
FASE System Description

The System:

Integrating Object-Oriented Design and

Formal Methods?

Wolfgang Ahrendt2, Thomas Baar1, Bernhard Beckert1, Martin Giese1,
Reiner Hähnle2, Wolfram Menzel1, Wojciech Mostowski2, and

Peter H. Schmitt1

1 Universität Karlsruhe
Inst. f. Logik, Komplexität und Dedukt.-Syst.

D-76128 Karlsruhe, Germany
2 Chalmers University of Technology
Department of Computing Science

S-41296 Gothenburg, Sweden

Abstract. This paper gives a brief description of the KeY system, a tool
written as part of the ongoing KeY project1, which is aimed at bridg-
ing the gap between (a) OO software engineering methods and tools
and (b) deductive verification. The KeY system consists of a commer-
cial CASE tool enhanced with functionality for formal specification and
deductive verification.

1 Introduction

The goal of the ongoing KeY project is to make the application of formal methods

possible and effective in a real-world software development setting. The incen-
tive for this project is the fact that formal methods for software development –
i.e. formal software specification and verification – are hardly used in practical,
industrial software development [5]. As the analysis in [1] shows, the reason is
not a lack of maturity or capacity of existing methods. Our work in the KeY
project is based on the assumption that the primary reasons are as follows:

– The application of formal methods is not integrated into the iterative and
incremental software development processes employed in real-world projects.

– The tools for formal software specification and verification are not integrated
into the CASE tools used to support these processes. Indeed, the target
language of verification tools, in which the programs to be verified have to
be written, is hardly ever a ‘real’ programming language used in industrial
software development.

? The KeY project is supported by the Deutsche Forschungsgemeinschaft (grant
no. Ha 2617/2-1).

1 URL: http://i12www.ira.uka.de/~key/

– Users of verification tools are expected to know syntax and semantics of one
or more complex formal languages. Typically, at least a tactical programming
language and a logical language are involved. Even worse, to make serious
use of many tools, intimate knowledge of employed logic calculi and proof
search strategies is necessary.

Accordingly, a main part of the KeY project is the design and implementation
of a software development tool, the KeY system, that strives to improve upon
previous tools for formal software development in these respects.

In the principal use case of the KeY system there are actors who want to
implement a software system that complies with given requirements and for-
mally verify its correctness. In this scenario, the KeY system is responsible for
adding formal detail to the analysis model, for creating conditions that ensure
the correctness of refinement steps (called proof obligations), for finding proofs
showing that these conditions are satisfied by the model, and for generating
counter examples if they are not. Special features of KeY are:

– We concentrate on object-oriented analysis and design methods (OOAD) –
because of their key role in today’s software development practice –, and
on Java as the target language. In particular, we use the Unified Modeling
Language (UML) [7] for visual modeling of designs and specifications and
the Object Constraint Language (OCL) for adding further restrictions. This
choice is supported by the fact, that the UML (which contains OCL) is not
only an OMG standard, but has been adopted by all major OOAD software
vendors and is featured in recent OOAD textbooks.

– We use a commercial CASE tool as starting point and enhance it by addi-
tional functionality for formal specification and verification. The tool of our
choice is TogetherCC (Together Control Center).2

– Formal verification is based on an axiomatic semantics of Java. More pre-
cisely, we confine ourselves to the subset of Java known as Java Card.

– Through direct contacts with software companies we check the soundness of
our approach for real world applications.

2 The System

The overall structure of the KeY system is illustrated in Fig. 2. We extend the
UML/Java-based CASE tool TogetherCC by adding features to support the
annotation of UML diagrams with OCL constraints. A Verification Component
is responsible for generating formulae in dynamic logic [3] that express proper-
ties of the specification or the relation between specification and implementation.
Finally, the Deduction Component can be used to prove or disprove these for-
mulae.

2 http://www.togethersoft.com/

2

UML OCL

Dynamic Logic

Java

CASE Tool TogetherCC
extension

specification
for formal

Verification Component

Deduction Component

automated
counter examples

interactive

Fig. 1. Structure of the KeY system

2.1 Specification Services

Support for authoring formal specifications is an important part of the KeY
project, not only because it is the basis for any ensuing verification, but also
because many problems in software development can be avoided with a precise
specification, even without doing a formal verification. The KeY system supports
the annotation of UML diagrams by constraints written in the OCL language.
These can be used to express pre- and postconditions of methods as well as
invariants of classes. The specification of OCL constraints is fully integrated
into the TogetherCC user interface.

As certain types of constraints tend to recur in many applications, we im-
plemented a mechanism, based on TogetherCC’s pattern instantiation, to
automatically generate OCL constraints for common situations. For instance,
an OCL expression stating that a method adds its argument to a set of asso-
ciated objects may be generated automatically. Another example would be a
non-cyclicity constraint added to a composite pattern when it is instantiated.

On demand, the system gathers OCL constraints, parses them and performs
type checking with respect to the UML diagram. It is typical of the KeY approach
that syntactic correctness of constraints is not necessarily enforced, permitting
the user to start with semi-formal specifications and refining them when needed.

Future development will include scanning OCL constraints for certain com-
mon mistakes, implausibilities and inconsistencies [2]. We are also planning to
support an authoring tool for formal and informal specification in OCL and
natural language [6].

2.2 Deduction Services

After OCL constraints have been checked syntactically, the user can trigger the
generation of proof obligations. These either capture relationships between the

3

OCL constraints of the diagram, e.g. that the invariant of some class is implied
by the invariant of one of its subclasses, or they assert relationships between the
OCL constraints and the implementation, e.g. that a method makes its post-
condition true. Again, note that the generation of proof obligations is only done
on demand to let the user benefit from the specification services of the system
even when verification is not desired.

The Verification Component generates proof conditions by transforming the
information from the UML diagrams, the OCL constraints and the implemen-
tation provided by the user into formulae of JavaDL, a dynamic logic for Java

[3]. Details of the transformation are covered in [4].
The JavaDL formulae are passed to the Deduction Component to permit

the user to show their validity. The Deduction Component is an integrated auto-
mated and interactive theorem prover for JavaDL. It features a graphical user
interface and is tailored to make the discharging of proof obligations generated
by the Verification Component as intuitive as possible. The proof rules follow
the principle of symbolic execution, so the structure of the proofs follows the
structure of the involved programs.

As verification is intended to be a tool to discover errors in a specification
or implementation, it will often be the case that the generated proof obligations
are not provable. We are currently integrating a component for counter-example
search that will make it easier to identify errors from failed proof attempts.

We are also planning to include a sophisticated proof management system in
the Verification Component that allows users to keep track of which aspects of
their development have been formalized or verified to which extent.

References

[1] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel,
and P. H. Schmitt. The KeY approach: Integrating object oriented design and
formal verification. In M. Ojeda-Aciego, I. P. de Guzmán, G. Brewka, and L. M.
Pereira, editors, Proc. 8th European Workshop on Logics in AI (JELIA), Malaga,
Spain, volume 1919 of LNCS, pages 21–36. Springer-Verlag, Oct. 2000.

[2] T. Baar. Experiences with the UML/OCL-approach to precise software modeling:
A report from practice. In Proc. Net.ObjectDays, Erfurt, Germany, 2000.
http://i12www.ira.uka.de/~key/doc/2000/baar00.pdf.gz.

[3] B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Security.
Revised Papers, Java Card 2000, International Workshop, Cannes, France, LNCS
2041, pages 6–24. Springer-Verlag, 2001.

[4] B. Beckert, U. Keller, and P. H. Schmitt. Translating the object constraint lan-
guage into first-order predicate logic. Submitted to FASE 2002, available from
http://i12www.ira.uka.de/~projekt/publicat.htm.

[5] D. L. Dill and J. Rushby. Acceptance of formal methods: Lessons from hardware
design. IEEE Computer, 29(4):23–24, Apr. 1996.

[6] R. Hähnle and A. Ranta. Connecting OCL with the rest of the world. In J. Whittle,
editor, Workshop on Transformations in UML at ETAPS, Genova, Italy, Apr. 2001.

[7] Object Modeling Group. Unified Modelling Language Specification, v1.4, Sept. 2001.

4

	 The KeY System: Integrating Object-Oriented Design and Formal Methods
	Introduction
	The KeY System
	Specification Services
	Deduction Services

