BERNHARD BECKERT

RIGID E-UNIFICATION

1. INTRODUCTION

1.1. Overview of this Chapter

By replacing syntactical unification with rigi-unification, equality han-
dling can be added tdgid variable calculi for first-order logic, including
free variable tableau (Fitting, 1996), the mating methoddrews, 1981), the
connection method (Bibel, 1982), and model eliminationvland, 1969);
for an overview of these calculi, see Chapters 1.1.1 and.l.1.

Rigid E-unification and its significance for automated theorem imgv
was first described in (Gallier et al., 1987). An earlier mipé to formulate
the generalized unification problem that has to be solveldadling equality
in rigid variable calculi can be found in (Bibel, 1982).

GroundE-unification (i.e. E-unification with variable-free equalities) has
long been known to be decidable (Sect. 2.3), and classideadnsal E-uni-
fication has long been known to be undecidable (Chap. I.Rigjd E-uni-
fication is in between: It is decidable in the simple, nontditameous case
(Sect. 2.4), but it is undecidable whether there is a simelias solution
for several rigidE-unification problems (Sect. 3.2), which is unfortunate as
simultaneous rigide-unification is of great importance for handling equality
in automated theorem proving (Sect. 5).

In the remainder of this section, we describe the basic ide&il E-
unification and its importance for adding equality to rigiaiable calculi
and introduce syntax and semantics of first-order logic eithality. In Sec-
tion 2, we formally define (non-simultaneous) rigieunification and the no-
tion of (minimal) complete sets of unifiers; and we briefly tskeproofs for
the decidability of groun&-unification and—based on this—for rigktuni-
fication; methods for solving rigi&-unification problems are compared. In
Section 3.3, the problem of finding a simultaneous solutwrséveral rigid
E-unification problems is discussed; and in Sectioméked Eunification is
introduced, that is a combination of classical and rigidnification. Using
the example of free variable semantic tableaux, we show @ticge5 how
rigid E-unification can be used to handle equality in a rigid vagatalcu-
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266 BERNHARD BECKERT

lus. Finally, in Section 6, we briefly summarize the propsof the different
types ofE-unification.

1.2. The ldea of Rigid E-unification

In classicalE-unification, the equalities defining the thedtyare implicitly
universally quantified w.r.t. the variables they contaio.sblve a classical
E-unification problem, the question has to be answered wh#ikeequality
of two given terms (or of instances of these terms) followsTE or, equiv-
alently, whether the terms are equal in the free algebria @Ehap. 1.2.7).
However, for adding equality to rigid variable calculi, bgiable to answer
that question is not sufficient.

Consider, for example, the problem of proving that the codfion of
the three formulae.p(f(a)), p(c), and f(x) = cVv @(X) is unsatisfiable. The
equality f (x) = c can be applied t&-unify the atomsp( f(a)) andp(c) and,
thus, to show that the literatsp( f (a)) andp(c) are inconsistent. But to de-
rive this knowledge is not sufficient for a proof; tReunification procedure
has, in addition, to provide the information consisting dfieh instances of
the equality have actually been used (in the example, oeljngtance where
the variablex is instantiated witha). This information is needed to justify
the equality applications by proving that the correspogdiistances of(x)
are inconsistent (in this case the instapte){x— a} = @(a)); one has to
show that applying the substitutigm — a} makes both disjuncts inconsis-
tentsimultaneouslyln general, substitutions have to be found that simulta-
neously solve several rigid-unification problems corresponding to disjunc-
tively connected (sub-)formulae.

The solution to a (non-simultaneous) rigtdunification problem is a sub-
stitution representing the instantiations of free vaealihat have been neces-
sary to show that the two given terms are equal. A single bbiean only be
instantiated once by a substitution and, accordingly, teesa rigid E-unifi-
cation problem, the equalities of the problem can only bel ugéh (at most)
one instantiation for each variable they contain; a vaeableither instanti-
ated or not, that is, uninstantiated variables have to lag¢ddeas constants.

Rigid E-unification does not provide an answer to the question of how
many different instantiations of an equality are neededabeesa problem. If
a single instance is not sufficient, then the answer is “nditaloie”. If several
different instances of an equality are needed, a sufficiemtaer of copies of
that equality (with different rigid variables) has to be yided for the rigid
E-unification problem to be solvable.
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1.3. Syntax

A first-order signature& = (Ps, F5,05) consists of a sé& of predicate sym-
bols a set of function symbolsand a functiors assigning ararity n > 0
to the predicate and function symbols; function symbolsiby & are called
constantsin addition, there is an infinite s&t of object variablesWe only
consider signatures wherePs contains the binary predicate symbelde-
noting equality. The séfflermy: of terms over a signatueis built in the usual
manner.

We use the logical connectivegconjunction)y (disjunction), and- (ne-
gation), and the quantifier symb&lsndd. The set of well-formed first-order
formulae ovez is denoted byormy; well-formed formulae are defined as in
Chapter1.1.1 (Def. 1), with the additional restrictionthdormulap € Forms
must not contain a variable that is both bound and freg i variablex ¢ V
is boundin @if it occurs inside the scope of a quantificati®fx) or (3x); x is
freein @ if it occurs outside the scope of all quantificatiafvs) and (3x).
The set of all literals ifFormy is denoted by.its. Since substitutions play an
important réle in this chapter, they are formally defined:

DEFINITION 1. A substitutiorassigns to each object variable inV a term
in Terny; the set of all substitutions is denoted by Sgb¥hedomainof a
substitutiono € Subst is the set of all x V such thato(x) # x. If 0 has a
finite domain{xs,...,X,}, n> 0, it can be denoted bix; — t1,..., Xy — tn}
where t=0(x), 1 <i < n. The set of all idempotent substitutions with finite
domain is denoted by Subst

The application of a substitutiamto a termt or a formulag is denoted
byto resp.go. It may be applied to a quantified formupahowever, to avoid
undesired results, the bound variablegimust neither occur in the domain
nor in the range of.

DEFINITION 2. Given afinite set W V, a substitutiow € Subst is more
general than a substitutianc Subsg (on W), denoted bg <% 1, iff there is
a substitutiorp € Subs¢ such thatr(x) = (o(x))p forall x e W.

1.4. Semantics

A first-orderstructure M= (D, I) for a signatur& consists of a non-empty
domainD and an interpretatioh which gives meaning to the function and
predicate symbols &&.
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The combination of an interpretatiorand a variable assignmepntthat
maps the seV of all variables to the domai®, associates (by structural
recursion) with each terme Terny an element irD.

The evaluation function val, maps the formulae ifforms to the truth
valuestrue andfalse(in the usual way, e.g. Def. 10 in Chap. I.1.1).

If val, ,(¢) = true for all variable assignments thenM satisfiesp (is a
modelof ¢); M satisfies a seb of formulae if it satisfies all elements df.

In this chapter, we only consideormal structures where the symbgi
has the intended meaning; i.e., a structure is normal## is the identity
relation onD.

DEFINITION 3. A formulay € Forms is a (weak) consequencef a set
® C Forms of formulae, denoted b |= , if all normal structures that are
models ofp are models ofp as well.

In addition to the normal (weak) consequence relagigrwe use the no-
tion of strong consequence:

DEFINITION 4. A formulay € Forms is a strong consequencef a set
® C Forms of formulae, denoted by =° , if for all normal structures
M = (D, I) and for all variable assignments p:

If val (@) = true forallpe ®, then vaj () =true .

A difference between the strong consequence relatiband the weak
consequence relatiga is that the following holds fo=° (but not forl=): If
® =° , thendo =° Yo for all substitutions € Subsk.

2. NON-SIMULTANEOUS RIGID E-UNIFICATION

2.1. Definition and Basic Properties

The problem of simple (i.e. non-simultaneous) riidinification is defined
as follows:

DEFINITION 5. A (rigid) equalityis a formula of the form £ r. A rigid
E-unification problem{E, s,t) consists of a finite set E of (rigid) equalities in
Forms and terms & € Terng. If there are no variables ikE, s,t), thenitis a
groundE-unification problem. A substitutiane Subs§ is a solutionto (or
unifierof) (E,s t) iff Eo =° (so =to).
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RIGID E-UNIFICATION 269

The major differences between this definition and that o$sital (uni-
versal)E-unification are that (a) the substitutioris applied not only to the
termss andt but also to the sdE of equalities and that (b) the strong conse-
quence relatiof=° is used in the definition instead pf (this is equivalent to
treating the variables iBo as constants).

The following theorem clarifies the basic properties ofdigiunification
by listing different characterizations of the set of saas of a given problem:

THEOREM 1. Given a rigid E-unification probleniE, s,t) and a substitu-
tiono = {xy —t1,...,% — ty} € Subs}, the following are equivalent condi-
tions foro being a solution tqE, s,t):

1. Eo =° so =to, i.e., 0 is by definition a solution tdE, s,t);

2. Eo |= so = to over a set \ of variables and a signaturg® such that
the variables occurring inE,s,t) are constants, i.e., ¥=V\W and
0= (P, FUW, 05U {x— 0| x € W}) where W is the set of variables
occurring in(E,s,t).

3. (Eo)T = (so)t = (to)t for all substitutiong € Subst;

4. EU{X1 =t1,...,X% =ty} E° s=t; provided that none of the variablegs x
occurs in any of the termg (1 <i,j <n);

5. o is the restriction to the variables occurring iE,s,t) of a substitu-
tion which is a solution to the rigid E-unification problef&’, yesno)
where E = EU{eq(x,X) = yes eq's,t) = no}, and (a) the predicate eq,
the constants yeso, and the variable x do not occur ifE,s t) and
(b) the constants yeso do not occur in the terms,t .., t,.

The last characterization of solutions in the above thewieows that it is
always possible to solve a rigietunification problem by transforming it into
a problem in which the terms to be unified are constants.

Syntactical unification is a special case of riielinification, namely the
case where the s&tof equalities is empty.

2.2. Complete Sets of Unifiers

It is possible to represent the set of all solutions to (ursfad) asyntactical
unification problem by a single most general unifier (MGUxttis more
general than all other unifiers w.r.t. the subsumption i@t (Def. 2).
For rigid E-unification problems, however, a single MGU is not suffitien
represent all solutions. Insteadset u of (most general) unifiers has to be
used;u is completdf every solution to the given problem is subsumed by
one of the unifiers inu. The number of substitutions in a complete set of
unifiers can be reduced by using, instead¥f a subsumption relation that
takes equality into account:
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270 BERNHARD BECKERT

DEFINITION 6. Let E C Form; be a set of equalities; and let WV be a
finite set of variables. Then the relationy’, <! € Subs} x Subs} are de-
fined by:o C¥ 1 iff Eo =° o(x) = 1(X) for all x e W; o <¥ 1 iff there is a
substitutioro’ € Subs} such thato <" ¢’ ando’ C} 1.

The intuitive meaning ob <Y 1 is that the effects of applying to the
setE of equalities can be simulated by first applyiogthen some other
substitutiorp, and then equalities fortEao)p.

LEMMA 1. Let EcC Forms be a set of equalities, and let T € Subs} be
substitutions such that <Y T where the set W contains all variables occur-
ring in E. Then there is a substitutigne Subs} such that(Eo)p =° ET.

The setW contains the “relevant” variables, includiag leastthose oc-
curring in theE-unification problem. If, for example, rigi&-unification is
used to close a tableau branch, thécontains all free variables occurring in
the tableau. It is of advantage to keep theets small as possible because,
for exampleg = {x+— f(y)} subsumes = {x+— f(c)} if y ¢ W; otherwise,
if y € W, o subsumes the substitutioh= {x— f(c),y+— c} but notrt.

In automated deduction, the cardinality of a complete satrifiers is
closely related to the number of choice points when rigjidnification is used
for a deduction step. Therefore, it is desirable to compuédmalcomplete
set of unifiers. Nevertheless, it is often not useful to easuinimality since
there is a trade-off between the gain of computing a minireeaad the extra
cost for checking minimality and removing subsumed sulistins (it is not
as easy to decide whethex} 1 as it is to decide whether <" 1).

DEFINITION 7. A setu C Subsf is a complete set of unifier®r a rigid
E-unification problen{E, s,t) w.r.t. the relation<" (resp.<Y') if
1. eacho € @ is a solution to(E, s t) (soundness)
2. for each solution of (E, s,t) there is a solutiow € ¢ such thaio <" t
(resp.o <Y 1) where W is the set of variables occurring(ig, s, t) (com-
pleteness)

The setu is called aminimal complete set of unifiers if, in addition,
3. there areno 01,0, € U, 01 # 02, such thato; <" o3 (resp.o; <Y’ 02)
(minimality).

EXAMPLE 1. Consider the rigid E-unification problerf, s,t) consisting
of the set E= {a = x, b= c} of equalities and the terms=sa and t=c. The
substitutionss; = {x— b} ando, = {x— c} are both solutions tdE, s,t),

whereas the substitutian= {x+ a} is not a solution.
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RIGID E-UNIFICATION 271

Since botlo; CY 0, ando, CY 03, the unifierss; and o, subsume each
other; and{o1} and{o,} are both minimal complete sets of unifiers.

Note that, althouglw; is a solution ando; C} 1, the substitutiort is not
a solution to(E, s,t).

2.3. Deciding Ground E-unification Problems

In (Shostak, 1978), it is proven thgtound Eunification is decidable; conse-
quently, by considering all variables to be constants, dieisidable whether
the empty substitutioid is a solution to a givemigid E-unification prob-
lem (E,s t), i.e., whetherE =° s=t. In this section, we briefly describe
Shostak’s decision procedure, because the decidabiligyafndE-unifica-
tion is the basis for proving rigi&-unification to be decidable.

Whether a groun&-unification problemE, s, t) is solvable or not, can be
decided by computing a congruence closure, namely the @lguaiee classes
of the terms (and subterms) occurring(ly, s, t) w.r.t. the equalities ifk.

DEFINITION 8. Let(E,s,t) be a ground (or rigid) E-unification problem;
and let Tg sty C Terny: be the set of all (sub-)terms occurring(i, s, t). The
equivalence clasl] e sty of aterm te Tg sy is defined by:

[tlesty = {S€ Tiesy |EE" s=t} .

Since a grounde-unification problem(E, s,t) is solvable (andd a so-
lution) if and only if [s];e sty = [t](E sty, ON€ can decide whethgE,s;t) is
solvable by computing these equivalence classes. Shostakdgthat for
computing the equivalence classes of all term3 i, no terms that are
not in Tie sty have to be considered:  can be derived front using the
equalities inE, then this can be done without using an intermediate term
that does not occur in the original problem, i.e., there isguence of terms
S=rq,r1,...,lk=1t,k> 0, all occurring inlE, s,t) such that; is derivable in
one step frontj_1 using the equalities i&.

Since the number of subterms in a given problem is polynomidts
size, and the congruence closure can be computed in timegoigl in the
number of subterms and the number of equalities, the sdityati a ground
E-unification problem can be decided in polynomial time.

There are very efficient and sophisticated methods for caimgthe con-
gruence closure, for example the algorithm described ifs@teand Oppen,
1980) which is based on techniques from graph theory.

Here, we present Shostak’s straightforward and easy torstzohel algo-
rithm: The idea is to start with a separate class for each tertime problem
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272 BERNHARD BECKERT

and then to stepwise join classes containing termsdr’ which can be de-
rived from each other in a single step using equalities.in

DEFINITION 9. Let(E,s,t) be arigid E-unification problem; and letd sy
be the set of all (sub-)terms occurring(g, s,t). Then, for allrc Te 51y, the
classegr]) (which are all subsets ofd s;)) are inductively defined as fol-

(E,st)
lows:[r ]<E$t = {r} and, forn> 1, [ ]?E s) is the union of aIIcIasse{s] Est>
of terms f € T gy Such thafr]i- Egt and|[r ]<E$t> are connected, i.e., such

that they contain termsprand r{,, respectlvely, with (@)g=rg, (b) ro=rg
is an equality in E, or (¢)¢ = f(ry,...,fas(f)): o= f(r’l,...7rgz(f)) where
f ¢ = and[r ]<E5t> [r! ]?Eéw forall 1 <i< ax(f).

There are only finitely many classes at the beginning, ancett step
connected classes are joined and, thus, the numhdiffefentclasses is re-
duced. Therefore, the process has to terminate after finitahy steps. In
(Shostak, 1978), the following theorem is proved which iegplsoundness
and completeness of the congruence closure method.

THEOREM 2. Given a ground E-unification probledft, s;t), there is an
n > 0 such that, for all terms occurring itE, s, t) and all m> n:

[t]an,st) = [t]?E,st) = m(ESW :

2.4. Deciding and Solving Rigid E-unification Problems

If a rigid E-unification problem is solvable, then it has infinitely masoju-
tions. But there are, for each problefimite minimal complete sets of solu-
tions w.r.t. the subsumption relatiof?; and such a finite set can be effec-
tively computed: This immediately implies the decidability of the question
whether a given unification proble(k, s,t) is solvable or not. On first sight
this might be somewhat surprising since classkalnification is undecid-
able; however, the additional restriction of rigidunification, that variables
in E may only be instantiated once, is strong enough to turn aeciddble
problem into a decidable one.

The problem of deciding whether a rigitunification problem has a so-
lution is, in fact, NP-complete. This was first proven in ((Zalet al., 1988)

1 However, itis not known whether (non-simultaneous) rigidnification can be
used for handling equality in a rigid variable calculus stiet the resulting calculus
is complete if only solutions are used that are minimal w (Sect. 5.2).
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and then, more detailed, in (Gallier et al., 1990; Gallienket 1992). The
NP-hardness of the problem was already shown in (Kozen,)1981

An alternative proof for the decidability of rigi&-unification, that is
sketched below, was presented in (de Kogel, 1995). It ie&sunderstand
than the previous proofs, because the complexity of thesaatprocedure is
not taken into consideration. The main lemma on which de Kegeoof is
based is the following:

LEMMA 2. Arrigid E-unification problem{E, s,t) is solvable if and only if
there are a variable x and a term r, both occurring(ig, s,t), and an x-freé
termr € Termy (which does not have to occur (&, s,t)) such that

1. EF°r=r',and
2. the rigid E-unification probleniE, s, t){x— r'} is solvable.

In that case,(E,s,t){x— r'} is solvable forall x-free terms r such that
EEr=r.

Obviously, if o’ is a solution to the derived probleffe, s t){x— r'},
theno = 0’ o {x— '} is a solution to the original problefi, s,t). Thus, the
problem of solving a rigide-unification problem witm variables can be re-
duced to the problem of solving problems with- 1 variables (and problems
with no variables are decidable using the algorithmgiaund Eunification
described in the previous section). One has to consideaglblesx and all
termsr occurring in(E, s,t); for each of these combinations, sfree termr’
such thatE,s,t) =° r = r’ has to be found. Sincé does not have to occur
in (E,s,t) there are infinitely many candidates. Nevertheless, whethzh a
termr’ exists is decidable because, in fact, only thé$eve to be considered
that can be deduced in a single step from a term occurricg,igt).3

Thus, the non-deterministic algorithm shown in Table | canused to
compute solutions to a given rigi-unification problemE, s,t)—provided
a solution exists. Since all non-deterministic choicesraagle from finitely
many possibilities, a deterministic decision proceduretmaconstructed us-
ing this algorithm and backtracking.

2 Aterm isx-free if it does not contain the variabte

3 The reason for thisis the following: Supposed there is-fnee ternr” such that
(E,s,t) E° r =r". Then, according to Theorem 2, it is possible to derivstepwise
fromr in such a way that all the intermediate terms are subtern{& ofr”). Let
r' = rj be the firsix-free term in that sequence; the teryn; thatr; is derived from
is notx-free (sincej is the first) and, therefore, cannot be a subtermi dfvhich is
x-free); sori_1 has to be a subterm & orr and, thus, ofE, s t).
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Table I. Non-deterministic algorithm for computing a
solution to a rigicE-unification problem(E, s;t).
o:=id;
while notE =° s=t do
choose a variablex occurring in{E, s, t);
choose a (sub-)ternr occurring in{E, s,t) such that
there is arx-free termr’ € Termy such thaE =°r =r’;
(E,st):=(E,st){x—~r'};
0:={Xx—r'}oo
od;
output “o is a solution”

The substitution that is applied at each step connects twivagnce
classes of terms occurring in the problem; since it is onBfuigo join dif-
ferent classes, the choice of a variaklend a ternr can be restricted to the
case thahotalreadyE =° x=r.

EXAMPLE 2. As an example for the application of the algorithm from Ta-
ble |, consider the rigid E-unification problém

(E,st)=({fa=a g’x= fa}, g %) .

The empty substitution id is not a solution(, s,t), so E=° s=t does
not (yet) hold. The choice of a variable is deterministiccdiese x is the
only one occurring in the problem. None of the termgHns,t)—except x
itself—is equivalent to x, so they are all suitable choicesf most of these
possible choices (including a and fa), however, do not |leaa $olution to
the problem. The only useful choice is-rg®x. This term is not x-free; it is,
however, possible to derive the x-free tefm-rgfa from r in one step using
the equality gx = fa. Thus, after applying the substituti¢n — gfa}, we
get the new problem

(E' ¢,t") = ({fa=a,gfa= fa}, g*fa gfa) .

Now the algorithm terminates because-E s =t’, and we conclude that
{x+— gfa} is a solution to the original problem.

The non-deterministic choices make the algorithm desdrédsove too
inefficient for an actual implementation. More efficient mads, such as the

4 In this example, we usg’x as an abbreviation fay(g(x)), etc.
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procedures presented in (Gallier et al., 1992; Becher atetrRann, 1994;
Plaisted, 1995), use term rewriting and searclcfitical pairs to choose the
variablex and the ternt. In addition, these completion-based methods allow
to compute a minimal complete set of unifiers.

One of these efficient procedures, the one described in éBeatd Pe-
termann, 1994), has been implemented and integrated imovardor first-
order logic with equality (Grieser, 1996).

3. SIMULTANEOUS RIGID E-UNIFICATION

3.1. Definition and Basic Properties

For handling equality in rigid variable calculi for firstaer logic, it is, ac-
tually, not sufficient to solve simple (non-simultaneougjd E-unification
problems. For example, in semantic tableaux, solving al figunification
problem corresponds to closing a single branch of a tabldawever, to
close the whole tableau, a single substitution has to bedftliait closes all
branchesimultaneouslyT hus simultaneousgid E-unification, the problem
of finding a substitution that is a simultaneous solutioneeesal (indepen-
dent) rigidE-unification problems, plays an even more important réleioa
mated deduction than the simple problem. If equality is ooisidered, i.e., if
syntactical unification problems have to be solved, a siamglbus unifier can
be computed from the most general unifiers of the simple probl(if one
exists). Unfortunately, computing a simultaneous sotufur rigid E-unifi-
cation problems is a much more complex problem. In fact, itndecidable
whether a simultaneous solution exists.

As (non-simultaneous) rigi&-unification, the problem of simultaneous
rigid E-unification was first formulated in (Gallier et al., 1987).

DEFINITION 10. A finite set{(E1,s1,t1),...,(En,S,tn)} (N> 1) of rigid
E-unification problems is callesimultaneousigid E-unification problem. A
substitutiono is a solution to the simultaneous problem iff it is a solution
every componen(Ey, S, tk) (1< k<n)j.

3.2. Undecidability of Simultaneous Rigid E-unification

Whether simultaneously rigi-unification is decidable or not has long been
an open problem. The literature contains several faultyfgrdor its de-
cidability. The debate came to an end after a reduction ofptioblem of
monadic semi-unificatioto simultaneous rigid-unification was presented
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in (Degtyarev and Voronkov, 1995), that had been proven tortakecidable
in (Baaz, 1993). Shortly afterwards, a simpler and mordgittorward re-
duction of the well known undecidable problem of secondeonthification
(Chap. 1.2.12) was presented in (Degtyarev and Voronk 64

In the same way as it may be surprising on first sight that snnigiid
E-unification is decidable, it may be surprising that movingni simple to
simultaneous problems destroys decidability—even momasidering that
the simultaneous versions of other decidable types of aidin (including
syntactical unification and grourigtunification) are decidable. However, si-
multaneous rigicE-unification turns out to have a much higher expressive-
ness than simple rigiB-unification; it is even possible to encode Turing Ma-
chines into simultaneous rigid-unification problems (Veanes, 1997a). The
following undecidable problems have been reduced to sanatius rigicE-
unification:

— monadic semi-unification (Degtyarev and Voronkov, 1995);

— second-order unification (Degtyarev and Voronkov, 1996a);

— Hilbert’s Tenth Problem (Degtyarev and Voronkov, 1996kjs reduc-
tion is based on encoding addition and multiplication ofinatnumbers
into a simultaneous rigif-unification problem;

— Post’s Correspondence Problem (Plaisted, 1995);

— the halting problem for Turing Machines (Veanes, 1997a).

In addition, it has been shown that simultaneous rigfidnification is al-
ready undecidable if (a) all equalities are ground and oméyterms to be
unified contain variables (Plaisted, 1995) and (b) if thebpgms contain only
two variables; even if both restrictions are combined, trebjem remains
undecidable (Veanes, 1997b).

The following decidablesub-cases of simultaneous rigigtunification
are known (for some of these, decidability is not obvious difficult to
prove): It is decidable whether a simultaneous rigidnification problem
{(E1,S1,t1),...,{En,Sn,tn)} (N> 1) has a solution in case

— n=1;inthat case the problem is non-simultaneous;

— the problem is ground; then the simultaneous problem isabbdvff all
its components$E;, s;,ti) (1 <i < n) are solvable;

— the setsE; of equalities are identical, i.eE = E; = --- = Ey; in that
case, any substitution that (a) is a solution to the non-$amaous prob-
lem (E, f(s1,...,5n), f(t1,...,tn)) and (b) does not instantiate variables
with terms containing is a solution to the original problem (the func-
tion symbolf must not occur in the original problem);

— the problem contains only one variable; then the decisiablpm is
EXPTIME-complete (Degtyarev et al., 1997);

rigid.tex; 9/03/1998; 10:47; p.12



RIGID E-UNIFICATION 277

— the problemis monadic (i.e., all occurring function synsere of arity O
or 1) and all equalities are ground (Gurevich and Voronk89,7);

— the problem is monadic and only one function symbol occuegytiparev
et al., 1996b).

Whether the sub-class aofonadicsimultaneous rigide-unification prob-
lems is decidable is an open problem.

The undecidability of simultaneous rigktunification implies the unde-
cidability of the following (equivalent) problems, thatdhaot been known to
be undecidable before the undecidability of simultanedid E-unification
was proven:

— Deciding whether there is an unsatisfiable ground instafigegiven
guantifier-free formulap of first-order logic with equality; this problem
is equivalent to the question whether a fully expanded fiaaéable ta-
bleau forg can be closed (Gallier et al., 1987; Degtyarev et al., 1996a)
see Section 5.

— Deciding whether a prenex-normal form formula is provabliatuition-
istic logic (Degtyarev et al., 1996a; Degtyarev and VoronH®96d).

3.3. Solving Simultaneous Rigid E-unification Problems

Since simultaneous rigi-unification is undecidable, sets of unifiers can
only be enumerated; in general they are not finite. Solut@asimultaneous
problem can be computed combining solutions to its corestis(E;, s;,t;);
however, it is not possible to compute a complete set of usibiéa simul-
taneous problem by combining solutions from complete datsifiers of its
constituents that are minimal w.r.t. the subsumptioni@tat, because they
are minimal w.r.t. different relationsy'. Thus, the subsumption relatictt”
has to be used, which is the same foriglbut does not allow to construct
finite complete sets of unifiers).

In (Degtyarev and Voronkov, 1998), a method is describeddonputing
afinite (incomplete) set of solutions for rigi@-unification problems, which
is shown to be sufficient for building a complete rigid vateabalculus for
first-order logic with equality (it is described in detail8®ct. 5.3).

4. MIXED RIGID AND CLASSICAL E-UNIFICATION
In automated deduction, it is useful to consider a combamatif classical

E-unification—where the variables in the equalities are oy universally
guantified (Chap. 1.2.7)—and rigi8-unification. The reason is that even if a
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Table 1l. Examples for the different versionsBfunification (Example 3).

E s t ‘ Unifier ‘ Type
{f(x)=x} f (X) a | {x~a} | rigid
{f(a)=a} f(a) a | id | ground
L) (F(X) = x)} o(f(a), f(b)) g(ab) |id | classical
{f=x} g(f(@), f(b) g(@b) | — | rigid
(v (F(xy) = f(y,x)} f(ab) f(b,a) | {y— b} | mixed

rigid variable calculus is used, equalities are often exjiuniversally quan-
tified or it is known that an arbitrary number of copies of ataer equality
could be added such that it is implicitly universal.

If rigid and classicaE-unification are mixed, equalities contain two types
of variables, namely universal and rigid ones. To distispuhem syntacti-
cally, equalitiegVxy) - - - (V) (I =) are used that can be explicitly quanti-
fied w.r.t. variables they contain; free variables are aer&d to be rigid.

DEFINITION 11. AmixedE-unification problemE, s,t) consists of a finite
set E of equalities of the forrfyx)---(¥xn)(I =r) and terms s and t. A
substitutioro is asolutionto the problem iff & =° so = to.

If there are no free variables B, then(E, s,t) is a classicaE-unification
problem, and, if all variables i(E, s,t) are free (and thus rigid), thelk, s,t)
is a rigid E-unification problem.

A simultaneous version of mixeglunification can be defined analogously
to simultaneous rigi€-unification.

EXAMPLE 3. Table Il shows some simple examples for the different ver-
sions of E-unification. The unifiers in the table are most gane.r.t. the
subsumptions relation. The fourth problem has no solution, since the free
variable x would have to instantiated with both a and b. Canttto that, the
empty substitution id is a solution to the third problem, vehidne variable x

is universally quantified.

Since classicaE-unification, which is undecidable, is a special case of
mixed E-unification, the latter is undecidable as well.
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In (Beckert, 1994), a completion-based method for solviingohE-unifi-
cation problems is described (that is, for enumerating ensifj it is an exten-
sion of the Unfailing Knuth-Bendix algorithm. This methodshbeen imple-
mented as part of the tableau-based theorem pg#¢erand is used iRTAP
for handling equality (Beckert et al., 1996).

5. USING RIGID E-UNIFICATION FOR AUTOMATED THEOREM PROVING

5.1. Extending a Rigid Variable Calculus

Rigid E-unification can be used to handle equality in any of the ngidable
calculi by replacing syntactical unification with rigie-unification; exam-
ples for this technique have been described in (Beckerf7;198gtyarev and
Voronkov, 1998) for free variable tableaux, in (Gallier &t 4992) for the
method of matings, and in (Petermann, 1994) and briefly ini&@e8.3.2 of
Chapter 1.2.6 for the connection method.

In this section, we use free variable semantic tableaux a&ample (as
they are defined in Chap. I.1.1) to demonstrate the basiaiesing rigidE-
unification for handling equality. A substituti@nis a closing substitution for
atableau branch if all instances oBo are unsatisfiable—which s the case if
and only ifBo =° false Thus, ifE is the set of equalities dB, the inequality
—(s=t)isonB, ando is a solutiontaE, s,t), thenao is a closing substitution
for B becausé&o =° so = to and, thereforeEoU {—(so =to) } =° false It
is not sufficient ifo is only known to be a classic&-unifier of (E,st),
becausé& = so =to doesnotimply Ecu{—(so =t0o)} ° false

Which type of rigidE-unification problems has to be solved to decide
whether a tableau branch is closed depends on the versicanwndic ta-
bleaux that equality is to be added to. If the ground versfaaleaux is used
(Sect. 2.2 of Chap. 1.1.1), equality can be added by solvingmd E-unifi-
cation problems. For handling equality in free variabldgabx, rigidE-uni-
fication problems have to be considered; and for tableaux thé universal
formula method (described in Sect. 6.4 of Chap. 1.1.1) mikeghification
has to be used.

The relevante-unification problems for closing a tableau brarigtare
constructed from the equalities &and pairs of potentially closing atoms
resp. inequalities oB (problems are only extracted from literals, which is
sufficient for completeness of the calculus):

DEFINITION 12. Let T be a free variable tableau for a sétC Forms of
sentences (formulae without free variables), and let B beaadh of T. The
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®
—(X i/a) Vlg(Xl) = f(x)
~(xa=a)  g(x1) = f(xa)
f(yl)l =¥y
f(yz)l =Y2

Figure 1. A tableau for the seb of formulae from Example 4.

set EB) of equalities consists of all atomic formulae inUBP of the form
| = r. Theset ofE-unification problem®f B, denoted by (B), contains:

1. the E-unification problertE(B), (s1, .. -, Suz(p))s (11 - - -, tas(p))) fOr €ach
pair p(sy,..-,Suz(p)s P, .., tas(p)) Of potentially closing literals in
BU® where p£ =.

2. the E-unification problendE(B),s,t) for each (potentially closing) in-
equality—(s=t) in BU®.

The problems ire (B) that are of the form{E(B), (s1,...,S), (t1,...,t%))
are actually simultaneous rigi-unification problems since the non-simul-
taneous problem&(B),s;,ti) (1 <i < K) have to be solved simultaneously.
Nevertheless, they are decidable and have finite compléseo$eaunifiers,
because the non-simultaneous problems share the saE@setf equalities
(see Sect. 3.2).

If one of the problems irp (B) has a solutiomw, then all instances do
are unsatisfiable in normal structures; therefore the lbor&8nes closed under
the substitutiom. The pair of literals corresponding to the solved unifigatio
problem has been proven to actually be complementary; amatiesponding
inequality has been proven to be inconsistent (when theeunsfiapplied to
the tableau).

A sound and complete calculus for first-order logiith equalitycan be
constructed by extending the closure rule of free variabibdetaux (Def. 6
in Chap. 1.1.1) in such a way that each solution to one of thiécation
problems in? (B) can be used to close the brargfand the calculus remains
unchanged otherwise); a soundness and completeness probédound in
(Beckert, 1997)).

EXAMPLE 4. As an example, we use free variable tableaux with a rigid
E-unification closure rule to show that the set- Formy consisting of the
formula (Vx)(—(x = a) v g(Xx) = f(x)), the universally quantified equality
(Vy)(f(y) =), and the literals pg(a), f (b)) and —p(a,b) is unsatisfiable

in first-order logic with equality.

rigid.tex; 9/03/1998; 10:47; p.16



RIGID E-UNIFICATION 281

Figure 1 shows a tableau T fab, that has been constructed using the
free variable tableau expansion rules. Let e the left and Bbe the right
branch of T.

Since the left branch Bdoes not contain equalities, the setHz) is
empty. The set (B;) of E-unification problems has two elements: the prob-
lem (0,x1,a) (which is constructed from the inequalityx; = a)) and the
problem (0, (g(a), f(b)), (a,b)) (which is constructed from the potentially
closing literals gg(a), f(b)) and —p(a,b) in ®). The first problem has a
most general unifieo; = {x; — a}; the second problem has no solution.

The right branch B contains three equalities; two of them are instances
of the sameg-formula(Yy)(f(y) = y):

E(B2) = {f(y1) =y1, f(¥2) =V¥o, 9(x1) = f(x1)}

The only unification problem ofBis (E(By), (g(a), f(b)), (a,b)). The
substitutioro, = {X1 — &, y1 — &, Y2 — b} is a solution for this problem.

If the left branch B is closed first, by applying the substitution to the
tableau, the right branch Bis then closed undefy; — a, y» — b}, which is
a closing substitution for ;. If B, is closed first and, is applied to the
tableau, the left branch Bis then closed under the empty substitution.

Note that, if only one instance ¢fy) (f (y) =y) is generated, Bcannot be
closed because thef{ f(y1) = y1}, g(x1) = f(x1)}, (9(a), T (b)), (a b)) is
its single unification problem, which has no solution. If tiiéversal formula
method is used, however, then one instange)f=y; is sufficient (provided
that it is recognized as being universal w.r.t).yThen, the mixed E-unifica-
tion problem({ (vy1)(f (y1) = y1). g(xa) = f(x1)}. (9(a), (b)), (a,b)) has
to be solved, for whickly; — a} is a solution.

If the universal formula technique is used, mixed problerasanstructed
instead of purely rigid problems by explicitly universatjyantifying equali-
ties w.r.t. to variables w.r.t. which they are universatha terms to be unified,
variables w.r.t. which the corresponding potentially céengentary literals
and inequalities are universal can be renamed by new vasalolt occurring
in the tableau.

Since rigid E-unification is decidable, it is decidable whether a given
free variable tableau branch (without considering unaidicrmulae) can be
closed. However, if a branch cannot be closed it may, neskask, be unsat-
isfiable (and, thus, be expandable to a closed branch).

To close a whole tableau consisting of brancBgs...,Bg, a solution
has to be found to one of the simultaneous rigidinification problems in
{(P1,...,R) | R € 2(Bi),1 <i <k}. Whether one of these problems has a
solution is undecidable (as simultaneous rigidinification is undecidable).
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Itis as well undecidable whether there is a substitutiosiolpall branches of
a given tableau simultaneously after it has been expandedikgd number
of copies of the universally quantified formulae it contafieda and Ko-
mara, 1995; Gurevich and Veanes, 1997). The problem of atiarg the
number of copies of universally quantified formulae necgstefind a proof
in rigid variable calculi is discussed in (Voronkov, 1997).

Other approaches to equality handling in rigid variableakl which are
not based on rigidE-unification, include: the extension of the calculus by
special rules resemblingaramodulation(Fitting, 1996; Beckert, 1998); the
method ofequality elimination(Degtyarev and Voronkov, 1996b), which al-
lows to use classic&-unification instead of rigidE-unification; transforma-
tions from first-order logic with equality into first-orderdic without equality
(Brand, 1975; Bachmair et al., 1997).

Rigid E-unification (and equality reasoning in general) is an ins¢aof
theory reasoningChap. 1.2.7), which can be used to improve the efficiency
of automated deduction systems. Problems from a certaimuhof@r theory)
that is defined by a set of axioms, are handled separatelyldacleground
reasoner The background reasoner applies special purpose ted@sand
makes use of knowledge about the theory. In the case of ¢ygthediory, rigid
E-unificationis such a technique (it is@al theory reasoning method). Using
the notions of theory reasoning, the set of formulae fromcivhine rigidE-
unification problems are constructed (equalities, indtjes) and potentially
complementary literals) form theey, and a substitution that is a solution to
one of the problems isfuterfor that key.

5.2. Restricting the Search Space

Completion-based Methods

Efficient methods for solving classic&8-unification problems are mostly
based on term rewriting and computing a completion of th@kegualities;
the same holds faigid E-unification andnixed Eunification (Gallier et al.,
1992; Becher and Petermann, 1994; Beckert, 1994; Plaik®#88,; Degtyarev
and Voronkov, 1998).

For handling equality in rigid variable calculi, it is oftelecessary to solve
several rigidE-unification problems that share the sameEeif equalities.
If a completion-based method is used to find solutions, wfSgent to com-
pute a single completion d&. This positive effect can be strengthened by
interlacing the completion process and the proof searcok@e and Pape,
1996). Then, if there is a case distinction in the proof (fcaraple, when a
tableau branches), the (partial) completion that has bempuated up to that
point can be shared by the sub-cases and has only to be cahgnae.

rigid.tex; 9/03/1998; 10:47; p.18



RIGID E-UNIFICATION 283

Using Finite Sets of Solutions
For completeness of the calculus, it is sufficient to onlylpgpibstitutions
that are most general solutions w.r.t. the subsumptiotioala", whereW
contains all variables occurring in the partial proof (etge tableau). How-
ever, complete sets of solutions w.et¥ are infinite; this is unfortunate be-
cause it is of great advantage if only a finite number of sohdito each
unification problem has to be considered. In that case, ibisiacessary to
interlace different enumeration processes, which is diffio implement and
to combine with techniques for restricting the search space

The undecidability of simultaneous rigke-unificiation implies that any
procedure producing—in finite time—a finite number of salus for a (non-
simultaneous) rigid-unification problem must be incomplete in the follow-
ing sense: If the procedure is used to compute solutiongitbE-unification
problems that are, for example, extracted from tableaudhesy then closing
a tableadl may require to extend by additional instances of equalities and
terms although there is a substitution that closes all hrasiof T simulta-
neously and there is, thus, a solution to a simultaneoud Eginification
problem extracted frori. That notwithstanding, the combined calculnay
be complete for first-order logic with equality; and in thase the advan-
tages of finite sets of solutions prevail. A procedure of thse, which can
be used to build a complete calculus, has been presentecegty@ev and
Voronkov, 1998); it is described in the following sectiob.ig not known
whether acompletecalculus can be built as well using (finite) sets of unifiers
that are minimal w.r.t. the subsumption relatioff.

5.3. Rigid Basic Superposition

In (Degtyarev and Voronkov, 1998), a method caltegdd basic superposi-
tion has been presented for computin§jrdte (incomplete) set of solutions
for rigid E-unification problems that is “sufficient” for handling edjixain
rigid variable calculi. A calculus that is complete for fumtder logic with
equality can, for example, be constructed by extending kheuce rule of
free variable tableaux (Def. 6 in Chap. 1.1.1) such that esthtion that can
be computed by rigid basic superposition for one of the uatifie problems
in 2(B) (Def. 12) may be used to close the brar&hThe procedure is an
adaptation of basic superposition (in the formulation enésd in (Nieuwen-
huis and Rubio, 1995)) to rigid variables. It uses the cohoéprdering con-
straints:

DEFINITION 13. An (ordering) constrainis a (finite) set of expressions of
the form s~ t or s> t where s and t are terms. A substitutioms a solution

rigid.tex; 9/03/1998; 10:47; p.19



284 BERNHARD BECKERT

toaconstraintC iff (@) e =toforalls~t € C, i.e.,cis a unifier of sand t,
(b) o >to for all s -t € C, where> is an arbitrary but fixed term reduc-
tion ordering, and (cp instantiates all variables occurring in C with ground
terms.

There are efficient methods for deciding the satisfiabilftgio ordering
constrainC and for computing most general substitutions satisf@iigcase
the reduction ordering is a lexicographic path ordering (LPO) (Nieuwen-
huis and Rubio, 1995).

The rigid basic superposition calculus consists of the twangforma-
tion rules shown below. They are applied to a rigieunification problem
(E,s,t)-C that has an ordering constrai@tattached to it. The computation
starts initially with the unification problem that is to be\ssd and the empty
constraint. A transformation rule may be applied(E s,t)-C only if the
constraint is satisfiable before and after the application.

Left rigid basic superpositionif there are an equality=r orr =1 and an
equalityu=vorv=uin E andp is a subterm ofi, then replace the
latter equality byu[r] = v (whereu[r] is the result of replacing one oc-
currence ofpinubyr)andadd > r,u > v, andl ~ ptoC.

Right rigid basic superpositiorif there is an equality=r orr =1 in E and
p is a subterm ob or of t, then replaces (resp.t) with gr] (resp.t[r])
andadd »r,s>t (respt > s)andl ~ ptoC.

As the constraint expressions that are added by a rule agiplichave to
be satisfiable, they can be seen as a pre-condition for thpdicafon; for
example, sincé~ pis added tC, the termd andp have to be unifiable.

The two transformation rules are repeatedly applied, fognai non-deter-
ministic procedure for transforming rigil-unification problems. The pro-
cess terminates when (a) the tersendt become identical or (b) no further
rule application is possible without makit@jinconsistent. Provided that no
transformation is allowed that merely replaces an equhljtigself, all trans-
formation sequences are finite.

It is possible to only allow transformations where the tgris nota vari-
able, thus improving the efficiency of the procedure andeedyuthe number
of solutions that are computed.

Let (E,s,t)-C be any of the unification problems that are reachable by
applying rigid basic superposition transformations to dhiginal problem.
Then, any solutiont@€uU {s~ t} is a solution to the original problem. Let
be the set of all such solutions that are most general w.f't.The setu is
finite because the application of rigid basic superpositibes always termi-
nates.
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mixed
— =~
classical rigid
t >< t
syntactica ground

Figure 2. The sub-type relation between the different versions-omification.

EXAMPLE 5. Consider again the rigid E-unification problem from Exam-
ple 2; and let> be the LPO induced by the ordering-gf > a on the function
symbols.

The computation starts with

(E,st)-C=({fa=a, g’x= fa}, gk, x)-0 .

The only possible transformation is to use the right rigigicasuperposi-
tion rule, applying the equalityl = r) = (g°x= fa) to reduce the termx
(all other transformations would lead to an inconsistentsiaint). The re-
sult is the unification problemE,gfa x) - {g?x > fa, gx > X, g?x ~ g°x};
its constraint can be reduced tq & {g?x > fa}. A most general substitution
satisfyingGu{gfa~ x} iso; = {x— gfa}.

A second application of the right rigid basic superpositiafe leads to
the unification probleniE, ga,x) - {g?x > fa, fa> a, gfa> x, fa~ fal;its
constraint can be reduced toG {g°x > fa, gfa> x}. A most general sub-
stitution satisfying @u{ga~ x} is 0, = {x— ga}.

At that point the process terminates because no furtherapfgication is
possible. Thusy; and oy are the only solutions that are computed by rigid
basic superposition for this example.

6. OVERVIEW OF THE DIFFERENT TYPES OFE-UNIFICATION

In this final section, we briefly summarize the propertiehefdifferent types
of E-unification. Figure 2 shows the sub-type relation betwaemt
Syntactical unification, i.eE-unification with an empty set of equalities,
is decidable. Besides the standard method of Robinsorg #rermore effi-
cient methods for syntactical unification, in particulastive simultaneous
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Table 1. Decidability and undecidability of
the different types oE-unification.

Type Simple Simultaneous

syntactical decidable decidable

ground decidable decidable
rigid decidable undecidable
universal undecidable undecidable
mixed undecidable undecidable

problems (for example (Martelli and Montanari, 1982)). 3igalE-unifica-
tion is undecidable in general, but there are many intergstpecial cases of
equality sets where it is decidable (Chap. 1.2.7). Rigidnification is in be-
tween: Itis decidable (NP-complete) in the non-simultarsssase (Sect. 2.4)
and undecidable in the simultaneous case (Sect. 3.2). Biixesl E-unifica-
tion is more general than classi&iunification, it is undecidable in both the
simultaneous and non-simultaneous case. Table Ill gives/arview of the
decidability of different types dE-unification.

Minimal complete sets of unifiers for syntactical unificatiand ground
E-unification problems are either empty (if there is no unjf@rcontain a
single MGU. For non-simultaneous rigi-unification they are finite w.r.t.
the subsumption relation? and infinite w.r.t.<". For the undecidable types
of E-unification they are (in general) infinite.
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