
Formal Specification of

Security-relevant Properties of User Interfaces1

Bernhard Beckert Gerd Beuster

{beckert|gb}@uni-koblenz.de

University of Koblenz
Department of Computer Science

Abstract. When sensitive information is exchanged with the user of
a computer system, the security of the system’s user interface must be
considered. In this paper, we show how security relevant properties of a
user interface can be modelled and specified using the Object Constraint
Language (OCL).

1 Introduction

A large part of the specification of interactive applications is concerned with
the relation between user input and the information shown to the user. For
example, when editing a text, the current (internal) state of the text should be
shown to the user, and user input should cause changes to the text. Usually, the
specification of user input and system output is rather informal. Specifications
declare that something “is shown on the screen” and the user “enters a text.”
In most cases, this informal description is sufficient. However, in security-critical
applications, a precise and formal definition is desirable. In this paper, we show
how security relevant properties of a user interface can be modelled, investigated,
and ensured using formal methods.

2 Environment and Notation

In this paper, we model a text-based user interface. Input comes from the key-
board and output goes to a terminal with a fixed number of rows and columns
for display of characters. Assuming no additional input from other sources (like
a mouse or network card), the behavior of a text-based application can be de-
scribed as a function from a (finite) sequence of keystrokes to a screen output.
That is, the behavior is specified by what is supposed to appear on the screen
after a particular sequence of keystrokes. We use keyboard to refer to keyboard
input and screenAt to refer to screen output. When we want to refer to a specific

1 This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project
under grant 01 IS C38. The responsibility for this article lies with the authors. See
http://www.verisoft.de for more information about Verisoft.



screen position, we use the notation screenAt[x, y] for the character shown at
screen position (x, y).

To refer to keyboard input up to resp. screen output at a particular point t
in time, we use keyboard(t) to denote the list of keystrokes entered up to time t,
and screenAt(t) to denote the screen output at time t.

In a post-condition, t refers to the current time, i.e., the point in time when
the function terminates, while t@pre refers to the point in time when the function
is entered. In this, we follow the common OCL syntax (though standard OCL
does usually not contain explicit references to particular points in time).

3 Specifying Operating System Requirements

3.1 Overview

The operating system provides interfaces between application programs and the
hardware. In the case of simple, text-based user interfaces, which we are exam-
ining in this paper, the operating system has to provide access to two resources:
the keyboard and the screen. Most work on secure interface design assumes that
the application runs in a safe and friendly environment. Although some work
takes attacks on input/output facilities from the outside into account, interfer-
ence with the input/output facilities from within the system (by trojans, worms,
viruses, etc.) is usually not part of the attack scenarios. Here, we assume that
the security critical application is running in a multi-process environment, where
hostile processes may launch attacks on input/output facilities. We provide a for-
mal method that guarantees security against software based man-in-the-middle
attacks.

3.2 Specifying Screen Output Functions

Below, we give constraints specifying the operating system functions for accessing
the screen.

context setChar(character, x,y)

post if ((x ≥ 0) and (x < screenWidth()) and
(y ≥ 0) and (y < screenHeight()))

then
screenAt(t)[x, y] = character and
result = CHAR SET OK

else
result = POSITION OUT OF BOUNDS

endif

3.3 Specifying Keyboard Input Functions

Since user input comes from the keyboard, we can identify all user input during
the lifetime of the application with a list of keystrokes, where a keystroke is a
character (a character code) associated with a timestamp.



Usually, computer systems have an input buffer. This buffer is filled with the
user’s keystrokes independently of the current application’s activity. When the
application calls the operating system function for retrieving the next keystroke,
the first keystroke of the keyboard buffer is returned. In the scenarios we are
modeling, however, the use of a keyboard buffer is often not advisable. From the
view of security, we want that the user approves or denies an activity only after
he or she is aware of the options available. With a keyboard buffer, a user may
enter commands that are executed at a later point in time. It could then happen
that the user approves or denies an activity before the available options are shown
to him or her. Therefore, we define the operating system function getkeystroke

without using an input buffer. The function getkeystroke is specified to return
the next character typed after its invocation.

context getkeystroke()

post result ∈ keyboard(t) and
timestamp(result) > t@pre and
not ∃k ∈ keyboard(t) :

(timestamp(k) > t@pre and
timestamp(k) < timestamp(result))

3.4 Specifying Security-relevant Properties

Under security aspects, a key requirement for a system using keyboard input
and screen output is the impossibility of man-in-the-middle attacks against the
keyboard and the screen. If an attacker can get in between the legitimate appli-
cation and its input/output facilities, the attacker can manipulate the user at
will.

There is no easy way to prevent physical man-in-the-middle attacks like, for
example, covering the real keyboard with a faked keyboard as described in [2].
However, the prevention of software-based attacks with trojans, worms, viruses
etc. is possible if the operating system provides means to guarantee exclusive
access to the keyboard and screen. We call the process of acquiring exclusive
access “locking” and the release of the lock “unlocking.”

We consider information on whether screen and keyboard are locked and by
which process to be part of the current configuration (i.e., the status) of the
operating system. In the specification of requirements for the operating system,
one has to refer to this information and other configuration details. For that
purpose, we assume the relevant parts of the operating system configuration to
be stored in a data structure (a class) OSConf with the following class attributes:

OSConf.screenLocked

OSConf.keyboardLocked

OSConf.ioStatus

OSConf.screenLocked and OSConf.keyboardLocked contain the process IDs
(PIDs) of the processes locking the screen resp. the keyboard. A PID of 0 means
that the resource is not locked. The third attribute OSConf.ioStatus can have
the values busy and waiting. It indicates whether the system is busy or is



Conf.command Last issued command

Conf.commandResult Result of last command

Conf.applicConf Application-specific part of configuration
Table 1. Configuration of an application.

waiting for input. While it is busy, all input is discarded (see comment about
input buffers in Chapter 3.3).

Locking a resource is not sufficient to guarantee security. The user must
also know which process locks a resource and whether the system is busy or
not. Therefore, the operating system configuration must be shown to the user
represented by a string of characters. We assume this string representation to
be given by the function OSConfString : OSConf→ String , which we do not
further specify here. It must return a string that allows the user to determine
the exact operating system configuration. Its actual implementation depends,
for example, on the language(s) the user is supposed to understand.

We assume that the first line of the screen is reserved for information on
the operating system configuration, i.e., the first line should be identical to
OSConfString(OSConf).

We specify the correct display of the operating configuration resources as an
invariant of OSConf:

context OSConf

inv stringAt(t)[0, 0] = OSConfString(OSConf)

In the following we give a constraint for the operating system call for locking
the screen. The calls for locking the keyboard and unlocking the resources are
equivalent. Here PID refers to the PID of the current application.

context lockscreen()

post if OSConf.screenLocked@pre = 0
then
OSConf.screenLocked = PID and
result = SCREEN LOCKED OK

else
result = SCREEN LOCKED BY OTHER

endif

4 Security of Interactive Applications

4.1 Overview

In Chapter 3, we showed how to specify security-relevant properties of input/out-
put functions provided by an operating system. By ensuring and verifying these
properties, certain types of software-based man-in-the-middle attacks can be
prevented.



There are, however, other essential aspects of a secure software system. In this
chapter, we are going to introduce a method for specifying properties of appli-
cations that are desirable both for security and usability. Namely, the following
properties are considered:

1. The user is always aware of the state of the system.
2. User input is only possible if the screen output is consistent.
3. Results of user actions are communicated to the user.

On an abstract level, the behavior

Sign Text
[Key Available]

Not
Signed

Signed

Fig. 1. State Chart Example

of text-based interactive applications
can be described using state charts.
Edges are labeled with keystrokes, guard
conditions, or both, as shown in Fig-
ure 1. In this example, the system

transits from state Not Signed to state Signed if the command “Sign Text”

is issued and the guard condition “Key Available” is satisfied. Of course, the
states in such as state chart are abstractions of the application’s actual inter-
nal configuration, which is much richer in detail. Nevertheless, we assume that
these states are the right abstraction in that the user has sufficient information
about the internal configuration of the application if he or she knows in what
abstract state the application is. Since, as said above, we also want the user
to know what the result of the last issued command was, we define the config-
uration Conf of the application to contain—besides an application-dependend
part Conf.applicConf—the last issued command Conf.command, and the result
Conf.commandResult of that command, which can take the special valued none

if the command is not yet completed (see Table 1).
Now, two aspects of the application have to be specified:

1. The way in which the configuration is related to screen output; and how
keyboard input corresponds to commands.

2. The effect that the execution of a command has, which must implement the
abstract behavior specified by the state chart.

4.2 Specification of Input/Output Behavior

For the specifiation of the first aspect (input and output), we assume the follow-
ing to be given (see Table 2):

– stateAsString(state) is a string that allows the user to determine what the
state of the application is.

– resultAsString(commandResult) is a string that allows the user to determine
what the result of the last issued command is.

– screenOutput(applicConf) is a two-dimensional array of characters. It con-
tains the correct screen output corresponding to applicConf. Its dimensions
are screenWidth() and screenHeight()− 3.

– command(char) is the command that is issued by entering char on the
keyboard.



Name Description

stateAsString Textual representation of the state

resultAsString Textual representation of a command result

screenOutput Screen output for a configuration

command Command issued by entering a character

state State abstraction of a configuration

newState Next state when a command is issued in a certain
configuration

result Result of a command in a certain configuration
Table 2. Functions specifying an application.

We demand that stateAsString(state) is shown on the second line of the screen,
and resultAsString(commandResult) on the third line (remember that the first
line is reserved for the operating system’s status line), which is why
screenOutput(applicConf) must have a height of screenHeight()− 3.

Thus, the function updateScreen can be specified as follows. It is the appli-
cation’s function for updating the screen contents (using the operating system
function setChar).

context updateScreen()

post stringAt(t)[0, 1] =
stateAsString(state(Conf.applicConf)) and

stringAt(t)[0, 2] =
resultAsString(Conf.commandResult) and

∀k ∈ {3, . . . , screenHeight()− 1} :
stringAt(t)[0, k] =

screenOutput(Conf.applicConf)[k]

4.3 Specification of Command Execution

For the specification of the second aspect (command execution), we assume the
following to be given (see Table 2):

– state(applicConf) is the state abstraction of the application configuration.

– newState(applicConf, command) specifies the state transition. (It has
applicConf as an argument and not, as one might expect, the abstraction
state(applicConf), because it depends on guard conditions that can only be
evaluated using the concrete application configuration.

– result(applicConf, command) is the result of executing command when the
application is in configuration applicConf.

Now, the function execute can be specified. It executes a command and
implements the state transition by changing the application configuration.



context execute()

post state(Conf.applicConf) =
newState(Conf.applicConf@pre,

Conf.command@pre)
Conf.commandResult =

result(Conf.applicConf@pre,
Conf.command@pre)

4.4 The Application’s Main Algorithm

Now, we have everything at hand to describe how the main algorithm of the
application works: First, screen and keyboard are locked. Then, in the main
loop, commands are read and executed while keeping the screen updated. These
steps are arranged in the following way:

– Screen and keyboard are locked immediately on program start and unlocked
when the program quits. If locking the screen or the keyboard fails, the
program terminates.

– Whenever the program is waiting for user input, the screen is up to date.
Commands can be issued only when the system is waiting. All keystrokes
entered during processing are discarded. By this we ensure that the user
issues a command only when the current configuration of the system is visible
on the screen.

– When processing is finished, the loop starts over again unless the user has
issued the command “quit.”

Pseudo for the main execution loop is given in Algorithm 1.

Algorithm 1 The application’s main algorithm

1: if not (lockkeyboard() = KEYBOARD LOCKED OK) then
2: Exit
3: end if
4: if not (lockscreen() = SCREEN LOCKED OK) then
5: Exit
6: end if
7: {OSConf.screenLocked = PID and OSConf.keyboardLocked = PID}
8: repeat
9: updateScreen()

10: Conf.command = command(key(getkeystroke()))
11: Conf.commandResult = none

12: updateScreen()

13: execute()

14: until Conf.command = QUIT

The consistency of the screen output follows from the algorithm and the spec-
ification of getkeystroke. The screen is up to date when the system is waiting
for user input, and immediately after user input, and it may be inconsistent in



between. Since the operating system displays status information “waiting” when
the system is waiting for user input and “busy” when it is not, the user knows
when the display must be consistent (whenever the system is waiting for user
input). The situation would become more complicated if we used an input buffer.
In that case, there is no longer a direct relationship between waiting/busy status
and the consistency of screen output. It would be necessary to show an extra
“consistency flag” on the screen.

5 Conclusions and Future Work

In Chapter 3 we gave a formal specification for text-based input/output functions
of an operating system. This formalism can be extended to other input/output
devices, e.g., card readers and graphical terminals. Additionally, we showed how
to protect against software-based attacks on input/output resources. These secu-
rity measurements require special functionality of the operating system. It must
be able to grant processes exclusive access to input/output resources. Moreover,
dedicated screen areas must be provided for information on who is locking the
resources. This area must not be writable for anybody except the operating
system.

The method we propose does not make any claims about what happens
outside the realm of software. It cannot guarantee that an output device operates
as intended, nor can it prevent tempering with the hardware of input/output
devices.

In Chapter 4, we described a state-chart-based method for the formal spec-
ification of interactive applications. This formalism takes both security and us-
ability aspects into consideration.

Our future work will go into two directions: As part of the Verisoft project
(http://www.verisoft.de), the methods introduced in this paper are used to
formally specify an email client. In Verisoft, both the operating system and the
application program will be formally verified based on that specification.

The other direction of further work is to develop formal methods for the
specification of applications that have richer user interfaces than a purely text
based interface.

References

1. G. D. Abowd, J. P. Bowen, A. J. Dix, M. D. Harrison, and R. Took. User interface
languages: A survey of existing methods. Technical Report PRG-TR-5-89, Oxford
University Computing Laboratory, October 1989.

2. L. Bussard and Y. Roudier. Authentication in ubiquitous computing. In UBI-
COMP 2002, Workshop on Security in Ubiquitous Computing, Göteborg, Sweden,
September 2002.

3. A. Dix and G. Abowd. Modelling status and event behaviour of interactive systems.
Software Engineering Journal, 11(6):334–346, 1996.

4. V. Jain. User interface description formalisms. Technical report, McGill University
School of Computer Science, Montréal, Canada, 1994.

5. B. Sufrin. Formal specification of a display editor. Science of Computer Program-
ming, pages 157–202, 1982.


