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Abstract Signed conjunctive normal form(signed CNF) is a classical conjunctive clause
form using a generalised notion of literal, calledsigned literal. A signed literal
is an expression of the formS : p, wherep is a classical atom andS, its sign, is a
subset of a domainN . The informal meaning is “p takes one of the values inS”.
Signed formulas are a logical language for knowledge representation that lies in
the intersection of the areasconstraint programming(CP), many-valued logic
(MVL), and annotated logic programming(ALP). This central r̂ole of signed
CNF justifies a detailed study of its subclasses including algorithms for and com-
plexities of associated satisfiability problems (SAT problems). Although signed
logic is used since the 1960s, there are only few systematic investigations of its
properties. In contrast to work done in ALP and MVL, our present work is a more
fine-grained study for the case of propositional CNF. We highlight the most inter-
esting lines of current research: (i) signed versions of some main proponents of
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classical deduction systems including non-trivial refinements having no classical
counterpart; (ii) incomplete local search methods for satisfiability checking of
signed formulas; (iii) phase transition phenomena as known, for example, from
classical SAT and the influence of the cardinality ofN on the crossover point;
(iv) the complexity of the SAT problem for signed CNF and its subclasses.

Keywords: Many-valued logic, signed logic, resolution, Davis-Putnam-Loveland procedure,
local search, phase transition.

1. INTRODUCTION

Signed formulas are a logical language for knowledge representation that
lies in the intersection of the areasconstraint programming(CP),many-valued
logic (MVL), and annotated logic programming(ALP).

Signed conjunctive normal form(signed CNF) is a classical propositional or
first-order conjunctive clause form using a generalised notion of literal, called
signed literal. A signed literal is an expression of the formS : p, wherep is a
classical atom andS, itssign, is a subset of a domainN . The informal meaning
is “p takes one of the values inS”.

WhenN is considered to be a truth value set, signed CNF formulas turn
out to be a generic representation for finite-valued logics [17]: The problem
of deciding the satisfiability of formulas (SAT problem) of any finite-valued
logic is in a natural way polynomially reducible to the problem of deciding
satisfiability of formulas in signed CNF (signed SAT).

If N is equipped with an ordering, there is a natural notion of signed Horn
formula (Definition 4). The particular case whereN is lattice-ordered andS is
an order filter is investigated in annotated logic programming [21] (there,S is
called anannotation), therefore, annotated logic programs can be considered
as particular signed logic formulas.

Third, S : p can be interpreted as “p is constrained to the values inS” and,
hence, as an instance of finite-domain constraint programming [20, 7].

Finally, it is also possible to embed signed formulas into classical monadic
first-order logic by representing a signed literalS : p, whereS = {i1, . . . , ir},
as the classical formula

(∃p)(s(p)) ∧ (∀x)(s(x) ↔ (s(i1) ∨ · · · ∨ s(ir)))

using a unary predicate symbols.
Applications for deduction in signed logics derive from those of annotated

logic programming (e.g., mediated deductive databases), constraint program-
ming (e.g., scheduling), and many-valued logics (e.g., natural language pro-
cessing). In addition, some problems usually denoted in classical clause logic
can be formulated in a better or simply in a different way using signed logic:
this comes from the disjunctive interpretation of signs that allows for a com-
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pact representation of certain finite-domain first-order properties; and there are
additional dimensions along which one can calibrate, namely, the number and
ordering of truth values as well as the form of the signs. Thisclaim is supported
by first experiments with combinatorial optimisation problems [6]. At the same
time, computational complexity of signed logic is mostly comparable to clas-
sical logic (see Section 7.). Altogether, signed logic constitutes an interesting
trade-off between expressivity and complexity.

The central r̂ole of signed CNF justifies a detailed study of its subclasses,
including algorithms for and complexities of associated SAT problems. In
contrast to surveys of ALP [21] and MVL [16, 19], the present chapter consti-
tutes a more fine-grained study into signed formulas within the framework of
propositional logic and conjunctive normal form. Althoughsome of the results
described here are not yet formally published, the following has the character of
a survey, because, given the limited space, we decided to trade in formal proofs
for examples and explanations. The reader is invited to consult the technical
references given throughout.

In the following section, syntax and semantics of signed CNFare defined
formally. Of the remaining sections each captures a specificline of research.
Sections 3. and 4. discuss signed versions of some main proponents of clas-
sical deduction systems including non-trivial refinementshaving no classical
counterpart. Section 5. focuses on incomplete local searchmethods for sat-
isfiability checking of signed formulas. In Section 6. we look into the phase
transition phenomena well-known from classical satisfiability testing (and other
NP-complete problems) and investigate the influence of the cardinality of N
on the crossover point. Finally, in Section 7., results proven so far on the com-
plexity of checking satisfiability of formulas in signed CNF(signed SAT) and
its subclasses are collected.

2. PRELIMINARIES

2.1 SYNTAX

We assume that a signature, i.e., a denumerable set of propositional variables
is given. To form signed literals, the propositional variables (atoms) are adorned
with a sign that consists of a finite set of (truth) values.

Definition 1 A truth value setN is a finite set{i1, i2, . . . , in} wheren ∈ N.
The cardinality ofN is denoted by|N |. A partial order≤ is associated withN ,
which may be the empty order.

Definition 2 A sign is a setS ⊆ N of truth values. Asigned literalis of the
formS : p whereS is a sign andp is a propositional variable. Thecomplement
of a signed literalS : p, denoted byS : p, is (N \ S) : p.
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Figure 1.1 A partially ordered truth value set, see Example 5.

A signed clauseis a finite set of signed literals. A signed clause containing
exactly one literal is called asigned unit clause; and a signed clause containing
exactly two literals is called asigned binary clause. The empty signed clause
is denoted by2.

Asigned CNF formulais a finite set of signed clauses. A signed CNF formula
whose clauses are binary is called asigned 2-CNF formula.

The clauses of a signed CNF formula are implicitly conjunctively con-
nected; and the literals in a signed clause are implicitly disjunctively con-
nected. In the following we useS1 : p1 ∨ · · · ∨ Sk : pk to represent a signed
clause{S1 : p1, . . . , Sk : pk}.

Definition 3 Thelengthof a signed clauseC, denoted by|C|, is its cardinality.
The length of a signed formulaΓ, denoted by|Γ|, is the sum of the lengths of
its signed clauses.

Definition 4 For all i ∈ N , let ↑ i denote the sign{j ∈ N | j ≥ i} and let↓ i

denote the sign{j ∈ N | j ≤ i}where≤ is the partial order associated withN .
A signS is regularif it is identical to↑ i or to ↓ i for somei ∈ N .

A signed literalS : p is a regular literalif (a) its signS is regular or (b) its
signS = S′ is the complement of a regular signS′.

A signed clause (a signed CNF formula) is aregular clause(a regular CNF
formula) if all its literals are regular.

Example 5 Let the truth value setN = {1, 2, 3, 4} be ordered as shown in
Figure 1.1, i.e., we use the standard order on natural numbers except that
1 and 2 are incomparable. Then the signs↑ 1 = {1, 3, 4} and ↓ 1 = {1} are
regular; and↑ 1 = {2} and↑ 3 = {1, 2} are complements of regular signs. The
signs{3} and{1, 4} are neither regular nor complements of regular signs.

The complement↑ 3 of the regular sign↑ 3 is not regular as it cannot be
represented as↑ i or ↓ i for anyi ∈ N . Thus, a regular literal can have a sign
that is not regular (but is thecomplementof a regular sign only).

Whenever the (partial) order on the truth value set is not empty, polarities
can be assigned to signed literals in a meaningful way, whichgives rise to a
generalised notion of Horn clauses.



The SAT Problem of Signed CNF Formulas 5

Definition 6 A regular signS is of positive(resp.negative) polarity if it is of
the form↑ i (resp.↓ i) for somei ∈ N . A regular literal is ofpositive(negative)
polarity if its sign is of positive (negative) polarity.

A regular clause is aregular Horn clauseif it contains at most one literal of
positive polarity and the signs of all its other literals arecomplements of signs
with positive polarity. A regular CNF formula is aregular Horn formulaif all
its clauses are regular Horn clauses.

Our notion of regular Horn formula coincides with that of a propositional
annotated logic program[21].

Example 7 Using the truth value setN and the associated ordering from the
previous example, the clauses (1)↑ 1 : p, (2) ↑ 2 : p ∨ ↑ 3 : q, and (3)↑ 4 : q are
Horn clauses. The regular clause↑ 1 : p ∨ ↑ 2 : q is not a Horn clause as it
contains more than one literal of positive polarity. Since↓ 1 = ↑ 2 but↓ 4 6= ↑ i

for all i ∈ N , the clause↓ 1 : p is Horn whereas↓ 4 : p isnotHorn (both clauses
are regular).

Definition 8 A literal S : p is monosignedif its sign S = {i} is a singleton.
A signed clause (a signed CNF formula) ismonosignedif all its literals are
monosigned.

Classical two-valued CNF formulas are a special case of monosigned CNF
formulas (using a truth value setN with two elements). Monosigned CNF
formulas are (trivially) regular w.r.t. the empty ordering.

2.2 SEMANTICS

Definition 9 An interpretationis a mapping that assigns to every propositional
variable an element of the truth value set.

An interpretationI satisfiesa signed literalS : p iff I(p) ∈ S. It satisfies
a signed clauseC iff it satisfies at least one of the signed literals inC; and it
satisfiesa signed CNF formulaΓ iff it satisfies all clauses inΓ.

A signed CNF formula (a signed clause) issatisfiableiff it is satisfied by at
least one interpretation; otherwise it isunsatisfiable.

Two signed CNF formulas (signed clauses) areequivalentif they are satisfied
by the same interpretations. They aresatisfiability equivalentiff they are either
both satisfiable or both unsatisfiable.

By definition, the empty signed clause is unsatisfiable and the empty signed
CNF formula is satisfiable.

As in classical logic, a Horn formulaC = ↑ i1 : p1 ∨ · · · ∨ ↑ ik : pk ∨ ↑ j : q
is equivalent to the implication↑ i1 : p1 ∧ · · · ∧ ↑ ik : pk → ↑ j : q, i.e., an in-
terpretationI satisfiesC iff it does not satisfy one of↑ i1 : p1, . . . , ↑ ik : pk or
it satisfies↑ j : q.
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Proposition 10 For all propositional variablespandall signsS1 , . . . , Sk ⊆ N

(k ∈ N), the signed clauses

S1 : p ∨ · · · ∨ Sk : p ∨ D and (S1 ∪ · · · ∪ Sk) : p ∨ D

are equivalent.

The simplification expressed in Proposition 10 is often but not always useful,
as its application changes the structure of signs and can, for example, destroy
the regularity of a clause.

2.3 CLAUSE FORM TRANSLATION

One of the prominent features of signed CNF formulas is that any formula
of any finite-valued logic can be translated in polynomial time into a satis-
fiability equivalentsignedCNF formula (the transformation is structure pre-
serving [17]); thus, the SAT problem of a finite-valued logicis polynomially
reducible to the signed SAT problem.

In addition, every signed CNF formula can be translated in polynomial time
into a satisfiability equivalentregular CNF formula with an arbitrary total or-
der onN by the following simple trick: a signed clause containing literals of
the formS : p is first transformed into a monosigned clause by replacingS : p

with
∨

i∈S {i} : p (using Proposition 10). Then all monosigned literal occur-
rences are eliminated by replacing a clauseC = {i} : p ∨ D with three clauses
C1 = ↑ i : p ∨ S : q, C2 = ↓ i : p ∨ S : q, andC3 = D ∨ S : q, whereq is a new
propositional variable not occurring anywhere else andS is an arbitrary regu-
lar sign (soundness of this transformation is a direct consequence of rule (1.1)
below).

A direct polynomial time translation into satisfiability equivalent regular
CNF formulas was given by Sofronie-Stokkermans [32] for thecase that the
set of truth values and its associated order form a distributive lattice; it exploits
properties of distributive lattices and often produces much less clauses than the
general method outlined above.

3. RESOLUTION

In this section we review in a uniform way resolution style calculi for signed
CNF formulas and their subclasses that appeared in the literature [15, 17, 18,
28, 29, 25, 32, 33, 3]. The perhaps most straightforward, refutation complete
version is formed by the rules below [28].

S1 :p ∨ D1 S2 :p ∨ D2

(S1 ∩ S2) :p ∨ D1 ∨ D2

signed binary resolution

∅ :p ∨ D

D

simplification

(1.1)
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Note that, unlike classical resolution, the literal resolved upon does not nec-
essarily vanish and a so-calledresidueremains. The following parallel resolu-
tion rule [15, 28] avoids building residues. Both versions (1.1) and (1.2) were
originally thought to require themerging ruleembodied in Proposition 10 for
completeness; however, one can show that it is not necessary[18].

S1 :p ∨ D1 · · · Sm :p ∨ Dm

D1 ∨ · · · ∨ Dm

if S1 ∩ · · · ∩ Sm = ∅

signed parallel resolution
(1.2)

In the case of monosigned and regular CNF formulas over a totally ordered
truth value set, completeness of signed binary resolution is preserved if rule
applications generating a residue are not allowed; hence (1.1) can be simplified:

S1 :p ∨ D1 S2 :p ∨ D2

D1 ∨ D2

if S1 ∩ S2 = ∅

monosigned/regular binary resolution
(1.3)

Completeness of binary resolution, as well as of ordered resolutionandhyper-
resolution, for monosigned CNF formulas is proved by Baaz and Ferm̈uller [1].
If N is totally ordered, one obtains the hyperresolution-like refinements (1.4)
and (1.5) of regular binary resolution by combining severalapplications of rule
(1.3) into one [17, 18].

↑ i1 : p ∨ D1 · · · ↑ im : p ∨ Dm ↓ j : p ∨ D

D1 ∨ · · · ∨ Dm ∨ D
if (max1≤k≤m ik) > j

regular resolution
(1.4)

Using themaximalik in the rule above is not strictly necessary: admitting
any ik > j yields a sound rule, but may lead to longer proofs. For regular
formulas, (1.4) withm = 1 is the same as (1.3).

Example 11 Let the truth value set beN = {1, 2, 3} (with the natural order),
and letΓ be the following regular CNF formula:

{↓ 1 : p1 ∨ ↓ 2 : p2, ↑ 2 : p1 ∨ ↓ 1 : p2, ↓ 1 : p1 ∨ ↑ 3 : p3,

↑ 3 : p2 ∨ ↑ 2 : p3, ↑ 3 : p2 ∨ ↓ 1 : p3}

The last three clauses resolve to↓ 1 : p1 ∨ ↑ 3 : p2 by rule (1.4), which in turn
resolves to↓ 1 : p1 with the first clause (by either rule (1.4) or (1.3)). From
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there, one obtains↓ 1 : p2 with the second clause. In three more steps the empty
clause can be derived.

↓ i1 : p1 ∨ D1 · · · ↓ im : pm ∨ Dm ↑ j1 : p1 ∨ · · · ∨ ↑ jm : pm ∨ E

D1 ∨ · · · ∨ Dm ∨ E

providedm ≥ 1, il < jl for all 1 ≤ l ≤ m,

D1, . . . ,Dm, E contain only negative literals

regular negative hyperresolution
(1.5)

Sofronie-Stokkermans [32, 33] proved that, when clauses only contain pos-
itive regular literals or their complements andN is a distributive lattice, an
analogue of rule (1.5) is complete where all negative literals of the form↓ i : p

are replaced with complements of positive literals, i.e., literals of the form↑ i:p.
WhenN is a lattice, the following calculus is complete [3]:

↑ i : p ∨ D1

↑ j : p ∨ D2

D1 ∨ D2

if i ≥ j

lattice-regular binary resolution

↑ i : p ∨ D1

↑ j : p ∨ D2

↑ (i ⊔ j) : p ∨ D1 ∨ D2

if neither i ≥ j nor j ≥ i

lattice-regular reduction

(1.6)

Note that, whenN is totally ordered, the left rule of (1.6) is the same as (1.3)
for regular formulas.

Refinements of regular binary resolution being complete forregular Horn
formulas over a totally ordered truth value set are regular unit resolution [17]
(this corresponds to the caseD1 = 2 in rule (1.3)) and regular positive unit
resolution [25] (where, in addition, the unit input clause must be a positive
literal). Recently, we proved [3] that the rules below are complete for regular
Horn formulas in caseN forms an upper semi-lattice.

↑ i : p

↑ j : p ∨ C

C

if i ≥ j

lattice-regular positive unit resolution

↑ i : p

↑ j : p

↑ (i ⊔ j) : p

if neither i ≥ j nor j ≥ i

lattice-regular reduction

(1.7)
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Example 12 Using the upper semi-lattice ordering and regular Horn clauses
from Example 7, one may derive↑ 2 : p from clauses (2) and (3) by lattice-
regular positive unit resolution. The resolvent together with clause (1) gives
↑ 3 : p by lattice-regular reduction.

Recall that lattice-based regular Horn formulas are propositional annotated
logic programs. As a consequence, the various SLD-style resolution procedures
developed for ALP [21, 23, 22] can be used as well. Note, however, that SLD
resolution is optimised for first-order logic and is not veryefficient on the
propositional level.

We close this section with a brief remark on the techniques one can employ
to prove completeness of the mentioned resolution calculi.It turns out that
semantic tree arguments retain much of their clarity. The most straightforward
approach is to use|N |-ary semantic trees [17]. Just as in classical resolu-
tion theory, more complex refinements are often better handled by inductive
construction of a proof, where the number of atoms or atom occurrences in a
formula supplies the induction parameter [18].

4. DAVIS-PUTNAM-LOVELAND PROCEDURES

In classical logic, among the most competitive propositional satisfiability
solvers are variants of the Davis-Putnam-Loveland procedure (DPL) [9]. In
this section we describe the extensions of DPL that have beenproposed for
signed and regular CNF formulas. They are complete proof procedures for
testing the satisfiability of this kind of formulas and seem to be good candidates
to implement signed satisfiability solvers.

4.1 THE SIGNED DPL PROCEDURE

The signed DPL procedure (Signed-DPL) is based on the following rules:

Signed one-literal rule:Given a signed CNF formulaΓ that contains a signed
unit clause{S : p},

1. remove all clauses containing a literalS′ : p such thatS ⊆ S′;
2. delete all occurrences of literalsS′′ : p such thatS ∩ S′′ = ∅;
3. replace all occurrences of literalsS′′′ : p with (S′′′ ∩ S) : p.

Signed branching rule:Reduce the problem of determining whether a signed
CNF formulaΓ (that contains the propositional variablep) is satisfi-
able to the problem of determining whether there is ani ∈ N such that
Γ ∪ {{i} : p} is satisfiable.

Definition 13 Given a signed CNF formulaΓ that contains a unit clause{S :p},
let simplify(Γ, S : p) denote the result of applying the signed one-literal rule
to Γ using the unit clause{S : p}.
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procedure Signed-DPL
Input: a signed CNF formulaΓ and a truth value setN = {i1, . . . , in}
Output: “satisfiable” or “unsatisfiable”

begin

/* signed one-literal rule */
while Γ contains a unit clause{S : p} do

Γ := simplify(Γ, S : p)
od;
if Γ = ∅ then return “satisfiable”fi;
if 2 ∈ Γ then return “unsatisfiable”fi;

/* signed branching rule */
let p be a propositional variable occurring inΓ;
for j = 1 to n do

if Signed-DPL(Γ ∪ {ij : p}) = “satisfiable”then
return “satisfiable”fi

od;
return “unsatisfiable”
end

Figure 1.2 The Signed Davis-Putnam-Loveland procedure (Signed-DPL).

The Signed-DPL procedure is shown in Figure 1.2. It first repeatedly applies
the signed one-literal rule. Once the formula cannot be further simplified, it
then applies the branching rule and recursively tries to solve each of|N | sub-
problems. As these sub-problems by construction contain a signed unit clause,
the signed one-literal rule can be applied again. The procedure terminates when
either a satisfiable sub-problem is found or all sub-problems have been shown
to be unsatisfiable.

Intuitively, Signed-DPL constructs a proof tree using a depth-first strategy.
The root node of that tree is labelled with the input formula;the other nodes
are labelled with the formulas that result from a single application of the signed
one-literal or the signed branching rule to the formula of their parent node. If
all the leaves of the tree contain the signed empty clause, the input formula is
unsatisfiable; otherwise, if at least one leaf is labelled with the empty signed
CNF formula, the input formula is satisfiable.
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Γ

Γ ∪ {{1} : p1}

{ {1, 2} : p2,

{1} : p2 ∨ {2, 3} : p3,

{3} : p2 ∨ {1} : p3,

{3} : p2 ∨ {2, 3} : p3 }

{1} : p1

{ {1} : p2 ∨ {2, 3} : p3,

{1} : p3,

{2, 3} : p3 }

{1, 2} : p2

{2, . . . }

{1} : p3

Γ ∪ {{2} : p1}

{ {1, 2} : p2,

{3} : p2,

{3} : p2 ∨ {1} : p3,

{3} : p2 ∨ {2, 3} : p3 }

{2} : p1

{2, . . . }

{1, 2} : p2

Γ ∪ {{3} : p1}

{ {1, 2} : p2,

{3} : p2 ∨ {1} : p3,

{3} : p2 ∨ {2, 3} : p3 }

{3} : p1

{ {1} : p3,

{2, 3} : p3 }

{1, 2} : p2

{2}

{1} : p3

Figure 1.3 A proof tree created by Signed-DPL.

Example 14 Let the truth value set beN = {1, 2, 3} with an arbitrary order;
and let the signed CNF formulaΓ consist of the following six clauses:

{3} : p1 ∨ {1, 2} : p2 {2, 3} : p1 ∨ {1} : p2 ∨ {2, 3} : p3

{1, 3} : p1 ∨ {3} : p2 {2} : p1 ∨ {1, 2} : p2

{3} : p2 ∨ {1} : p3 {3} : p2 ∨ {2, 3} : p3

Figure 1.3 shows the proof tree created by Signed-DPL for input Γ. Edges
corresponding to an application of the signed one-literal rule are labelled with
the literal that is used for simplification.

4.2 AN IMPROVED BRANCHING RULE
FOR SIGNED-DPL

An application of the branching rule of Signed-DPL from the previous sec-
tion always creates|N | new sub-branches. In this section, we present an im-
proved branching rule for Signed-DPL that in many cases creates less sub-
branches [25].

Definition 15 Let Γ be a signed CNF formula, and letp be a propositional
variable occurring inΓ. Then, the setNp

Γ
⊆ N consists of those truth values

that appear inΓ in literals of the formS : p.
Truth valuesi, j ∈ N

p
Γ

are equivalent, denoted byi ≈p j, if, for all literals
of the formS : p in Γ, i ∈ S iff j ∈ S.
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The partial order�
p

on equivalence classes ofN
p
Γ

w.r.t. ≈p is defined by:
i �

p
j if, for all literals of the formS : p in Γ, i ⊆ S impliesj ⊆ S.

The elements of maximal classes w.r.t.�
p

are calledmaximal truth values
of p in Γ. A setM = {i1, . . . , im} ⊆ N is called amaximal truth value set
of p in Γ if it contains one element of each of the classes{i1, . . . , im} that are
maximal w.r.t.�

p
.

It can happen that some truth valuesi, j ∈ N occur in a formulaΓ exactly in
the same signs of literals of the formS :p, i.e.,i ≈p j where≈p is the equivalence
relation from Definition 15. In that case, it suffices that thebranching rule
considers only one of the truth valuesi andj.

In addition, if the truth values of the equivalence classj occur (among other
signs) in all signs in which the truth values of the equivalence classi occur,
i.e., if i �

p
j, then the truth values ini can be ignored by the branching rule

of Signed-DPL. This simplification is justified because, if an interpretationI
satisfiesΓ andI(p) ∈ i, thenΓ is as well satisfied by every interpretationI ′ that
assigns a truth value fromj to p and is identical toI for the other propositional
variables. Consequently, it is sufficient if the branching rule of Signed-DPL
considers only the elements of a maximal truth value set.

Example 16 Let the set of truth values beN = {1, 2, . . . , 7}, and let

{2, 7} : p ∨ D1 {1, 3, 6} : p ∨ D2 {1, 3, 4} : p ∨ D3

{1, 2, 3, 7} : p ∨ D4 {2, 5, 7} : p ∨ D5

be the clauses in the signed CNF formulaΓ in which literals of the formS : p

occur. Then, the equivalence classes ofN
p
Γ

w.r.t. ≈p are {2, 7}, {1, 3}, {4},
{5}, and {6}. The maximal elements w.r.t. the order relation�

p
are {2, 7}

and{1, 3}, because{4} �
p
{1, 3}, {5} �

p
{2, 7}, and{6} �

p
{1, 3}. A max-

imal truth value set ofp in Γ is {2, 3}.

Proposition 17 LetΓ be a signed CNF formula, letp be a propositional vari-
able occurring inΓ, and let{i1, . . . , im} be a maximal truth value set ofp
in Γ. Then,Γ is satisfiable iff there is ak ∈ {1, . . . ,m} such thatΓ ∪ {ik : p}
is satisfiable.

The branching rule of Proposition 17 can reduce the size of a Signed-DPL
proof tree considerably. Consider, for example, the formulaΓ from Example 14;
{2, 3} is a maximal truth value set ofp1 in Γ. Therefore, the leftmost branch
of the proof tree forΓ shown in Figure 1.3 is actually redundant and is not
constructed if the improved branching rule from Proposition 17 is used. When
the branching rule is applied to the formula from Example 16,the number of
new sub-branches is reduced from seven to two.
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4.3 THE REGULAR DPL PROCEDURE

Signed-DPL is, of course, suitable for the (sub-)class ofregular CNF formu-
las as well. However, there are some refinements and special techniques that
can be applied. In this section we describe the regular Davis-Putnam-Loveland
procedure (Regular-DPL) defined by Hähnle [18] for regular CNF formulas
over a totally ordered truth value set. Regular-DPL was the first many-valued
DPL-style procedure published and inspired some of the workreported in this
survey.

The regular one-literal rule consists of only the first two parts of the signed
one-literal rule from Section 4.1, which preserve regularity of the formula; the
third part is not needed. The regular branching rule reducesthe problem of
checking whether a regular CNF formulaΓ is satisfiable to the problem of
checking whether one of the formulasΓ ∪ {S : p} andΓ ∪ {S : p} is satisfiable
whereS : p is a regular literal occurring inΓ. The branching factor is at most
two when theregular branching rule is applied, but not all literals containingp

are necessarily removed. In contrast to that, thesignedbranching rule removes
all occurrences ofp, but the branching factor can be as large as the cardinality
of the truth value set.

Example 18 Figure 1.4 shows the proof tree constructed by Regular-DPL for
the regular CNF formulaΓ from Example 11. As in Figure 1.3, edges corre-
sponding to an application of the one-literal rule are labelled with the literal
that is used for simplification.

The performance of Regular-DPL depends (I) on the data structures used to
represent formulas and (II) on the heuristic for selecting the next literal to which
the branching rule is applied. Manyà et al. [26] describe an implementation of
Regular-DPL that uses suitable data structures and incorporates the regular two-
sided Jeroslow-Wang heuristic defined by Hähnle [18]. It is the only DPL-style
procedure implemented so far in the framework of signed CNF formulas.

5. LOCAL SEARCH ALGORITHMS

Local search algorithms (LSAs) outperform deductive decision procedures
for checking satisfiability of CNF formulas on some problem classes. In partic-
ular, this holds for satisfiable hard random 3-SAT instances, which the fastest
implementations of DPL cannot solve within a reasonable time limit [30]. In
this section, we describe the first LSA that deals with signedCNF formulas and
we report some experimental results.

Regular-GSAT [4], an extension of GSAT [31] whose pseudo-code is shown
in Figure 1.5, tries to find a satisfying interpretation for aregular CNF formulaΓ
(with a total order on truth values) performing a greedy local search through the
space of interpretations. It starts with a randomly generated interpretationI. If
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Γ

Γ ∪ {↓ 1 : p1}

{ ↓ 1 : p2,

↑ 3 : p2 ∨ ↑ 2 : p3,

↑ 3 : p2 ∨ ↓ 1 : p3 }

↓ 1 : p1

{ ↑ 2 : p3,

↓ 1 : p3 }

↓ 1 : p2

{2}

↑ 2 : p3

Γ ∪ {↑ 2 : p1}

{ ↓ 2 : p2,

↑ 3 : p3,

↑ 3 : p2 ∨ ↑ 2 : p3,

↑ 3 : p2 ∨ ↓ 1 : p3 }

↑ 2 : p1

{ ↑ 3 : p3,

↑ 2 : p3,

↓ 1 : p3 }

↓ 2 : p2

{2}

↑ 3 : p3

Figure 1.4 A proof tree created by Regular-DPL.

Table 1.1 Comparison of running times for Regular-GSAT and Regular-DPL.

Regular-GSAT Regular-DPL
V C MaxTries MaxChanges time (secs.) time (secs.)

µ σ µ σ

80 487 100 1000 0.68 0.63 1.10 0.85
120 720 200 2800 6.35 5.33 19.45 16.47
160 972 260 6200 25.98 21.48 290.16 325.40
200 1230 400 12000 99.97 88.49 3242.58 3000.16

I does not satisfyΓ, then it creates a setS, formed by those variable-value pairs
(p, k) that give rise to a maximal decrease (possibly zero or negative) in the total
number of unsatisfied clauses ofΓ when the truth value ofI atp is changed tok.
Next, a propositional variablep′ appearing inS is randomly chosen. Then a
truth valuek′ from {k | (p′, k) ∈ S} is randomly chosen. Finally,I is updated
to k′ at p′. Such changes are repeated until either a satisfying interpretation is
found or a pre-set maximum number of changes (MaxChanges) isreached. The
whole process is repeated up to MaxTries times, if no satisfying interpretation
is found before.
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procedure Regular-GSAT
Input: a regular CNF formulaΓ, MaxChanges, and MaxTries
Output: either a model ofΓ, or “no satisfying interpretation found”

begin

for i = 1 to MaxTriesdo
I := a randomly generated interpretation forΓ;
for j = 1 to MaxChangesdo
if I satisfiesΓ then return I fi;
S := {(p, k) | decrease in number of unsatisfied clauses ofΓ

maximal, whenI changed tok atp};
select randomlyp′ ∈ {p | (p, k) ∈ S};
select randomlyk′ ∈ {k | (p′, k) ∈ S};
I(p′) := k′

od

od;
return “no satisfying interpretation found”
end

Figure 1.5 The procedure Regular-GSAT.

Table 1.1 summarises an experiment performed in order to compare the per-
formance of Regular-DPL and Regular-GSAT on satisfiable random regular
(signed) 3-SAT instances of the hard region of the phase transition (see Sec-
tion 6.) with a different number of propositional variablesand |N | = 3 [4].
Both procedures were applied to 100 satisfiable instances with 80, 120, 160
and 200 propositional variables. In order to obtain more accurate results, each
instance was run 50 times with Regular-GSAT. The first columncontains the
numberV of propositional variables and the second the numberC of clauses of
the instances tested. The remaining columns display the settings of MaxTries
and MaxChanges employed, the averageµ and the standard deviationσ of the
time needed to solve the sets of instances considered. The run time of each
instance solved with Regular-DPL corresponds to the time needed to solve that
instance, whereas the run time of each instance solved with Regular-GSAT is
the average run time over the 50 runs on that instance.

It is clear that local search algorithms for solving regularSAT problems scale
better than Regular-DPL when the number of variables in the problem instances
increases. This result suggests that local search algorithms, just as their classical
counterparts, are good candidates for solving difficult satisfiable problems. First
experiments with scheduling problems support this conjecture [6].

Local search algorithms are incomplete and cannot prove unsatisfiability.
Recently, some impressive results were obtained by combining deterministic
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andcomplete satisfiability procedures (such as DPL) with randomisation to cope
with the so-called “heavy-tailed” distribution phenomenon [14]. We expect this
to generalise to signed logic as well.

6. PHASE TRANSITIONS

The phase transition phenomenon for the 3-SAT problem consists of two
observations: (I) There is a sharp increase (phase transition) of the percentage
of unsatisfiable random 3-SAT instances around a certain point when the ratioC

V

between the numberC of clauses and the numberV of variables is varied (at
lower ratios, most instances are under-constrained and thus satisfiable, at higher
ratios, most instances are over-constrained and thus unsatisfiable). (II) There
is an easy-hard-easy pattern in the computational difficulty of solving problem
instances asC

V
is varied; the hard instances tend to be found near the crossover

point.
Phase transitions occur, among other NP-hard problems, in classical [27]

and random regular 3-SAT problems [26]. In the present context, our interest
in them is twofold: (i) The hard instances described below provide a first
testbed to evaluate and compare satisfiability solvers for signed CNF formulas,
and (ii) with an eye on knowledge representation with signedCNF formulas, it
would be valuable to know what impact the cardinality ofN has on the crossover
point.

Before we describe the phase transition phenomena in the signed case, we
explain how random regular 3-SAT instances are generated. Given a fixed
numberC of clauses, a numberV of propositional variables, and a totally
ordered truth value setN , for one problem instanceC non-tautological regular
clauses are generated. Each regular clause is produced by uniformly choosing
three literals with different propositional variables from the set of possible
regular literals.

Manyà et al. [26] report on experiments performed on random regular 3-SAT
instances with Regular-DPL (see Section 4.3). They observed both aspects
(I) and (II) of phase transition. Figure 1.6 visualises thisfor the random regular
3-SAT problem, where|N | = 7 andV = 60. Along the vertical axis is the
average number of nodes in the proof tree needed to solve a problem instance
with Regular-DPL. Along the horizontal axis is the ratioC

V
in the test problems.

One observes clearly the easy-hard-easy pattern asC
V

is varied. The dashed line
indicates the percentage of instances found to be satisfiable (the 100 % mark is
scaled to the maximum of the curve indicating hardness of problems).

Recent experiments indicate that the location of the crossover point increases
logarithmically as a function of the cardinality of the truth value set [5]. Ta-
ble 1.2 shows the location of the crossover point for different cardinalities ofN .
The following equation was derived from the experimental crossover points by
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Figure 1.6 Phase transition in the random regular 3-SAT problem.

Table 1.2 Location of the crossover point for different cardinalities ofN .

|N | crossover point |N | crossover point |N | crossover point

2 4.25 10 9.08 30 10.16
3 6.08 15 9.50 40 10.33
4 7.08 20 9.75 50 10.41
5 7.75 25 10.00 60 10.50

using the Levenberg-Marquardt method for obtaining a non-linear regression
model [5]:

L
(

|N |
)

= 6.30544 ln0.391434
(

|N |
)

7. COMPLEXITY OF THE SIGNED SAT PROBLEM

7.1 OVERVIEW

It is well-known that the classical SAT problem is NP-complete [8]. It is,
however, polynomially solvable under certain restrictions. For example, there
are linear-time algorithms for solving the classical SAT problem in case all
clauses of the formula have at most one positive literal (Horn SAT) [10] and in
case all clauses of the formula have at most two literals (2-SAT) [13].

Similar to the classical case, thesignedSAT problem is NP-complete, but
some of its sub-classes are polynomially solvable. In recent years, complexity
results for the signed 2-SAT and signed Horn SAT problems have been estab-
lished. These problems have the truth value setN (resp.(N,≥)) as a second
input parameter (besides the formulaΓ to be tested for satisfiability). Thus,
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Table 1.3 Known complexity results for signed SAT problems.

SAT 2-SAT Horn SAT

classical NP-compl. linear [13] linear [10]

mono-signed NP-compl. linear [24] —

regular,N totally ord. NP-compl. polynomial [25] |Γ| log |Γ| [18, 25]

regular,N a distr. lattice,
signs of form↑ i and↑ i NP-compl. NP-compl. [2] |Γ||N |2 [33]

regular,N a lattice,
signs of form↑ i and↑ i NP-compl. NP-compl. polynomial [3]

regular,N a lattice,
signs of form↑ i and↓ i NP-compl. polynomial [2] —

regular (arbitrary) NP-compl. NP-compl. —

signed (arbitrary) NP-compl. NP-compl. [25, 3] —

signed SATis the problem of deciding for an arbitrary formulaΓ over an arbi-
trary truth value setN , whether there is an interpretation overN satisfyingΓ.
One also considers decision problems whereN is not an input parameter but
fixed, which is denoted by attaching the fixed truth value setN as an index to
the name of the decision problem. For example, given a fixed truth value setN ,
signed SATN is the problem of deciding for an arbitrary formulaΓ over N

whether there is an interpretation overN satisfyingΓ.
NP-containment of the most general problem, signed SAT, is straightforward

to show. The classical SAT problem is trivially reducible tosigned SAT{0,1};
therefore, the latter and signed SAT are both NP-complete. Further results are
summarised in Table 1.3 and are discussed in Sections 7.2 and7.3 below.

7.2 THE SIGNED 2-SAT PROBLEM

The signed 2-SATN problem for|N | ≥ 3 and, therefore, the signed 2-SAT
problem was proven to be NP-complete by Manyà [25] (as compared to the
classical 2-SAT problem that canbe solved in linear time); analternative proof of
NP-hardness of signed 2-SAT was later given by Beckert et al.[3]. Manyà [25]
reduces the 3-colourability problem of graphs to signed 2-SATN to show its
NP-hardness, whereas the NP-hard problem Beckert et al. [3]reduce to signed
2-SAT is classical SAT.

The regular 2-SAT problem is NP-complete as well; this can be shown by
reducing the (general) signed 2-SAT problem to regular 2-SAT [2]. Under
certain restrictions, however, satisfiability of regular 2-CNF formulas can be
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checked in polynomial time. This problem was first considered by Manỳa [25]
with the additional assumption thatN is a totally ordered set. In that case, a
refinement of Regular-DPL yields a quadratic-time procedure. A generalisation
of this result was proved by Beckert et al. [2]: IfN is a lattice and all occurring
signs are of the form↑ i or the form↓ i, then regular 2-SAT is polynomially
solvable.

A further special case of the regular 2-SAT problem that can be solved in
polynomial time is the monosigned 2-SAT problem. By examining the rules of
monosigned binary resolution one can check that the number of possible resol-
vents for a given monosigned 2-CNF formula is polynomial in the number of
distinct literals it contains. A quadratic-time procedurefor solving monosigned
2-SAT was described by Manyà [25]. He later refined the result by showing
that monosigned 2-SAT is solvable in time linear in the length of the formula
using a reduction to classical 2-SAT [24].

7.3 THE REGULAR HORN SAT PROBLEM

A Horn fragment is naturally defined if (and only if) the truthvalue setN is
totally ordered or at least a finite lattice.

If N is totally ordered, the problem of deciding whether a regular Horn
formulaΓ is satisfiable can be solved in time linear inn = |Γ| in case|N | is
fixed, and in time linear inn log n otherwise [18]. Algorithms with the same
complexity were described in [25]. An algorithm for a particular subclass of
regular Horn formulas appeared before [11]; related results can be found in a
paper by Escalada-Imaz and Manyà [12].

If N is a finite lattice, regular Horn SAT is solvable in time linear in the
length of the formula and polynomial in the cardinality ofN via a reduction to
the classical Horn SAT problem [3]. For distributive lattices, the more precise
boundn · |N |2 was found independently [33], which contains also some results
on decidable first-order fragments of regular CNF formulas.

A closer inspection of the proofs in the cited papers yields immediately that
all defined regular Horn SATN problems have linear complexity.
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