second, compilation, code generation, and code simplification are neglected areas
in verification. There is a vast opportunity for verification in correct code generation
from modeling languages such as Simulink or SystemC. Even though first steps have been
made [18], this is a (so far) missed opportunity, because existing methods and tools in
deductive verification can well be applied here.

The Importance of Reasoning

The advent of efficient SMT solvers has given a boost to the performance of verification
systems. SMT solvers combine efficient theory reasoning over variable-free expressions
with heuristically driven quantifier instantiation. Importantly, they are also able to detect
counter examples for invalid problems. Similar techniques had been implemented as part
of monolithic verifiers such as ACL2 or KIV for decades, but stand-alone SMT solvers
are much easier to maintain and they also benefit from progress in SAT solving. As a
consequence, there is currently the happy situation that the verification and SMT solving
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communities drive each others research. With some delay, this opportunity has also been
grasped by the first-order theorem proving community, as is witnessed by recent events
such as Dagstuhl Seminar 13411 on Deduction and Arithmetic as well as the rise of theorem
proving methods that can create counter examples, such as instantiation-based proving.

One challenge that current verification approaches barely address is how to deal with
changes of the verification target. During system development and maintenance such
changes are normal and occur frequently. They are triggered by feature requests, envi-
ronment changes, refactoring, bug fixes, etc. Any change in the target system has the
potential to invalidate the complete verification effort that has been spent already. If
re-verification is expensive, this is a major threat against the practical usefulness of any
but fully automatic and lightweight verification methods. One solution can be verification
methods that are aware of changes [19]. In this case, re-verification—in particular of those
parts that remain unchanged—can be replaced with automated reasoning.

Table 3: An overview of reasoning and verification systems,
which may serve as a starting point for further exploration.

System/URL Method Verification Scenario

Alloy Analyzer
alloy.mit.edu/alloy

refinement, deductive
verification

functional correctness, safety
properties

ACL2
www.cs.utexas.edu/users/

moore/acl2

deductive verification
(interactive)

functional correctness, bug
finding

Astrée
www.astree.ens.fr

static analysis safety properties, generic
properties

Bogor
bogor.projects.cis.ksu.edu

model checking safety properties

CBMC
www.cprover.org/cbmc

deductive verification bug finding, light-weight
properties

Coq
www.lix.polytechnique.fr/

coq

proof assistant (interactive) functional correctness, safety,
security properties, refinement
relations

Dafny
research.microsoft.com/

projects/dafny

deductive verification (batch) functional correctness, bug
finding

ESC/Java
www.kindsoftware.com/

products/opensource/

ESCJava2

deductive verification bug finding

Event-B
www.event-b.org

deductive verification refinement

15



System/URL Method Verification Scenario

Frama C / Why
frama-c.com

deductive verification (batch) functional correctness, bug
finding

HyTech
embedded.eecs.berkeley.edu/

research/hytech

model checking safety properties of hybrid
automata

Isabelle
isabelle.in.tum.de

proof assistant (interactive) functional correctness, safety,
security properties, refinement
relations

Java Pathfinder
babelfish.arc.nasa.gov/

trac/jpf

model checking safety properties

KeY System
www.key-project.org

deductive verification
(interactive)

functional correctness,
bug finding, security properties

KeYmaera
symbolaris.com/info/

KeYmaera.html

deductive verification
(interactive)

safety/liveness properties of
hybrid automata

KIV
www.informatik.

uni-augsburg.de/

lehrstuehle/swt/se/kiv

deductive verification
(interactive)

functional correctness, bug
finding, security properties

NuSMV
nusmv.fbk.eu

model checking safety properties

PEX
research.microsoft.com/

projects/pex

deductive verification test-case generation

PVS
pvs.csl.sri.com

proof assistant (interactive) functional correctness, safety,
security properties, refinement
relations

Spec#
research.microsoft.com/

projects/specsharp

deductive verification bug finding, light-weight
properties

Specware
www.specware.org

deductive verification refinement

SPIN
spinroot.com

model checking safety properties

TVLA
www.cs.tau.ac.il/~tvla

abstract interpretation safety properties, functional
verification

UPPAAL
www.uppaal.org

model checking safety/liveness properties of
temporal automata

VeriFast
people.cs.kuleuven.be/

~bart.jacobs/verifast

deductive verification (batch) functional correctness
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System/URL Method Verification Scenario

VeriFun
www.verifun.org

deductive verification (batch),
induction proofs

functional correctness

VCC
research.microsoft.com/

projects/vcc

deductive verification (batch) functional correctness, bug
finding

Conclusion

The future looks bright for the collaboration of verification and reasoning. Recent advances
in both fields and increasingly tight interaction already gave rise to industrially relevant
verification tools. We predict that this is only the beginning and that within a decade tools
based on verification technology will be as useful and widespread for software development
as they are already in the hardware domain.
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Román-Dı́ez. Verified resource guarantees using COSTA and KeY. In Proceedings, ACM SIG-
PLAN 2011 Workshop on Partial Evaluation and Program Manipulation (PEPM’11), Austin,
Texas, USA. ACM Press, 2011.
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