
Dynamic Logic with Non-rigid Functions

A Basis for Object-oriented Program Verification

Bernhard Beckert1 and André Platzer2

1 University of Koblenz-Landau, Department of Computer Science
beckert@uni-koblenz.de

2 University of Oldenburg, Department of Computing Science
platzer@informatik.uni-oldenburg.de

Abstract. We introduce a dynamic logic that is enriched by non-rigid
functions, i.e., functions that may change their value from state to state
(during program execution), and we present a (relatively) complete se-
quent calculus for this logic. In conjunction with dynamically typed ob-
ject enumerators, non-rigid functions allow to embed notions of object-
orientation in dynamic logic, thereby forming a basis for verification of
object-oriented programs. A semantical generalisation of substitutions,
called state update, which we add to the logic, constitutes the central
technical device for dealing with object aliasing during function modifica-
tion. With these few extensions, our dynamic logic captures the essential
aspects of the complex verification system KeY and, hence, constitutes a
foundation for object-oriented verification with the principles of reason-
ing that underly the successful KeY case studies.

Keywords: dynamic logic, sequent calculus, program logic, software
verification, logical foundations of programming languages, object-orien-
tation

1 Introduction

Overview. Dynamic logic serves two purposes: (a) theoretical investigations
of programs, programming languages, and verification calculi; and (b) formal
verification of particular programs. Deductive verification of real-world object-
oriented programs requires the use of a program logic that is suitable for object-
orientation instead of a logic for a simple While language (e.g. [11]). In this pa-
per, we add a succinct set of features to a dynamic logic for While, which forms
a basis for handling object-oriented programming languages; and we present a
sound and (relatively) complete sequent calculus for the extended logic. The logic
that we introduce, called ODL, is a minimal extension of dynamic logic [11], i.e.,
only very few essential notions of object-orientation are directly included.

For inclusion in ODL, we have identified the following essentials: (1) an object
type system; (2) object creation; and, most importantly, (3) non-rigid functions
that can be used to represent object attributes. Using such a minimal exten-
sion that is not cluttered with too many constructs is necessary for theoretical
investigations (a). A case in point are the soundness and completeness proofs

for the ODL calculus, which are—though not trivial—still readable, understand-
able and, hence, accessible to investigation. Furthermore, ODL is sufficient for
verifying programs written in real-world programming languages (b), because
they can be transformed into ODL programs uniformly (as practical experience
with the KeY prover implementation shows, see below). ODL thus serves both
purposes of a dynamic logic. In this paper, Java-like languages are considered
for transformation into ODL programs.

In addition to providing a sound and complete calculus for ODL, a prime
contribution of this paper is the logic ODL itself, which forms a coherent basis
for object-oriented verification.

The KeY Project and ODL. The work reported in this paper has been carried out
as part of the KeY project [2], the goal of which is to develop a comprehensive
tool supporting formal specification and verification of Java Card programs
within a commercial platform for UML/JML-based software development. This
approach is based on the design-by-contract paradigm. In KeY, contracts are
verified statically using a semi-automatic, interactive theorem prover on the
basis of a dynamic logic for 100% Java Card [5].

ODL captures the essence of reasoning underlying the KeY approach. Here,
we consolidate the foundational principles of KeY into this concise logic, which
is not only (relatively) complete in theory but also provides sufficient means for
practical object-oriented verification. Practical applicability has been demon-
strated in successful case studies (e.g. [15]) with the KeY prover. Now, using
ODL, we focus on more theoretical aspects in this paper.

Dynamic Logic. The principle of dynamic logic (DL) is to facilitate the formu-
lation of statements about program behaviour by integrating programs and for-
mulas within a single specification language (see e.g. [11] for a general exposition
of DL). By permitting arbitrary programs α as actions of a labelled multi-modal
logic, dynamic logic provides formulas of the form [α]φ and 〈α〉φ, where [α]φ
expresses that all (terminating) executions of program α lead to states in which
φ holds, whereas 〈α〉φ expresses that there is at least one terminating execution
of α after which φ holds. A Hoare-style specification {φ}α{ψ} can be expressed
as φ → [α]ψ. In contrast to Hoare logic and temporal logic approaches, dy-
namic logic further permits to express structural relationships between different
programs, for example, 〈α〉φ → 〈α′〉φ and [α](c ≥ 0 → 〈α′〉c ≤ d · d).

Object-orientation. Typical features of object-oriented programming languages
include structured object data types with inheritance and subtyping, resolving
method invocation by dynamic dispatch, overloading, hiding of fields, object
creation, exception handling (as well as other means of abrupt completion) and
side-effects during expression evaluation. There is no general consensus on the
question which of these features constitute the heart of object-orientation and
which are just contingent features of object-oriented languages (see, e.g., [14] for
a discussion why exception handling is orthogonal to object-orientation). We
are not trying to answer this question by including some features into ODL and

others not. Instead, our choice was to include those features that are (a) fre-
quently used in object-oriented languages and (b) cannot be removed easily by
program transformation. We put more emphasis on the latter criterion (b) than
on a general philosophy of what should be considered object-oriented.

Related Work. Stärk and Nanchen [20] define a dynamic logic for single steps of
abstract state machines and develop a calculus. Their dynamic logic has some
features in common with ODL; it uses a related but distinct notion of parallel
updates. Their calculus, however, is unwieldy as it uses a multitude of axioms
and necessitates several successive translations with complicated reasoning on
termination conditions and the absence of clashes. Due to the limitation to single
steps, their logic is not suitable for verification of proper algorithms.

Von Oheimb and Nipkow [22] describe a Hoare calculus for NanoJava, which
has many more native language features than ODL. Their calculus, that is ac-
cordingly more complicated and harder to use than ours, has been formulated in
Isabelle/HOL and proven sound and complete relative to a semantics of Nano-

Java specified in Isabelle. In [16], Nipkow defines a programming language to
capture the essentials of object-orientation (without giving a calculus). Yet, this
language keeps more built-in features than ODL, like exceptions and casts.

Pierik and de Boer [17] present a wp-calculus for a moderate abstraction of
an object-oriented programming language with a fairly rich set of features (with-
out exceptions) and a focus on method invocation, using an assertion language
with quantification over sequences of objects. Their calculus uses a complicated
treatment of object creation and is proven complete only relative to the strongest
postconditions of programs, which is a comparably weak notion of completeness.

Abadi and Leino [1] present a logic for reasoning about a programming lan-
guage with prototype-based object inheritance. Their logic resembles a formal
type system enriched with pre- and postconditions.

Igarashi et al. [12] define a λ-calculus for functional Java (without assign-
ments) and use it to investigate type-safety as well as parametric type genericity.

Other approaches [2, 9, 13, 19, 3], which aim to define and use calculi for ver-
ifying full (or large fragments of) Java or C# are too complex for our second
goal (besides verification) of a small and easy to understand basis that allows
theoretical investigations of programs, program languages, and calculi.

The strength of the ODL approach compared to others lies primarily in
an (even) smaller amount of language features and a simple language semantics
building on classical first-order dynamic logic. With this basis, the ODL calculus
is straightforward and behaves reasonably in practical application scenarios. On
a proof-theoretical level, a noteworthy difference is that ODL completeness is
even proven relative to first-order arithmetic.

Structure of this Paper. After introducing syntax and semantics of the logic
ODL in Section 2, the transformation from existing object-oriented languages
into ODL is surveyed in Section 3. As the central contribution of this paper,
Section 4 introduces a sound and relatively complete calculus for ODL. Finally,
in Section 5 we draw conclusions and discuss future work.

2 Syntax and Semantics of ODL

Overview. In addition to dynamic logic for a standard While programming
language [11], we use three important concepts.

Type System. The ODL type system needs to represent types of existing object-
oriented programming languages. Since classes are a central concept of object-
orientation, ODL uses a proper type system rather than an indirect encoding of
types as formulas or numbers. Program constructs whose behaviour depends on
dynamic typing (like method invocation) can be translated into ODL code with
instanceof formulas (see Section 4) to access the dynamic type of expressions.

Dynamic Object Creation. ODL needs to have a way to represent object creation
and dynamic types. We introduce object enumerators: for each natural number n
there is one distinct object, denoted by the term objC(n), of each object-type C.
Then, dynamic type-checks simply amount to checking from which of these free
type generators an object originates. As opposed to memory models [21], each
type has a disjoint set of created objects. Hence, objects of different types are
never aliased. The prover can profit from this higher level of abstraction and the
resulting simplicity. This design prohibits arbitrary pointer arithmetic, though.

State Updates. Object-oriented programming languages allow to modify object
attributes. ODL represents attributes as non-rigid function symbols, i.e., func-
tions that may change their value during program execution. Changes to such
non-rigid functions are promoted throughout a formula by means of state up-
dates, which can be seen as a “semantical” generalisation of syntactic substi-
tutions. The update mechanism of ODL provides a means for handling sym-
bol aliasing and for applying state updates to modalities. Moreover, bundling
changes of multiple locations to one parallel update of simultaneous effect, ac-
celerates the prover considerably.

Modelling object attributes as non-rigid function symbols emphasises the
logical properties of object states. This avoids encoding objects states in mem-
ory structures and improves readability (as compared to memory-model-based
approaches). For ODL, the usual object access o.x is a notational variant of x(o).

Syntax of ODL. A (nearly) arbitrary type system can be plugged into ODL.
For simplicity, it is assumed to form a lattice (which is no real restriction as any
type structure can be embedded into a lattice) satisfying additional conditions.

Definition 1. The type system Typ is a (decidable) lattice with sub-type re-
lation ≤. Within Typ, there is a designated subset of object-types (which are
subject to object creation). The type lattice conforms to the following restrictions:
(a) the type nat of natural numbers is an element of Typ; (b) object-types have
only finitely many subtypes; (c) the bottom type ⊥ is not an object-type; (d) all
subtypes of an object type (except ⊥) are object-types; (e) there is an object-type
Null, which is a subtype of all object-types.

Note that function and tuple types are not part of the object-level type
system Typ. Instead, the typing of a function symbol with n parameters of types
σ1, . . . , σn ∈ Typ and result type τ ∈ Typ is σ1 × · · · × σn → τ . Despite (b),
Typ may contain infinitely many object-types (that are not subtypes of each
other). Assumptions (c–e) are not essential but simplify notation in the sequel.

>

oooo OOOO

nat Object

��
>>

int

Date
??

String

��
Null

⊥

Fig. 1. Lattice for
part of Java.

Figure 1 shows part of an ODL type system embed-
ding Java types. Of the types shown, Object, Date, and
String, are object-types. Unlike the Java-type int, they
permit object creation during program execution. The spe-
cial object-type Null represents the type of the single Java

null-pointer, which is a possible value for expressions of
any object-type but not for those of integer types. In the
case of Java, nat will not occur in the original programs
but emerge during the transformation in Section 3.

Terms and Formulas. The formulas of ODL are built over a set V of variables
and a signature Σ of function and predicate symbols, which have a fixed static
type. Function symbols are either rigid or non-rigid, with only non-rigid symbols
being subject to assignment during program execution (program variables are
represented by non-rigid constants, object attributes by non-rigid functions).
Our calculus assumes the presence of sufficiently many symbols of each kind.

The signature Σ is assumed to contain the traditional rigid function and
predicate symbols for type nat, such as 0, 1,+, ·,≤,≥, as well as the rigid symbol
null of type Null. For object-types C ∈ Typ, in addition to a non-rigid symbol
nextC of type nat (the number of the next object to be created), Σ contains a
rigid function symbol objC of the typing nat → C. The intended semantics of
such an object enumerator objC is to enumerate all objects of type C.

The set Trm(Σ∪V)τ of terms of type τ (or subtypes thereof) is defined as in
classical many-sorted first-order logic. Additionally, we use conditional terms of
the form (if φ then t else t′ fi). They evaluate to the value of t if φ is true and to
the value of t′ otherwise (conditional terms are no essential ingredient of ODL,
primarily used to simplify concepts and notation).

The formulas of ODL are defined as common in first-order dynamic logic.
That is, they are built using the connectives ∧,∨,→,¬, equality

.
= and the

quantifiers ∀, ∃ (first-order part). In addition, if φ is a formula and α a program,
then [α]φ, 〈α〉φ are formulas (dynamic part). Refer to [18] for a detailed definition
of the syntax and semantics of ODL. For enhanced readability, we sometimes
use the notation ∀x : τ φ for quantification when x is of type τ .

Programs. The control structures of ODL are those commonly found in a While

programming language: ODL programs are constructed using (a) sequential com-
position α; γ, (b) conditional execution if(φ)α elseγ, and (c) loops while(φ)α,
with quantifier-free first-order formulas φ as conditions. The atomic programs
of ODL are state updates :

Definition 2 (State updates). Let n ∈ N and, for 1 ≤ i ≤ n, let fi a non-
rigid function symbol of type σ1

i × · · · × σki

i →τi, fi(t
1
i , . . . , t

ki

i) ∈ Trm(Σ∪V)τi
,

and ti ∈ Trm(Σ∪V)τi
with types σji , τi. Then, a (state) update has the form

f1(t
1
1, . . . , t

k1
1) := t1, . . . , fn(t

1
n, . . . , t

kn
n) := tn.

The intended effect of f(t) := t′ is to change the interpretation of f at loca-
tion t to t′, with multiple modifications (n > 1) working in parallel, i.e., the tji
and ti are all evaluated prior to the (parallel) modifications.

Method calls can be added to ODL by permitting c := m(t0, . . . , tn) as an
atomic program that represents an invocation of the method m on parameters
ti ∈ Trm(Σ∪V) and assignment of the result (if any) to c. For most programming
languages, t0 is the object on which m is invoked. Fixed-point semantics then
defines the effect of a method invocation. For simplicity, the particularities of
method calls are not formally investigated further here.

Semantics. The interpretations of ODL consist of worlds (states) that are first-
order structures, associating total functions and relations of appropriate type
with function and predicate symbols.

Definition 3 (Interpretation). An interpretation I is a non-empty set of
(typed) first-order structures, called states, over a signature Σ such that: (1) all
states have the same interpretation of rigid symbols; (2) the set of states of I is
closed under the modification (see below) of finitely many non-rigid symbols at
finitely many locations; (3) for each type τ , all states share the same set I(τ) as
the set of objects of type τ ; the universe of all states is the union of the I(τ);
(4) for all types σ, τ : if σ ≤ τ then I(σ) ⊆ I(τ); (5) objC is interpreted as a
bijection from N into the set of objects having C as their most-specific type, i.e.,
that are of type C but not of any subtype of C; (6) the interpretations of the
objC symbols have disjoint ranges; (7) nat is interpreted as the set of natural
numbers, with operators as usual; (8) the interpretation of the Null type is a
singleton; that of ⊥ is empty.

In the following, s denotes a state of I and β an assignment of variables, i.e., a
mapping from V to the universe of I that respects types. Non-rigid symbols, like
program variables or attributes, are allowed to assume different interpretations
in different states. Logical variable symbols, however, are rigid in the sense that
their value is determined by β alone and does not depend on the state. We use
s[f(e) 7→ d] to denote the semantic modification of state s that is identical to s
except for the interpretation of the non-rigid symbol f at position e, which is d.

Definition 4 (Valuation of terms and formulas). For terms and formulas,
the valuation valI,β(s, ·) with respect to I, β, s is defined as usual for first-order
modal logic [10], i.e., using the following definitions for the modal operators:
valI,β(s, [α]φ) = true iff valI,β(s

′, φ) = true for all s′ with (s, s′) ∈ ρI,β(α) and
valI,β(s, 〈α〉φ) = true iff valI,β(s

′, φ) = true for some s′ s.t. (s, s′) ∈ ρI,β(α).

With the exception of state updates, the semantics—ρI,β(α)—of programs is
as customary. In order to demonstrate how concise and simple the ODL language
semantics is devised, the full formal definition is provided.

Definition 5 (Semantics of programs). The valuation ρI,β(α) of a pro-
gram α is a relation on the states of I. It specifies which state s′ (if any) is
reachable from a state s by executing program α and is defined as follows:

1. (s, s′)∈ ρI,β(f1(t
1
1, . . . , t

k1
1) := t1, . . . , fn(t

1
n, . . . , t

kn
n) := tn) iff s = s0, s

′ = sn,

and si = si−1[fi(valI,β(s, t
1
i), . . . , valI,β(s, t

ki

i)) 7→ valI,β(s, ti)] (1 ≤ i ≤ n).

2. (s, s′) ∈ ρI,β(α; γ) iff (s, u) ∈ ρI,β(α) and (u, s′) ∈ ρI,β(γ) for some state u.

3. (s, s′) ∈ ρI,β(if(φ)α elseγ) iff (1) valI,β(s, φ) = true and (s, s′) ∈ ρI,β(α),
or (2) valI,β(s, φ) = false and (s, s′) ∈ ρI,β(γ).

4. (s, s′) ∈ ρI,β(while(φ)α) iff there are n ∈ N and s=s0, . . . , sn=s
′ such

that (1) for 0 ≤ i < n, valI,β(si, φ) = true and (si, si+1) ∈ ρI,β(α), and
(2) valI,β(sn, φ) = false.

Note that according to this definition, the modifications of a state update are
executed simultaneously in the sense that the terms tji , ti are evaluated in the
initial state s = s0. However, if there is a clash, i.e., if two modifications as-
sign different values to the same location, then the rightmost modification wins,
which turns out to be more natural for sequential programs than alternative
approaches to clash semantics [18]. Like classical dynamic logic, ODL focuses
on the input/output behaviour of programs and program parts. Hence it cannot
be used to express properties of programs during an infinite run, which would
require an extension of ODL to trace semantics (versions of DL with trace se-
mantics are described in [7] for classical DL and in [6] for Java Card).

3 ODL as a Basis for Handling Real-world Languages

In this section, we survey the transformation from real-world object-oriented
programs into ODL as a basis for their verification. The particular transforma-
tion that we consider here is implemented by schematic inference rules in the
KeY deduction engine. It transforms Java Card programs into a sublanguage
of Java that corresponds to ODL, except for notation. Experience with KeY in
practice shows that the transformation leads to a linear increase in the size of
the program and that the time complexity of the transformation is linear in the
size of the program. The resulting program retains the structure of the original,
as the transformation only locally replaces language features that are not part
of ODL. Hence, the relation between Java and ODL programs is easy to grasp
for users. Due to space limitations, we have to restrict this presentation to the
key ideas enriched with illustrative examples; see [5, 18] for more details.

Type Transformations. As the subtype relation of the class hierarchy is in-
tegrated directly, fields and methods undergo a simple translation. An attribute
f :σ1× . . .×σn → τ of class ζ is represented as a non-rigid function symbol
f : ζ ×σ1× . . .×σn → τ , which stores at position (o, a1, . . . , an) the value that
field f of object o has at position (a1, . . . , an) (for array types n > 0).

Code Transformations. Most features of current programming languages have
a simple uniform transformation into ODL, which accomplishes their effects with
more elementary means and without introducing memory or machine models.

Object Creation. Object creation has to support dynamic type-checks, establish
object identity and maintain the current type extension. Because of the proper-
ties of ODL object enumerators, these demands are fulfilled by translating occur-
rences of c := newC() into the state update c := objC(nextC), nextC := nextC + 1.

Two objects created by distinct invocations of new are always different, which
is achieved by means of the disjoint bijection constraints on objC and the incre-
ment of nextC. Maintaining the extension, i.e., a set of all objects created by pro-
gram execution so far, is needed in order to express properties φ of all objects that
have already been created with an invocation of new. As nextC counts the number
of objects created of type C, this corresponds to: ∀n (n < nextC → φ(objC(n))).
Using object enumerators, it is further possible to express dynamic type-checks.
For a term t and object-type C, we define the type-check formula t instanceofC
to be an abbreviation of ∃n :nat

∨
Null<τ≤C

t
.
= objτ (n).

Despite the static typing of symbols in Σ, ODL needs dynamic type-checks
because the interpretation of a constant symbol c of (static) type τ in Σ can
have any subtype σ ≤ τ depending on the current state.

The ODL treatment of object creation is still safe in the presence of garbage
collection due to the absence of pointer arithmetics and resource limitations [18].
A further advantage of object enumerators is the simplicity of the contribution of
natural numbers—which are already part of ODL for completeness reasons—to
object identity without the need to use Skolem symbols for object creation.

Side-effects. Expressions with side-effects can be replaced by a sequence of state
updates to temporary program variables, each of which encapsulates one effect
of the original expression. Therefore, the order of assignments has to respect
the evaluation order constraints of the investigated real-world language. For
example, the Java fragment a[i++] = b−− + b can be schematically translated
into an ODL program vi := i; i := i+ 1; vb := b; b := b− 1; a(vi) := vb+ b that
does not have side-effects. This ODL program can be condensed to a single
parallel update using our simplification rules (see Section 4), which results in
i := i+ 1, b := b− 1, a(i) := b+ (b− 1). ODL updates can be more verbose than
side-effecting Java expressions, but they are also more explicit. For the purpose
of verification, it is beneficial to have the actual effects readily identifiable.

Exception Handling. Exceptions are not built into ODL, but have to be emulated
by preprocessing program transformations. Exception raising can be simulated
by introducing appropriate conditions on a (local) program variable that stores
the raised exception (which is passed up the call trace when it is not caught).
Consider the following example with exception raising and handling:

try { while (d != 0)
{ i f (d < 0) {throw new RangeEx (d) ; } else {d=d−1;}}

/∗ do something ∗/

} catch (RangeEx r) { /∗ hand le range ∗/}

It can be transformed into a program that uses exception polling instead:

Exception r = null ;
while (r == null && d != 0)

{ i f (d < 0) { r = new RangeEx (d) ; } else {d=d−1;}}
i f (r == null) { /∗ do something ∗/}
else i f (r instanceof RangeEx) { /∗ hand le range ∗/}
else { return r ; /∗ pass up the c a l l t race ∗/}

In favour of a simple logic and calculus, ODL compromises on readability when
handling exceptions by program transformation. This is non-crucial in the sense
that exceptions are not an inherently object-oriented feature.

The main advantage of banning exceptions and undefinedness from ODL is
that no special features like, e.g., a third truth value, have to be introduced to
handle partiality. For example, with built-in exception handling, a logic would
have to promote the exceptional case of values being null throughout the in-
ductive valuation, which clutters both semantics and inference rules. In contrast,
ODL just considers null as an ordinary—though designated—object. Further,
the truth-value of an expression like c.a

.
= c.a + 2 is always consistently false,

even in the case of c
.
= null, whereas c.a

.
= c.a is consistently true.

Dynamic Dispatch. Dynamic dispatch of method calls can be reduced to static
method calls by dynamic type-check cascades with instanceof along the reverse
topological order of the type lattice (which also works for multiple inheritance).
An important advantage of the ODL way of dynamic dispatch is its simplicity:
the basic idea is to implement dispatch “tables” from classical compiler construc-
tion technology with ODL primitives. Dynamic dispatch occurs in situations like
the one sketched in the following Java fragment:

class Car { int f o l l ow (Car d) { . . . } }
class Van extends Car { int f o l l ow (Car d) { . . . } }
. . . return b . f o l l ow (d) ;

Having renamed the methods follow that are subject to overriding to Car follow

or Van follow, respectively, this code snippet is transformed as follows (type casts
are expressible in ODL using existential quantification: ∃v : Van v

.
= b):

class Car { int Car fo l l ow (Car d) { . . . } }
class Van extends Car { int Van fo l low (Car d) { . . . } }
. . . i f (b instanceof Van) { return ((Van)b) . Van fo l low (d) ; }
else i f (b instanceof Car) { return ((Car)b) . Car fo l l ow (d) ; }
else { /∗ cannot happen when a l l t ype s are known ∗/}

Built-in Operators. From a theoretical perspective, extending ODL by built-
in operators is straightforward when assuming a suitable axiomatisation of the
operator semantics. For example, modular arithmetic can be axiomatised as [8]:
r
.
= a mod n ↔ ∃z : nat a

.
= z · n+ r ∧ r < n.

Running Example. Consider the following Java fragment that illustrates se-
quence number generation in object database applications and also is a typical
part of the implementation of enumeration types in Java (sequence numbers are
assumed to be multiples of 5, for example):

class E { static int g ; int id ;
E c r e a t e () {E r=new E () ; r . id=g ; g=g +5; return r ;}}

With return-value r, the method body of create() has the ODL representa-
tion α = r := objE(nextE), nextE := nextE+1; r.id := g; g := g + 5 (using Java

notation for field access). An important property of class E is that sequence
numbers in the field id are unique identifiers for E-objects, which is expressed
by the global state invariant ∀x : E ∀y : E (x.id

.
= y.id → x

.
= y). In this con-

text, a typical conjecture is that two objects generated with successive invoca-
tions of α have distinct identifiers, which is represented by the ODL formula:
∀x [α](x

.
= r → [α] (x.id < r.id)).

Discussion. Assignment to non-rigid function symbols cannot be removed from
ODL without losing the operational basis for object-oriented programming that
permits the change of structured and dynamically typed data or terms.

Likewise, object creation constitutes an essential ingredient to the dynamics
of object-oriented systems. Allocating objects at run-time is characteristic of
object-oriented programming. With the presence of object enumerator symbols,
ODL does not need a native allocation operator. Both the axiomatisation and the
translation are convincing and the practical performance achieved with object
enumerators is appropriate [18] (similar reasons apply for dynamic dispatch).

4 A Sequent Calculus for ODL

Overview. In this section, we present a sound and (relatively) complete sequent
calculus for ODL. The basic idea of the ODL calculus is to perform a symbolic
program execution, thereby successively analysing programs and transforming
them into logical formulas describing their effects. Yet, rule applications for first-
order reasoning and program reasoning are not separated but intertwined.

For first-order and propositional logic standard rule schemata are listed in
Table 1, including an integer induction scheme. Within the rules for the program
logic part (Table 2), state update rules R29–R30 constitute a peculiarity of
ODL and will be discussed after defining rule applications. Essentially, the ODL
inference rules have the effect of reducing more complex formulas to simpler ones.
Prior to handling loops by R27 or R22, they transform formulas to the normal
form 〈U〉〈while(e)α〉φ or [U][while(e)α]φ with some update U . The rules for
treating control structures work similar to the case of the While programming
language.

Rules of the Calculus. A sequent is of the form Γ ` ∆, where Γ and∆ are sets
of formulas. Its informal semantics is the same as that of

∧
φ∈Γ φ →

∨
ψ∈∆ ψ.

Table 1. First-order logic part of the ODL calculus.

(R1)
` A

¬A `

(R2)
A `

` ¬A

(R3)
` AX

x

` ∀xA

(R4)
A, B `

A ∧ B `

(R5)
` A ` B

` A ∧ B

(R6)
At

x, ∀xA `

∀xA `

(R7)
A ` B `

A ∨ B `

(R8)
` A, B

` A ∨ B

(R9)
AX

x `

∃xA `

(R10)
` A B `

A → B `

(R11)
A ` B

` A → B

(R12)
` At

x, ∃xA

` ∃xA

(R13)
A ` A

(R14)
A ` ` A

`

(R15)
Γ t

′

t , t
.
= t′ ` ∆t

′

t

Γ, t
.
= t′ ` ∆

(R16)
Γ t

′

t , t′
.
= t ` ∆t

′

t

Γ, t′
.
= t ` ∆

(R17)
` t

.
= t

(R18)
` φ(0) φ(X) ` φ(X+1)

` ∀n φ(n)

ODL inference rules use substitutions that replace terms (not only variables)
by terms and take effect within formulas and programs. The result of applying
to φ the substitution that replaces s by t is defined as usual; it is denoted by φts.
Yet, only admissible substitutions are applicable, which is crucial for soundness:

Definition 6 (Admissible substitution). An application of a substitution θ
is admissible if no replaced term s occurs (a) in the scope of a quantifier binding
a variable of θ(s) or s, nor (b) in the scope of a modality in which an update to
a non-rigid function symbol of θ(s) or s occurs.

As common in sequent calculus, although the direction of entailment is from
premisses (sequents above bar) to conclusion (sequent below), the order of rea-
soning is converse in practice. Rules are applied analytically, starting with the
proof obligation at the bottom. To highlight the logical essence of inference rules,
the ODL calculus provides the rule schemata R1–R30 to which the following def-
inition associates the inference rules that are applicable during an ODL proof.

Definition 7 (Rules). The rule schemata in Tables 1 and 2 induce rules by:

1. If Φ1 ` Ψ1 . . . Φn ` Ψn / Φ ` Ψ is an instance of one of the rule schemata
R1–R26, then

Γ, 〈U〉Φ1 ` 〈U〉Ψ1, ∆ . . . Γ, 〈U〉Φn ` 〈U〉Ψn, ∆

Γ, 〈U〉Φ ` 〈U〉Ψ,∆

is an inference rule of the ODL calculus, where U is an arbitrary (or empty)
state update, and Γ,∆ are finite sets of context formulas. The formulas
within the schemata R19–R22 can occur on either side of the sequent.

2. Instances of the rule schemata R27 and R28 can be applied as an inference
rule of the ODL calculus.

3. If (a) s t is an instance of term rewrite rule R29 or R30, (b) Φ′ ` Ψ ′

results from a sequent Φ ` Ψ by substituting t for s, and (c) that substitution
is admissible, then the ODL calculus contains the rule Φ′ ` Ψ ′ / Φ ` Ψ .

Table 2. Program logic part of the ODL sequent calculus.

(R19)
〈[α]〉〈[γ]〉φ

〈[α; γ]〉φ

(R20)
(e → 〈[α]〉φ) ∧ (¬e → 〈[γ]〉φ)

〈[if(e)α else γ]〉φ

(R21)
(e → φ(t)) ∧ (¬e → φ(t′))

φ(if e then t else t′ fi)

(R22)
〈[if(e) {α; while(e) α}]〉φ

〈[while(e) α]〉φ

(R23)
A ` B

∃xA ` ∃xB

(R24)
` objC(i)

.
= objC(j) → i

.
= j

(R25)
` ¬(objC(i)

.
= objD(j))

(R26)
` ∀o : C (o instanceof C ∨ o

.
= null)

(R27)
Γ ` 〈U〉p, ∆ p, e ` [α]p p,¬e ` φ

Γ ` 〈U〉[while(e)α]φ, ∆

(R28)
A ` B

〈[α]〉A ` 〈[α]〉B

(R29) 〈[U]〉f(u)
if sir

.
= 〈[U]〉u then tir else . . . if si1

.
= 〈[U]〉u then ti1

else f(〈[U]〉u) fi . . . fi

where i1 < · · · < ir are all those indices with fij
= f , for some r ≥ 0

(R30) 〈[Ũ]〉〈[U]〉φ
˙̂

Ũ , f1(〈Ũ〉s1) := 〈Ũ〉t1, . . . , fn(〈Ũ〉sn) := 〈Ũ〉tn

˜̧

φ

In the rule schemata, t, t′ are terms, X is a new logical variable, C 6= D are object-
types and 〈U〉, 〈Ũ〉 are updates. All substitutions are admissible, in particular the
(implicit) substitution that inserts t into φ(t) must be admissible. In R29 and
R30, 〈U〉 is of the form 〈f1(s1) := t1, . . . , fn(sn) := tn〉, working accordingly for
other arities of f . Moreover, in all rule schemata, the schematic modality 〈[·]〉
can be instantiated with both [·] and 〈·〉. The same modality instance has to be
chosen within a single schema instantiation, though.

It is of utmost importance for soundness that only the rule schemata R1–R26
allow to add an update prefix U and a sequent context Γ,∆ (case 1 in the above
definition), while that is not possible for rule schemata R27 and R28 (case 2)
because of their global form of reasoning.

Rule R26 expresses that all objects, except null, that will ever exist are
generated by object creation expressions. In addition to the standard treatment
of equalities, it can be used to discharge proof obligations depending on dynamic
types, which typically occur during object-oriented verification. Similarly, R24
and R25 directly express the disjoint bijection restrictions on object enumerators
(see Section 3) that are needed to reflect the impact of the type system.

The rewrite schema R29 symbolically executes a state update. Besides pro-
moting the effect of updates to the arguments inductively, R29 basically unfolds
changes to the top-level symbol in the order appearing within update U . Thereby,
it respects the last-win semantics that ODL uses for clashing updates. In case
of a singleton state update U of the form f(s) := t, the rewrite simplifies to
〈U〉f(u) if s

.
= 〈U〉u then t else f(〈U〉u) fi. The conditional terms introduced

Table 3. Proof of sequence number generation (with o ≡ objE and n ≡ nextE).

∗
R17 X.id < g,¬o(n)

.
= X ` X.id < g

. . .

X.id < g, o(n)
.
= X ` g < g

R5 X.id < g ` (¬o(n)
.
= X → X.id < g) ∧ (o(n)

.
= X → g < g)

R21 X.id < g ` (if o(n)
.
= X then g else X.id fi) < g

R29 X.id < g ` [r := o(n), n := n+1, o(n).id := g, g := g + 5] (X.id < r.id)
R30 X.id < g ` [r := o(n), n := n+1, o(n).id := g][g := g + 5] (X.id < r.id)
R30 X.id < g ` [r := o(n), n := n+1][r.id := g][g := g + 5] (X.id < r.id)
R19 X.id < g ` [r := o(n), n := n+1][r.id := g; g := g + 5] (X.id < r.id)
R19 X.id < g ` [α] (X.id < r.id)
R11 ` X.id < g → [α] (X.id < r.id)
R3 ` ∀x : E (x.id < g → [α] (x.id < r.id))

herewith can, in turn, vanish according to schema R21 once the substitution is
admissible. Deferring R21 avoids branching until necessary for progress.

The rules R23 and R28, which are required for completeness but are rarely
used in practice, characterise a global consequence relation.

Definition 8 (Provability, derivability). A formula ψ is provable from a
set Φ of formulas, denoted by Φ `ODL ψ iff there is a finite subset Φ0 ⊆ Φ for
which the sequent Φ0 ` ψ is derivable. In turn, a sequent Φ ` Ψ is derivable iff
there is an inference rule of the ODL calculus (Def. 7) with conclusion Φ ` Ψ
such that all premisses of the rule are derivable.

Verification Example. Continuing the example of Section 3, we consider
a specification of the body α (with return value r) of the create() method:
∀x : E (x.id < g → [α] (x.id < r.id)). On this basis, uniqueness of E-identifiers is
due to the fact that create() is the only source for E-objects and that identifiers
do not change after object creation (which needs to be proven separately).

Table 3 shows (part of) the proof for the above formula (the right branch
remains open). Apart from reducing object creation to object enumerators,
the proof essentially consists in update merging and applying the final up-
date U = [r := o(n), n := n+1, o(n).id := g, g := g + 5], which involves rewriting:
[U]X.id if o(n)

.
= [U]X then g else ([U]X).id fi if o(n)

.
= X then g elseX.id fi.

With results about reasoning with created objects [18], the proof can be
extended such that the right branch closes as well. That makes use of the fact
that X—when it is restricted to objects that have already been created—must
differ from the newly created r=o(n). This manifests as an additional antecedent
∃k (X

.
=o(k)∧ k<n), which contradicts o(n)

.
=X in the right branch using R24.

Soundness and Completeness. With the usual notions of soundness and rela-
tive completeness, the ODL calculus is proven sound and a complete extension of
first-order arithmetic [18]. Using the proof technique from [11], a central lemma
is that all ODL formulas have an equivalent first-order arithmetic formula. This

requires Gödelisation of sequences, which is more complicated in the presence of
non-rigid functions of finite but unbounded change.

Theorem 1 (Soundness and relative completeness). (1) The ODL cal-
culus (Def. 8) is sound, i.e., derivable formulas are valid (true in all states of
all interpretations).

(2) The ODL calculus is complete with respect to first-order arithmetic, i.e.,
if an ODL formula is valid, then it can be derived from a set of tautologies of
first-order arithmetic.

Moreover, we have shown that relative completeness is preserved for conser-
vative extensions of ODL with language features that so-called locally equivalent
inference rules can reduce to original ODL [18].

Example 1 (Relatively complete coverage of for loops). Adding to ODL the rule
“ ` 〈U ; while(χ) {α; γ}〉φ / ` 〈for(U ;χ; γ)α〉φ ” yields a calculus for ODL ex-
tended with for loops that is complete w.r.t. first-order arithmetic. Similarly,
constructor calls and side-effecting expression evaluation can be added to ODL
without loss of relative completeness.

5 Conclusions and Future Work

We have introduced a dynamic logic, ODL, with non-rigid functions, and pre-
sented a sound and relatively complete calculus. The conceptual design of the
logic ODL is guided by the ambition to capture the essence of reasoning for a
coherent basis of object-oriented verification at an adequate level of abstraction.

ODL provides dynamically typed object enumerators and state updates, i.e.,
operations to change the interpretation of non-rigid function symbols. State up-
dates work in parallel for multiple pointwise changes at once. With these exten-
sions, notions of object-orientation can be embedded in ODL.

The ODL calculus is based on a classical sequent calculus for the While

programming language [11]. In order to deal with function modification, rewrite
rules have been introduced that promote the effect of a state update throughout
the affected formula, with case distinctions to resolve potential aliasing. State
update applications can be delayed to defer branching of the proof.

The completeness proof for our ODL calculus in [18] has revealed and fixed
a flaw in the classical completeness proofs for dynamic logic (for While) [11, 7]
concerning the treatment of multiple variables.

Future work includes a closer investigation of the pragmatic effects of the
ODL approach to software verification. It is useful to build a modular set of
verification components for object-oriented calculi by providing add-on inference
rules for additional language features on the basis of the extension theorem
in [18]. An investigation of the impact of parametric genericity for the type
system seems worthwhile to a similar degree.

To sum up, the feasibility of defining an insightful essentials-only verification
calculus for object-oriented programming, which is sound and complete relative
to classical first-order arithmetic, has been demonstrated.

References

1. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In M. Bidoit
and M. Dauchet, editors, TAPSOFT ’97, volume 1214. Springer-Verlag, 1997.

2. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4:32–54, 2005.

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In Barthe et al. [4].

4. G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors. CASSIS
2004, Revised Selected Papers, volume 3362 of LNCS. Springer, 2005.

5. B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Security,
volume 2041 of LNCS, pages 6–24, 2001.

6. B. Beckert and W. Mostowski. A program logic for handling Java Card’s transac-
tion mechanism. In FASE’03, LNCS. Springer, 2003.

7. B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with
trace modalities. In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume
2083 of LNCS, pages 626–641. Springer, 2001.

8. B. Beckert and S. Schlager. Software verification with integrated data type refine-
ment for integer arithmetic. In E. A. Boiten, J. Derrick, and G. Smith, editors,
IFM, volume 2999 of LNCS, pages 207–226. Springer, 2004.

9. D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Barthe
et al. [4], pages 108–128.

10. M. Fitting and R. L. Mendelsohn. First-Order Modal Logic. Kluwer Academic
Publishers, Norwell, MA, USA, 1999.

11. D. Harel. First-Order Dynamic Logic. Springer-Verlag, New York, 1979.
12. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core

calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
13. B. Jacobs and E. Poll. A logic for the Java modeling language JML. In FASE ’01,

pages 284–299, London, UK, 2001. Springer-Verlag.
14. R. Miller and A. Tripathi. Issues with exception handling in object-oriented sys-

tems. In ECOOP, pages 85–103, 1997.
15. W. Mostowski. Formal Development of Safe and Secure Java Card Applets. PhD

thesis, Chalmers University of Technology, Göteborg, Sweden, February 2005.
16. T. Nipkow. Jinja: Towards a comprehensive formal semantics for a Java-like lan-

guage. In Proc. Marktoberdorf Summer School, 2003.
17. C. Pierik and F. S. de Boer. A syntax-directed Hoare logic for object-oriented pro-

gramming concepts. In E. Najm, U. Nestmann, and P. Stevens, editors, FMOODS,
volume 2884 of LNCS, pages 64–78. Springer, 2003.

18. A. Platzer. An object-oriented dynamic logic with updates. Master’s thesis, Uni-
versity of Karlsruhe, September 2004. Available at www.key-project.org.

19. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
D. Swierstra, editor, ESOP ’99, volume 1576 of LNCS. Springer, 1999.

20. R. Stärk and S. Nanchen. A logic for abstract state machines. J. UCS, 7(11), 2001.
21. J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory

model for verification of sequential Java programs. In D. Bert, C. Choppy, and
P. D. Mosses, editors, WADT, volume 1827 of LNCS, pages 1–21. Springer, 1999.

22. D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables,
side effects, and virtual methods revisited. In L.-H. Eriksson and P. A. Lindsay,
editors, FME, volume 2391 of LNCS, pages 89–105. Springer, 2002.

