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RIGID E-UNIFICATION

1. INTRODUCTION

1.1. Overview of this Chapter

By replacing syntactical unification with rigidE-unification, equality han-
dling can be added torigid variable calculi for first-order logic, including
free variable tableau (Fitting, 1996), the mating method (Andrews, 1981), the
connection method (Bibel, 1982), and model elimination (Loveland, 1969);
for an overview of these calculi, see Chapters I.1.1 and I.1.2.

Rigid E-unification and its significance for automated theorem proving
was first described in (Gallier et al., 1987). An earlier attempt to formulate
the generalized unification problem that has to be solved forhandling equality
in rigid variable calculi can be found in (Bibel, 1982).

GroundE-unification (i.e.,E-unification with variable-free equalities) has
long been known to be decidable (Sect. 2.3), and classical universalE-uni-
fication has long been known to be undecidable (Chap. I.2.7).Rigid E-uni-
fication is in between: It is decidable in the simple, non-simultaneous case
(Sect. 2.4), but it is undecidable whether there is a simultaneous solution
for several rigidE-unification problems (Sect. 3.2), which is unfortunate as
simultaneous rigidE-unification is of great importance for handling equality
in automated theorem proving (Sect. 5).

In the remainder of this section, we describe the basic idea of rigid E-
unification and its importance for adding equality to rigid variable calculi
and introduce syntax and semantics of first-order logic withequality. In Sec-
tion 2, we formally define (non-simultaneous) rigidE-unification and the no-
tion of (minimal) complete sets of unifiers; and we briefly sketch proofs for
the decidability of groundE-unification and—based on this—for rigidE-uni-
fication; methods for solving rigidE-unification problems are compared. In
Section 3.3, the problem of finding a simultaneous solution for several rigid
E-unification problems is discussed; and in Section 4,mixed E-unification is
introduced, that is a combination of classical and rigidE-unification. Using
the example of free variable semantic tableaux, we show in Section 5 how
rigid E-unification can be used to handle equality in a rigid variable calcu-
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lus. Finally, in Section 6, we briefly summarize the properties of the different
types ofE-unification.

1.2. The Idea of Rigid E-unification

In classicalE-unification, the equalities defining the theoryE are implicitly
universally quantified w.r.t. the variables they contain. To solve a classical
E-unification problem, the question has to be answered whether the equality
of two given terms (or of instances of these terms) follows from E or, equiv-
alently, whether the terms are equal in the free algebra ofE (Chap. I.2.7).
However, for adding equality to rigid variable calculi, being able to answer
that question is not sufficient.

Consider, for example, the problem of proving that the conjunction of
the three formulae:p( f (a)), p(c), and f (x) := c_φ(x) is unsatisfiable. The
equality f (x) := c can be applied toE-unify the atomsp( f (a)) andp(c) and,
thus, to show that the literals:p( f (a)) andp(c) are inconsistent. But to de-
rive this knowledge is not sufficient for a proof; theE-unification procedure
has, in addition, to provide the information consisting of which instances of
the equality have actually been used (in the example, only the instance where
the variablex is instantiated witha). This information is needed to justify
the equality applications by proving that the corresponding instances ofφ(x)
are inconsistent (in this case the instanceφ(x)fx 7! ag= φ(a)); one has to
show that applying the substitutionfx 7! ag makes both disjuncts inconsis-
tentsimultaneously. In general, substitutions have to be found that simulta-
neously solve several rigidE-unification problems corresponding to disjunc-
tively connected (sub-)formulae.

The solution to a (non-simultaneous) rigidE-unification problem is a sub-
stitution representing the instantiationsof free variables that have been neces-
sary to show that the two given terms are equal. A single variable can only be
instantiated once by a substitution and, accordingly, to solve a rigidE-unifi-
cation problem, the equalities of the problem can only be used with (at most)
one instantiation for each variable they contain; a variable is either instanti-
ated or not, that is, uninstantiated variables have to be treated as constants.

Rigid E-unification does not provide an answer to the question of how
many different instantiations of an equality are needed to solve a problem. If
a single instance is not sufficient, then the answer is “not unifiable”. If several
different instances of an equality are needed, a sufficient number of copies of
that equality (with different rigid variables) has to be provided for the rigid
E-unification problem to be solvable.
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1.3. Syntax

A first-order signatureΣ = hPΣ;FΣ;αΣi consists of a setPΣ of predicate sym-
bols, a setFΣ of function symbols, and a functionαΣ assigning anarity n� 0
to the predicate and function symbols; function symbols of arity 0 are called
constants. In addition, there is an infinite setV of object variables. We only
consider signaturesΣ wherePΣ contains the binary predicate symbol

:= de-
noting equality. The setTermΣ of terms over a signatureΣ is built in the usual
manner.

We use the logical connectiveŝ(conjunction),_ (disjunction),and: (ne-
gation), and the quantifier symbols8 and9. The set of well-formed first-order
formulae overΣ is denoted byFormΣ; well-formed formulae are defined as in
Chapter I.1.1 (Def. 1), with the additional restriction that a formulaφ 2 FormΣ
must not contain a variable that is both bound and free inφ. A variablex2V
is boundin φ if it occurs inside the scope of a quantification(8x) or (9x); x is
free in φ if it occurs outside the scope of all quantifications(8x) and(9x).
The set of all literals inFormΣ is denoted byLitΣ. Since substitutions play an
important rôle in this chapter, they are formally defined:

DEFINITION 1. A substitutionassigns to each object variable in V a term
in TermΣ; the set of all substitutions is denoted by SubstΣ. Thedomainof a
substitutionσ 2 SubstΣ is the set of all x2V such thatσ(x) 6= x. If σ has a
finite domainfx1; : : :;xng, n� 0, it can be denoted byfx1 7! t1; : : :;xn 7! tng
where ti = σ(xi), 1� i � n. The set of all idempotent substitutions with finite
domain is denoted by Subst�

Σ.

The application of a substitutionσ to a termt or a formulaφ is denoted
by tσ resp.φσ. It may be applied to a quantified formulaφ; however, to avoid
undesired results, the bound variables inφ must neither occur in the domain
nor in the range ofσ.

DEFINITION 2. Given a finite set W�V, a substitutionσ 2 SubstΣ is more
general than a substitutionτ 2 SubstΣ (on W), denoted byσ �W τ, iff there is
a substitutionρ 2 SubstΣ such thatτ(x) = (σ(x))ρ for all x 2W.

1.4. Semantics

A first-orderstructure M= hD; Ii for a signatureΣ consists of a non-empty
domainD and an interpretationI which gives meaning to the function and
predicate symbols ofΣ.
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268 BERNHARD BECKERT

The combination of an interpretationI and a variable assignmentµ, that
maps the setV of all variables to the domainD, associates (by structural
recursion) with each termt 2 TermΣ an element inD.

The evaluation function valI ;µ maps the formulae inFormΣ to the truth
valuestrueandfalse(in the usual way, e.g. Def. 10 in Chap. I.1.1).

If valI ;µ(φ) = true for all variable assignmentsµ, thenM satisfiesφ (is a
modelof φ); M satisfies a setΦ of formulae if it satisfies all elements ofΦ.

In this chapter, we only considernormalstructures where the symbol:=
has the intended meaning; i.e., a structure is normal iffI( :=) is the identity
relation onD.

DEFINITION 3. A formulaψ 2 FormΣ is a (weak) consequenceof a set
Φ � FormΣ of formulae, denoted byΦ j= ψ, if all normal structures that are
models ofΦ are models ofψ as well.

In addition to the normal (weak) consequence relationj=, we use the no-
tion of strong consequence:

DEFINITION 4. A formula ψ 2 FormΣ is a strong consequenceof a set
Φ � FormΣ of formulae, denoted byΦ j=� ψ, if for all normal structures
M = hD; Ii and for all variable assignments µ:

If valI ;µ(φ) = true for all φ 2 Φ, then valI ;µ(ψ) = true :
A difference between the strong consequence relationj=� and the weak

consequence relationj= is that the following holds forj=� (but not forj=): If
Φ j=� ψ, thenΦσ j=� ψσ for all substitutionsσ 2 Subst�Σ.

2. NON-SIMULTANEOUS RIGID E-UNIFICATION

2.1. Definition and Basic Properties

The problem of simple (i.e. non-simultaneous) rigidE-unification is defined
as follows:

DEFINITION 5. A (rigid) equality is a formula of the form l:= r. A rigid
E-unification problemhE;s; ti consists of a finite set E of (rigid) equalities in
FormΣ and terms s; t 2 TermΣ. If there are no variables inhE;s; ti, then it is a
groundE-unification problem. A substitutionσ 2 Subst�Σ is a solutionto (or
unifierof) hE;s; ti iff Eσ j=� (sσ := tσ).
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The major differences between this definition and that of classical (uni-
versal)E-unification are that (a) the substitutionσ is applied not only to the
termss andt but also to the setE of equalities and that (b) the strong conse-
quence relationj=� is used in the definition instead ofj= (this is equivalent to
treating the variables inEσ as constants).

The following theorem clarifies the basic properties of rigid E-unification
by listingdifferent characterizations of the set of solutionsof a given problem:

THEOREM 1. Given a rigid E-unification problemhE;s; ti and a substitu-
tion σ = fx1 7! t1; : : : ;xn 7! tng 2 Subst�Σ, the following are equivalent condi-
tions forσ being a solution tohE;s; ti:
1. Eσ j=� sσ := tσ, i.e.,σ is by definition a solution tohE;s; ti;
2. Eσ j= sσ := tσ over a set V0 of variables and a signatureΣ0 such that

the variables occurring inhE;s; ti are constants, i.e., V0 =V nW and
Σ0 = hPΣ;FΣ[W;αΣ[fx 7! 0 j x2Wgi where W is the set of variables
occurring inhE;s; ti.

3. (Eσ)τ j= (sσ)τ := (tσ)τ for all substitutionsτ 2 Subst�Σ;
4. E[fx1

:= t1; : : : ;xn
:= tng j=� s

:= t; provided that none of the variables xi

occurs in any of the terms tj (1� i; j � n);
5. σ is the restriction to the variables occurring inhE;s; ti of a substitu-

tion which is a solution to the rigid E-unification problemhE0;yes;noi
where E0 = E[feq(x;x) := yes; eq(s; t) := nog, and (a) the predicate eq,
the constants yes;no, and the variable x do not occur inhE;s; ti and
(b) the constants yes;no do not occur in the terms t1; : : : ; tn.

The last characterization of solutions in the above theoremshows that it is
always possible to solve a rigidE-unification problem by transforming it into
a problem in which the terms to be unified are constants.

Syntactical unification is a special case of rigidE-unification, namely the
case where the setE of equalities is empty.

2.2. Complete Sets of Unifiers

It is possible to represent the set of all solutions to (unifiers of) asyntactical
unification problem by a single most general unifier (MGU), that is more
general than all other unifiers w.r.t. the subsumption relation �W (Def. 2).
For rigidE-unification problems, however, a single MGU is not sufficient to
represent all solutions. Instead, asetU of (most general) unifiers has to be
used;U is completeif every solution to the given problem is subsumed by
one of the unifiers inU . The number of substitutions in a complete set of
unifiers can be reduced by using, instead of�W, a subsumption relation that
takes equality into account:
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270 BERNHARD BECKERT

DEFINITION 6. Let E� FormΣ be a set of equalities; and let W�V be a
finite set of variables. Then the relationsvW

E ;�W
E 2 Subst�Σ�Subst�Σ are de-

fined by:σ vW
E τ iff Eσ j=� σ(x) := τ(x) for all x 2W; σ �W

E τ iff there is a
substitutionσ0 2 Subst�Σ such thatσ�W σ0 andσ0 vW

E τ.

The intuitive meaning ofσ �W
E τ is that the effects of applyingτ to the

set E of equalities can be simulated by first applyingσ, then some other
substitutionρ, and then equalities form(Eσ)ρ.

LEMMA 1. Let E� FormΣ be a set of equalities, and letσ;τ 2 Subst�Σ be
substitutions such thatσ�W

E τ where the set W contains all variables occur-
ring in E. Then there is a substitutionρ 2 Subst�Σ such that(Eσ)ρ j=� Eτ.

The setW contains the “relevant” variables, includingat leastthose oc-
curring in theE-unification problem. If, for example, rigidE-unification is
used to close a tableau branch, thenW contains all free variables occurring in
the tableau. It is of advantage to keep the setW as small as possible because,
for example,σ = fx 7! f (y)g subsumesτ = fx 7! f (c)g if y 62W; otherwise,
if y2W, σ subsumes the substitutionτ0 = fx 7! f (c);y 7! cg but notτ.

In automated deduction, the cardinality of a complete set ofunifiers is
closely related to the number of choice points when rigidE-unification is used
for a deduction step. Therefore, it is desirable to compute aminimalcomplete
set of unifiers. Nevertheless, it is often not useful to ensure minimality since
there is a trade-off between the gain of computing a minimal set and the extra
cost for checking minimality and removing subsumed substitutions (it is not
as easy to decide whetherσ�W

E τ as it is to decide whetherσ�W τ).

DEFINITION 7. A setU � Subst�Σ is a complete set of unifiersfor a rigid
E-unification problemhE;s; tiw.r.t. the relation�W (resp.�W

E ) if

1. eachσ 2 U is a solution tohE;s; ti (soundness),
2. for each solutionτ of hE;s; ti there is a solutionσ 2 U such thatσ �W τ

(resp.σ �W
E τ) where W is the set of variables occurring inhE;s; ti (com-

pleteness).

The setU is called aminimalcomplete set of unifiers if, in addition,

3. there areno σ1;σ2 2 U , σ1 6= σ2, such thatσ1 �W σ2 (resp.σ1 �W
E σ2)

(minimality).

EXAMPLE 1. Consider the rigid E-unification problemhE;s; ti consisting
of the set E= fa := x; b := cg of equalities and the terms s= a and t= c. The
substitutionsσ1 = fx 7! bg andσ2 = fx 7! cg are both solutions tohE;s; ti,
whereas the substitutionτ = fx 7! ag is not a solution.
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RIGID E-UNIFICATION 271

Since bothσ1 vW
E σ2 andσ2 vW

E σ1, the unifiersσ1 andσ2 subsume each
other; andfσ1g andfσ2g are both minimal complete sets of unifiers.

Note that, althoughσ1 is a solution andσ1 vW
E τ, the substitutionτ is not

a solution tohE;s; ti.
2.3. Deciding Ground E-unification Problems

In (Shostak, 1978), it is proven thatground E-unification is decidable; conse-
quently, by considering all variables to be constants, it isdecidable whether
the empty substitutionid is a solution to a givenrigid E-unification prob-
lem hE;s; ti, i.e., whetherE j=� s := t. In this section, we briefly describe
Shostak’s decision procedure, because the decidability ofgroundE-unifica-
tion is the basis for proving rigidE-unification to be decidable.

Whether a groundE-unification problemhE;s; ti is solvable or not, can be
decided by computing a congruence closure, namely the equivalence classes
of the terms (and subterms) occurring inhE;s; ti w.r.t. the equalities inE.

DEFINITION 8. Let hE;s; ti be a ground (or rigid) E-unification problem;
and let ThE;s;ti � TermΣ be the set of all (sub-)terms occurring inhE;s; ti. The
equivalence class[t]hE;s;ti of a term t2 ThE;s;ti is defined by:[t]hE;s;ti = fs2 ThE;s;ti j E j=� s

:= tg :
Since a groundE-unification problemhE;s; ti is solvable (andid a so-

lution) if and only if [s]hE;s;ti = [t]hE;s;ti, one can decide whetherhE;s; ti is
solvable by computing these equivalence classes. Shostak proved that for
computing the equivalence classes of all terms inThE;s;ti, no terms that are
not in ThE;s;ti have to be considered: Ifs can be derived fromt using the
equalities inE, then this can be done without using an intermediate term
that does not occur in the original problem, i.e., there is a sequence of terms
s= r0; r1; : : : ; rk = t, k� 0, all occurring inhE;s; ti such thatr i is derivable in
one step fromr i�1 using the equalities inE.

Since the number of subterms in a given problem is polynomialin its
size, and the congruence closure can be computed in time polynomial in the
number of subterms and the number of equalities, the solvability of a ground
E-unification problem can be decided in polynomial time.

There are very efficient and sophisticated methods for computing the con-
gruence closure, for example the algorithm described in (Nelson and Oppen,
1980) which is based on techniques from graph theory.

Here, we present Shostak’s straightforward and easy to understand algo-
rithm: The idea is to start with a separate class for each termin the problem
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272 BERNHARD BECKERT

and then to stepwise join classes containing termsr andr 0 which can be de-
rived from each other in a single step using equalities inE.

DEFINITION 9. LethE;s; tibe a rigid E-unification problem; and let ThE;s;ti
be the set of all (sub-)terms occurring inhE;s; ti. Then, for all r2 ThE;s;ti, the
classes[r]nhE;s;ti (which are all subsets of ThE;s;ti) are inductively defined as fol-

lows:[r]0hE;s;ti = frg and, for n� 1, [r]nhE;s;ti is the union of all classes[r 0]n�1hE;s;ti
of terms r0 2 ThE;s;ti such that[r]n�1hE;s;ti and [r 0]n�1hE;s;ti are connected, i.e., such

that they contain terms r0 and r00, respectively, with (a) r0 = r 00, (b) r0
:= r 00

is an equality in E, or (c) r0 = f (r1; : : : ; rαΣ( f )), r00 = f (r 01; : : : ; r 0αΣ( f )) where

f 2 FΣ and[r i]n�1hE;s;ti = [r 0i ]n�1hE;s;ti for all 1� i � αΣ( f ).
There are only finitely many classes at the beginning, and at each step

connected classes are joined and, thus, the number ofdifferentclasses is re-
duced. Therefore, the process has to terminate after finitely many steps. In
(Shostak, 1978), the following theorem is proved which implies soundness
and completeness of the congruence closure method.

THEOREM 2. Given a ground E-unification problemhE;s; ti, there is an
n� 0 such that, for all terms occurring inhE;s; ti and all m� n:[t]mhE;s;ti = [t]nhE;s;ti = [t]hE;s;ti :
2.4. Deciding and Solving Rigid E-unification Problems

If a rigid E-unification problem is solvable, then it has infinitely manysolu-
tions. But there are, for each problem,finite minimal complete sets of solu-
tions w.r.t. the subsumption relation�W

E ; and such a finite set can be effec-
tively computed.1 This immediately implies the decidability of the question
whether a given unification problemhE;s; ti is solvable or not. On first sight
this might be somewhat surprising since classicalE-unification is undecid-
able; however, the additional restriction of rigidE-unification, that variables
in E may only be instantiated once, is strong enough to turn an undecidable
problem into a decidable one.

The problem of deciding whether a rigidE-unification problem has a so-
lution is, in fact, NP-complete. This was first proven in (Gallier et al., 1988)

1 However, it is not known whether (non-simultaneous) rigidE-unification can be
used for handling equality in a rigid variable calculus suchthat the resulting calculus
is complete if only solutions are used that are minimal w.r.t. �W

E (Sect. 5.2).
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and then, more detailed, in (Gallier et al., 1990; Gallier etal., 1992). The
NP-hardness of the problem was already shown in (Kozen, 1981).

An alternative proof for the decidability of rigidE-unification, that is
sketched below, was presented in (de Kogel, 1995). It is easier to understand
than the previous proofs, because the complexity of the decision procedure is
not taken into consideration. The main lemma on which de Kogel’s proof is
based is the following:

LEMMA 2. A rigid E-unification problemhE;s; ti is solvable if and only if
there are a variable x and a term r, both occurring inhE;s; ti, and an x-free2

term r0 2 TermΣ (which does not have to occur inhE;s; ti) such that

1. E j=� r
:= r 0, and

2. the rigid E-unification problemhE;s; tifx 7! r 0g is solvable.

In that case,hE;s; tifx 7! r 0g is solvable forall x-free terms r0 such that
E j=� r := r 0.

Obviously, if σ0 is a solution to the derived problemhE;s; tifx 7! r 0g,
thenσ = σ0 �fx 7! r 0g is a solution to the original problemhE;s; ti. Thus, the
problem of solving a rigidE-unification problem withn variables can be re-
duced to the problem of solving problems withn�1 variables (and problems
with no variables are decidable using the algorithm forground E-unification
described in the previous section). One has to consider all variablesx and all
termsr occurring inhE;s; ti; for each of these combinations, anx-free termr 0
such thathE;s; ti j=� r := r 0 has to be found. Sincer 0 does not have to occur
in hE;s; ti there are infinitely many candidates. Nevertheless, whether such a
termr 0 exists is decidable because, in fact, only thoser 0 have to be considered
that can be deduced in a single step from a term occurring inhE;s; ti.3

Thus, the non-deterministic algorithm shown in Table I can be used to
compute solutions to a given rigidE-unification problemhE;s; ti—provided
a solution exists. Since all non-deterministic choices aremade from finitely
many possibilities, a deterministic decision procedure can be constructed us-
ing this algorithm and backtracking.

2 A term isx-free if it does not contain the variablex.
3 The reason for this is the following:Supposed there is anx-free termr 00 such thathE;s; ti j=� r

:= r 00. Then, according to Theorem 2, it is possible to deriver 00 stepwise
from r in such a way that all the intermediate terms are subterms ofhE; r; r 00i. Let
r 0 = r i be the firstx-free term in that sequence; the termr i�1 that r i is derived from
is notx-free (sincer i is the first) and, therefore, cannot be a subterm ofr 00 (which is
x-free); so,r i�1 has to be a subterm ofE or r and, thus, ofhE;s; ti.

rigid.tex; 9/03/1998; 10:47; p.9



274 BERNHARD BECKERT

Table I. Non-deterministic algorithm for computing a
solution to a rigidE-unification problemhE;s; ti.
σ := id;
while notE j=� s

:= t do
choose a variablex occurring inhE;s; ti;
choose a (sub-)termr occurring inhE;s; ti such that

there is anx-free termr 0 2 TermΣ such thatE j=� r
:= r 0;hE;s; ti := hE;s; tifx 7! r 0g;

σ := fx 7! r 0g�σ
od;
output “σ is a solution”

The substitution that is applied at each step connects two equivalence
classes of terms occurring in the problem; since it is only useful to join dif-
ferent classes, the choice of a variablex and a termr can be restricted to the
case thatnotalreadyE j=� x

:= r.

EXAMPLE 2. As an example for the application of the algorithm from Ta-
ble I, consider the rigid E-unification problem4hE;s; ti= hf f a

:= a; g2x
:= f ag; g3x; xi :

The empty substitution id is not a solution tohE;s; ti, so Ej=� s
:= t does

not (yet) hold. The choice of a variable is deterministic, because x is the
only one occurring in the problem. None of the terms inhE;s; ti—except x
itself—is equivalent to x, so they are all suitable choices for r; most of these
possible choices (including a and fa), however, do not lead to a solution to
the problem. The only useful choice is r= g3x. This term is not x-free; it is,
however, possible to derive the x-free term r0 = g fa from r in one step using
the equality g2x

:= f a. Thus, after applying the substitutionfx 7! g fag, we
get the new problemhE0;s0; t 0i= hf f a := a; g3 f a := f ag; g4 f a; g fai :

Now the algorithm terminates because E0 j=� s0 := t 0, and we conclude thatfx 7! g fag is a solution to the original problem.

The non-deterministic choices make the algorithm described above too
inefficient for an actual implementation. More efficient methods, such as the

4 In this example, we useg2x as an abbreviation forg(g(x)), etc.
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procedures presented in (Gallier et al., 1992; Becher and Petermann, 1994;
Plaisted, 1995), use term rewriting and search forcritical pairs to choose the
variablex and the termr . In addition, these completion-based methods allow
to compute a minimal complete set of unifiers.

One of these efficient procedures, the one described in (Becher and Pe-
termann, 1994), has been implemented and integrated into a prover for first-
order logic with equality (Grieser, 1996).

3. SIMULTANEOUS RIGID E-UNIFICATION

3.1. Definition and Basic Properties

For handling equality in rigid variable calculi for first-order logic, it is, ac-
tually, not sufficient to solve simple (non-simultaneous) rigid E-unification
problems. For example, in semantic tableaux, solving a rigid E-unification
problem corresponds to closing a single branch of a tableau.However, to
close the whole tableau, a single substitution has to be found that closes all
branchessimultaneously.Thus,simultaneousrigid E-unification, the problem
of finding a substitution that is a simultaneous solution to several (indepen-
dent) rigidE-unification problems, plays an even more important rôle in auto-
mated deduction than the simple problem. If equality is not considered, i.e., if
syntactical unification problems have to be solved, a simultaneous unifier can
be computed from the most general unifiers of the simple problems (if one
exists). Unfortunately, computing a simultaneous solution for rigid E-unifi-
cation problems is a much more complex problem. In fact, it isundecidable
whether a simultaneous solution exists.

As (non-simultaneous) rigidE-unification, the problem of simultaneous
rigid E-unification was first formulated in (Gallier et al., 1987).

DEFINITION 10. A finite setfhE1;s1; t1i; : : : ;hEn;sn; tnig (n� 1) of rigid
E-unification problems is calledsimultaneousrigid E-unification problem. A
substitutionσ is a solution to the simultaneous problem iff it is a solutionto
every componenthEk;sk; tki (1� k� n).
3.2. Undecidability of Simultaneous Rigid E-unification

Whether simultaneously rigidE-unification is decidable or not has long been
an open problem. The literature contains several faulty proofs for its de-
cidability. The debate came to an end after a reduction of theproblem of
monadic semi-unificationto simultaneous rigidE-unification was presented
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in (Degtyarev and Voronkov, 1995), that had been proven to beundecidable
in (Baaz, 1993). Shortly afterwards, a simpler and more straightforward re-
duction of the well known undecidable problem of second-order unification
(Chap. I.2.12) was presented in (Degtyarev and Voronkov, 1996a).

In the same way as it may be surprising on first sight that simple rigid
E-unification is decidable, it may be surprising that moving from simple to
simultaneous problems destroys decidability—even more soconsidering that
the simultaneous versions of other decidable types of unification (including
syntactical unification and groundE-unification) are decidable. However, si-
multaneous rigidE-unification turns out to have a much higher expressive-
ness than simple rigidE-unification; it is even possible to encode Turing Ma-
chines into simultaneous rigidE-unification problems (Veanes, 1997a). The
following undecidable problems have been reduced to simultaneous rigidE-
unification:� monadic semi-unification (Degtyarev and Voronkov, 1995);� second-order unification (Degtyarev and Voronkov, 1996a);� Hilbert’s Tenth Problem (Degtyarev and Voronkov, 1996c), this reduc-

tion is based on encoding addition and multiplication of natural numbers
into a simultaneous rigidE-unification problem;� Post’s Correspondence Problem (Plaisted, 1995);� the halting problem for Turing Machines (Veanes, 1997a).

In addition, it has been shown that simultaneous rigidE-unification is al-
ready undecidable if (a) all equalities are ground and only the terms to be
unified contain variables (Plaisted, 1995) and (b) if the problems contain only
two variables; even if both restrictions are combined, the problem remains
undecidable (Veanes, 1997b).

The following decidablesub-cases of simultaneous rigidE-unification
are known (for some of these, decidability is not obvious anddifficult to
prove): It is decidable whether a simultaneous rigidE-unification problemfhE1;s1; t1i; : : : ;hEn;sn; tnig (n� 1) has a solution in case� n= 1; in that case the problem is non-simultaneous;� the problem is ground; then the simultaneous problem is solvable iff all

its componentshEi;si; tii (1� i � n) are solvable;� the setsEi of equalities are identical, i.e.,E = E1 = � � �= En; in that
case, any substitution that (a) is a solution to the non-simultaneous prob-
lem hE; f (s1; : : : ;sn); f (t1; : : : ; tn)i and (b) does not instantiate variables
with terms containingf is a solution to the original problem (the func-
tion symbol f must not occur in the original problem);� the problem contains only one variable; then the decision problem is
EXPTIME-complete (Degtyarev et al., 1997);
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RIGID E-UNIFICATION 277� the problem is monadic (i.e., all occurring function symbols are of arity 0
or 1) and all equalities are ground (Gurevich and Voronkov, 1997);� the problem is monadic and only one function symbol occurs (Degtyarev
et al., 1996b).

Whether the sub-class ofmonadicsimultaneous rigidE-unification prob-
lems is decidable is an open problem.

The undecidability of simultaneous rigidE-unification implies the unde-
cidability of the following (equivalent) problems, that had not been known to
be undecidable before the undecidability of simultaneous rigid E-unification
was proven:� Deciding whether there is an unsatisfiable ground instance of a given

quantifier-free formulaφ of first-order logic with equality; this problem
is equivalent to the question whether a fully expanded free variable ta-
bleau forφ can be closed (Gallier et al., 1987; Degtyarev et al., 1996a),
see Section 5.� Deciding whether a prenex-normal form formula is provable in intuition-
istic logic (Degtyarev et al., 1996a; Degtyarev and Voronkov, 1996d).

3.3. Solving Simultaneous Rigid E-unification Problems

Since simultaneous rigidE-unification is undecidable, sets of unifiers can
only be enumerated; in general they are not finite. Solutionsto a simultaneous
problem can be computed combining solutions to its constituentshEi;si; tii;
however, it is not possible to compute a complete set of unifiers of a simul-
taneous problem by combining solutions from complete sets of unifiers of its
constituents that are minimal w.r.t. the subsumption relation�W

E , because they
are minimal w.r.t. different relations�W

Ei
. Thus, the subsumption relation�W

has to be used, which is the same for alli (but does not allow to construct
finitecomplete sets of unifiers).

In (Degtyarev and Voronkov, 1998), a method is described forcomputing
a finite (incomplete) set of solutions for rigidE-unification problems, which
is shown to be sufficient for building a complete rigid variable calculus for
first-order logic with equality (it is described in detail inSect. 5.3).

4. M IXED RIGID AND CLASSICAL E-UNIFICATION

In automated deduction, it is useful to consider a combination of classical
E-unification—where the variables in the equalities are implicitly universally
quantified (Chap. I.2.7)—and rigidE-unification. The reason is that even if a
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Table II. Examples for the different versions ofE-unification (Example 3).

E s t Unifier Typef f (x) := xg f (x) a fx 7! ag rigidf f (a) := ag f (a) a id groundf(8x)( f (x) := x)g g( f (a); f (b)) g(a;b) id classicalf f (x) := xg g( f (a); f (b)) g(a;b) — rigidf(8x)( f (x;y) := f (y;x))g f (a;b) f (b;a) fy 7! bg mixed

rigid variable calculus is used, equalities are often explicitly universally quan-
tified or it is known that an arbitrary number of copies of a certain equality
could be added such that it is implicitly universal.

If rigid and classicalE-unification are mixed, equalities contain two types
of variables, namely universal and rigid ones. To distinguish them syntacti-
cally, equalities(8x1) � � �(8xn)(l := r) are used that can be explicitly quanti-
fied w.r.t. variables they contain; free variables are considered to be rigid.

DEFINITION 11. A mixedE-unification problemhE;s; ti consists of a finite
set E of equalities of the form(8x1) � � �(8xn)(l := r) and terms s and t. A
substitutionσ is asolutionto the problem iff Eσ j=� sσ := tσ.

If there are no free variables inE, thenhE;s; ti is a classicalE-unification
problem, and, if all variables inhE;s; ti are free (and thus rigid), thenhE;s; ti
is a rigidE-unification problem.

A simultaneousversion of mixedE-unification can be defined analogously
to simultaneous rigidE-unification.

EXAMPLE 3. Table II shows some simple examples for the different ver-
sions of E-unification. The unifiers in the table are most general w.r.t. the
subsumptions relation�W

E . The fourth problem has no solution, since the free
variable x would have to instantiated with both a and b. Contrary to that, the
empty substitution id is a solution to the third problem, where the variable x
is universally quantified.

Since classicalE-unification, which is undecidable, is a special case of
mixedE-unification, the latter is undecidable as well.
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In (Beckert, 1994), a completion-based method for solving mixedE-unifi-
cation problems is described (that is, for enumerating unifiers); it is an exten-
sion of the Unfailing Knuth-Bendix algorithm. This method has been imple-
mented as part of the tableau-based theorem prover3TAP and is used in3TAP
for handling equality (Beckert et al., 1996).

5. USING RIGID E-UNIFICATION FOR AUTOMATED THEOREM PROVING

5.1. Extending a Rigid Variable Calculus

Rigid E-unification can be used to handle equality in any of the rigidvariable
calculi by replacing syntactical unification with rigidE-unification; exam-
ples for this technique have been described in (Beckert, 1997; Degtyarev and
Voronkov, 1998) for free variable tableaux, in (Gallier et al., 1992) for the
method of matings, and in (Petermann, 1994) and briefly in Section 3.3.2 of
Chapter I.2.6 for the connection method.

In this section, we use free variable semantic tableaux as anexample (as
they are defined in Chap. I.1.1) to demonstrate the basic ideaof using rigidE-
unification for handling equality. A substitutionσ is a closing substitution for
a tableau branchB if all instances ofBσ are unsatisfiable—which is the case if
and only ifBσ j=� false. Thus, ifE is the set of equalities onB, the inequality:(s := t) is onB, andσ is a solution tohE;s; ti, thenσ is a closing substitution
for B becauseEσ j=� sσ := tσ and, therefore,Eσ[f:(sσ := tσ)g j=� false. It
is not sufficient ifσ is only known to be a classicalE-unifier of hE;s; ti,
becauseE j= sσ := tσ doesnot imply Eσ[f:(sσ := tσ)g j=� false.

Which type of rigidE-unification problems has to be solved to decide
whether a tableau branch is closed depends on the version of semantic ta-
bleaux that equality is to be added to. If the ground version of tableaux is used
(Sect. 2.2 of Chap. I.1.1), equality can be added by solving groundE-unifi-
cation problems. For handling equality in free variable tableaux, rigidE-uni-
fication problems have to be considered; and for tableaux with the universal
formula method (described in Sect. 6.4 of Chap. I.1.1) mixedE-unification
has to be used.

The relevantE-unification problems for closing a tableau branchB are
constructed from the equalities onB and pairs of potentially closing atoms
resp. inequalities onB (problems are only extracted from literals, which is
sufficient for completeness of the calculus):

DEFINITION 12. Let T be a free variable tableau for a setΦ � FormΣ of
sentences (formulae without free variables), and let B be a branch of T . The
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Φ:(x1
:= a)_g(x1) := f (x1):(x1

:= a) g(x1) := f (x1)
f (y1) := y1

f (y2) := y2

Figure 1. A tableau for the setΦ of formulae from Example 4.

set E(B) of equalities consists of all atomic formulae in B[Φ of the form
l

:= r. Theset ofE-unification problemsof B, denoted byP (B), contains:

1. the E-unification problemhE(B);hs1; : : : ;sαΣ(p)i;ht1; : : : ; tαΣ(p)ii for each
pair p(s1; : : :;sαΣ(p)), :p(t1; : : :; tαΣ(p)) of potentially closing literals in
B[Φ where p6= :=.

2. the E-unification problemhE(B);s; ti for each (potentially closing) in-
equality:(s := t) in B[Φ.

The problems inP (B) that are of the formhE(B);hs1; : : :;ski;ht1; : : : ; tkii
are actually simultaneous rigidE-unification problems since the non-simul-
taneous problemshE(B);si; tii (1� i � k) have to be solved simultaneously.
Nevertheless, they are decidable and have finite complete sets of unifiers,
because the non-simultaneous problems share the same setE(B) of equalities
(see Sect. 3.2).

If one of the problems inP (B) has a solutionσ, then all instances ofBσ
are unsatisfiable in normal structures; therefore the branch B is closed under
the substitutionσ. The pair of literals corresponding to the solved unification
problem has been proven to actually be complementary; or thecorresponding
inequality has been proven to be inconsistent (when the unifier is applied to
the tableau).

A sound and complete calculus for first-order logicwith equalitycan be
constructed by extending the closure rule of free variable tableaux (Def. 6
in Chap. I.1.1) in such a way that each solution to one of the unification
problems inP (B) can be used to close the branchB (and the calculus remains
unchanged otherwise); a soundness and completeness proof can be found in
(Beckert, 1997)).

EXAMPLE 4. As an example, we use free variable tableaux with a rigid
E-unification closure rule to show that the setΦ� FormΣ consisting of the
formula (8x)(:(x := a)_ g(x) := f (x)), the universally quantified equality(8y)( f (y) := y), and the literals p(g(a); f (b)) and:p(a;b) is unsatisfiable
in first-order logic with equality.
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Figure 1 shows a tableau T forΦ, that has been constructed using the
free variable tableau expansion rules. Let B1 be the left and B2 be the right
branch of T .

Since the left branch B1 does not contain equalities, the set E(B1) is
empty. The setP (B1) of E-unification problems has two elements: the prob-
lem h /0;x1;ai (which is constructed from the inequality:(x1

:= a)) and the
problemh /0; hg(a); f (b)i; ha;bii (which is constructed from the potentially
closing literals p(g(a); f (b)) and :p(a;b) in Φ). The first problem has a
most general unifierσ1 = fx1 7! ag; the second problem has no solution.

The right branch B2 contains three equalities; two of them are instances
of the sameγ-formula(8y)( f (y) := y):

E(B2) = f f (y1) := y1; f (y2) := y2; g(x1) := f (x1)g
The only unification problem of B2 is hE(B2); hg(a); f (b)i; ha;bii. The

substitutionσ2 = fx1 7! a; y1 7! a; y2 7! bg is a solution for this problem.
If the left branch B1 is closed first, by applying the substitutionσ1 to the

tableau, the right branch B2 is then closed underfy1 7! a; y2 7! bg, which is
a closing substitution for B2σ1. If B2 is closed first andσ2 is applied to the
tableau, the left branch B1 is then closed under the empty substitution.

Note that, if only one instance of(8y)( f (y) := y) is generated, B2 cannot be
closed because thenhf f (y1) := y1g; g(x1) := f (x1)g; hg(a); f (b)i; ha;bii is
its single unification problem, which has no solution. If theuniversal formula
method is used, however, then one instance f(y1) := y1 is sufficient (provided
that it is recognized as being universal w.r.t. y1). Then, the mixed E-unifica-
tion problemhf(8y1)( f (y1) := y1); g(x1) := f (x1)g; hg(a); f (b)i; ha;bii has
to be solved, for whichfy1 7! ag is a solution.

If the universal formula technique is used, mixed problems are constructed
instead of purely rigid problems by explicitly universallyquantifying equali-
ties w.r.t. to variables w.r.t. which they are universal. Inthe terms to be unified,
variables w.r.t. which the corresponding potentially complementary literals
and inequalities are universal can be renamed by new variables not occurring
in the tableau.

Since rigidE-unification is decidable, it is decidable whether a given
free variable tableau branch (without considering universal formulae) can be
closed. However, if a branch cannot be closed it may, nevertheless, be unsat-
isfiable (and, thus, be expandable to a closed branch).

To close a whole tableau consisting of branchesB1; : : :;Bk, a solution
has to be found to one of the simultaneous rigidE-unification problems infhP1; : : : ;Pki jPi 2 P (Bi);1� i � kg. Whether one of these problems has a
solution is undecidable (as simultaneous rigidE-unification is undecidable).

rigid.tex; 9/03/1998; 10:47; p.17



282 BERNHARD BECKERT

It is as well undecidable whether there is a substitution closing all branches of
a given tableau simultaneously after it has been expanded bya fixednumber
of copies of the universally quantified formulae it contains(Voda and Ko-
mara, 1995; Gurevich and Veanes, 1997). The problem of determining the
number of copies of universally quantified formulae necessary to find a proof
in rigid variable calculi is discussed in (Voronkov, 1997).

Other approaches to equality handling in rigid variable calculi, which are
not based on rigidE-unification, include: the extension of the calculus by
special rules resemblingparamodulation(Fitting, 1996; Beckert, 1998); the
method ofequality elimination(Degtyarev and Voronkov, 1996b), which al-
lows to use classicalE-unification instead of rigidE-unification; transforma-
tions from first-order logic with equality into first-order logic without equality
(Brand, 1975; Bachmair et al., 1997).

Rigid E-unification (and equality reasoning in general) is an instance of
theory reasoning(Chap. I.2.7), which can be used to improve the efficiency
of automated deduction systems. Problems from a certain domain (or theory)
that is defined by a set of axioms, are handled separately by abackground
reasoner. The background reasoner applies special purpose techniques and
makes use of knowledge about the theory. In the case of equality theory, rigid
E-unification is such a technique (it is atotal theory reasoning method). Using
the notions of theory reasoning, the set of formulae from which the rigidE-
unification problems are constructed (equalities, inequalities, and potentially
complementary literals) form thekey; and a substitution that is a solution to
one of the problems is arefuterfor that key.

5.2. Restricting the Search Space

Completion-based Methods
Efficient methods for solving classicalE-unification problems are mostly
based on term rewriting and computing a completion of the setof equalities;
the same holds forrigid E-unification andmixed E-unification (Gallier et al.,
1992; Becher and Petermann, 1994; Beckert, 1994; Plaisted,1995; Degtyarev
and Voronkov, 1998).

For handling equality in rigid variable calculi, it is oftennecessary to solve
several rigidE-unification problems that share the same setE of equalities.
If a completion-based method is used to find solutions, it is sufficient to com-
pute a single completion ofE. This positive effect can be strengthened by
interlacing the completion process and the proof search (Beckert and Pape,
1996). Then, if there is a case distinction in the proof (for example, when a
tableau branches), the (partial) completion that has been computed up to that
point can be shared by the sub-cases and has only to be computed once.
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Using Finite Sets of Solutions
For completeness of the calculus, it is sufficient to only apply substitutions
that are most general solutions w.r.t. the subsumption relation�W, whereW
contains all variables occurring in the partial proof (e.g.the tableau). How-
ever, complete sets of solutions w.r.t.�W are infinite; this is unfortunate be-
cause it is of great advantage if only a finite number of solutions to each
unification problem has to be considered. In that case, it is not necessary to
interlace different enumeration processes, which is difficult to implement and
to combine with techniques for restricting the search space.

The undecidability of simultaneous rigidE-unificiation implies that any
procedure producing—in finite time—a finite number of solutions for a (non-
simultaneous) rigidE-unification problem must be incomplete in the follow-
ing sense: If the procedure is used to compute solutions to rigid E-unification
problems that are, for example, extracted from tableau branches, then closing
a tableauT may require to extendT by additional instances of equalities and
terms although there is a substitution that closes all branches ofT simulta-
neously and there is, thus, a solution to a simultaneous rigid E-unification
problem extracted fromT. That notwithstanding, the combined calculusmay
be complete for first-order logic with equality; and in that case the advan-
tages of finite sets of solutions prevail. A procedure of thistype, which can
be used to build a complete calculus, has been presented in (Degtyarev and
Voronkov, 1998); it is described in the following section. It is not known
whether acompletecalculus can be built as well using (finite) sets of unifiers
that are minimal w.r.t. the subsumption relation�W

E .

5.3. Rigid Basic Superposition

In (Degtyarev and Voronkov, 1998), a method calledrigid basic superposi-
tion has been presented for computing afinite (incomplete) set of solutions
for rigid E-unification problems that is “sufficient” for handling equality in
rigid variable calculi. A calculus that is complete for first-order logic with
equality can, for example, be constructed by extending the closure rule of
free variable tableaux (Def. 6 in Chap. I.1.1) such that eachsolution that can
be computed by rigid basic superposition for one of the unification problems
in P (B) (Def. 12) may be used to close the branchB. The procedure is an
adaptation of basic superposition (in the formulation presented in (Nieuwen-
huis and Rubio, 1995)) to rigid variables. It uses the concept of ordering con-
straints:

DEFINITION 13. An (ordering) constraintis a (finite) set of expressions of
the form s' t or s� t where s and t are terms. A substitutionσ is a solution
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to a constraint C iff (a) sσ = tσ for all s' t 2C, i.e.,σ is a unifier of s and t,
(b) sσ > tσ for all s� t 2C, where> is an arbitrary but fixed term reduc-
tion ordering, and (c)σ instantiates all variables occurring in C with ground
terms.

There are efficient methods for deciding the satisfiability of an ordering
constraintC and for computing most general substitutionssatisfyingC in case
the reduction ordering> is a lexicographic path ordering (LPO) (Nieuwen-
huis and Rubio, 1995).

The rigid basic superposition calculus consists of the two transforma-
tion rules shown below. They are applied to a rigidE-unification problemhE;s; ti �C that has an ordering constraintC attached to it. The computation
starts initially with the unification problem that is to be solved and the empty
constraint. A transformation rule may be applied tohE;s; ti �C only if the
constraint is satisfiable before and after the application.

Left rigid basic superposition.If there are an equalityl
:= r or r

:= l and an
equalityu

:= v or v
:= u in E and p is a subterm ofu, then replace the

latter equality byu[r] := v (whereu[r] is the result of replacing one oc-
currence ofp in u by r) and addl � r, u� v, andl ' p to C.

Right rigid basic superposition.If there is an equalityl
:= r or r

:= l in E and
p is a subterm ofs or of t, then replaces (resp.t) with s[r] (resp.t[r])
and addl � r , s� t (resp.t � s) andl ' p toC.

As the constraint expressions that are added by a rule application have to
be satisfiable, they can be seen as a pre-condition for that application; for
example, sincel ' p is added toC, the termsl andp have to be unifiable.

The two transformation rules are repeatedly applied, forming a non-deter-
ministic procedure for transforming rigidE-unification problems. The pro-
cess terminates when (a) the termss andt become identical or (b) no further
rule application is possible without makingC inconsistent. Provided that no
transformation is allowed that merely replaces an equalityby itself, all trans-
formation sequences are finite.

It is possible to only allow transformations where the termp is nota vari-
able, thus improving the efficiency of the procedure and reducing the number
of solutions that are computed.

Let hE;s; ti �C be any of the unification problems that are reachable by
applying rigid basic superposition transformations to theoriginal problem.
Then, any solution toC[fs' tg is a solution to the original problem. LetU
be the set of all such solutions that are most general w.r.t.�W. The setU is
finite because the application of rigid basic superpositionrules always termi-
nates.
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mixed

classical rigid

syntactical ground

Figure 2. The sub-type relation between the different versions ofE-unification.

EXAMPLE 5. Consider again the rigid E-unification problem from Exam-
ple 2; and let> be the LPO induced by the ordering g> f > a on the function
symbols.

The computation starts withhE;s; ti �C= hf f a
:= a; g2x

:= f ag; g3x; xi � /0 :
The only possible transformation is to use the right rigid basic superposi-

tion rule, applying the equality(l := r) = (g2x
:= f a) to reduce the term g3x

(all other transformations would lead to an inconsistent constraint). The re-
sult is the unification problemhE;g fa;xi � fg2x� f a; g3x� x; g2x' g2xg;
its constraint can be reduced toC1 = fg2x� f ag. A most general substitution
satisfyingC1[fg fa' xg is σ1 = fx 7! g fag.

A second application of the right rigid basic superpositionrule leads to
the unificationproblemhE;ga;xi � fg2x� f a; f a� a; g fa� x; f a' f ag; its
constraint can be reduced to C2 = fg2x� f a; g fa� xg. A most general sub-
stitution satisfying C2[fga' xg is σ2 = fx 7! gag.

At that point the process terminates because no further ruleapplication is
possible. Thus,σ1 andσ2 are the only solutions that are computed by rigid
basic superposition for this example.

6. OVERVIEW OF THE DIFFERENT TYPES OFE-UNIFICATION

In this final section, we briefly summarize the properties of the different types
of E-unification. Figure 2 shows the sub-type relation between them.

Syntactical unification, i.e.,E-unification with an empty set of equalities,
is decidable. Besides the standard method of Robinson, there are more effi-
cient methods for syntactical unification, in particular tosolve simultaneous

rigid.tex; 9/03/1998; 10:47; p.21



286 BERNHARD BECKERT

Table III. Decidability and undecidability of
the different types ofE-unification.

Type Simple Simultaneous

syntactical decidable decidable

ground decidable decidable

rigid decidable undecidable

universal undecidable undecidable

mixed undecidable undecidable

problems (for example (Martelli and Montanari, 1982)). ClassicalE-unifica-
tion is undecidable in general, but there are many interesting special cases of
equality sets where it is decidable (Chap. I.2.7). RigidE-unification is in be-
tween: It is decidable (NP-complete) in the non-simultaneous case (Sect. 2.4)
and undecidable in the simultaneous case (Sect. 3.2). SincemixedE-unifica-
tion is more general than classicalE-unification, it is undecidable in both the
simultaneous and non-simultaneous case. Table III gives anoverview of the
decidability of different types ofE-unification.

Minimal complete sets of unifiers for syntactical unification and ground
E-unification problems are either empty (if there is no unifier) or contain a
single MGU. For non-simultaneous rigidE-unification they are finite w.r.t.
the subsumption relation�W

E and infinite w.r.t.�W. For the undecidable types
of E-unification they are (in general) infinite.
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