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Abstract. To enable scalability and address the needs of real-world
software, deductive verification relies on modularization of the target
program and decomposition of its requirement specification. In this paper,
we present an approach that, given a Java program and a partial require-
ment specification written using the Java Modeling Language, constructs
a semantic slice. In the slice, the parts of the program irrelevant w.r.t.
the partial requirements are replaced by an abstraction. The core idea
of our approach is to use bounded program verification techniques to
guide the construction of these slices. Our approach not only lessens the
burden of writing auxiliary specifications (such as loop invariants) but
also reduces the number of proof steps needed for verification.

1 Introduction

Motivation. The power of deductive program verification has increased con-
siderably over the last decades. To enable scalability and address the needs of
real-world software, deductive verification relies on modularization of the target
program. This requires annotating sub-procedures with formal auxiliary specifi-
cations (method contracts, loop invariants, etc.). To discover useful specifications
that are fulfilled by the annotated sub-procedure and also meet the require-
ments of the calling procedures is, unfortunately, a difficult and error-prone effort
(cf. [6, Chap. 5]). To ease the burden, verification engineers routinely break a
complex requirement specification into conjunctions of partial specifications, i.e.,
they decompose not only the implementation but also the specification. Then,
usually, only parts of the implementation are relevant for proving a partial prop-
erty, and only partial and less complex auxiliary specifications are needed. To
make use of that advantage, the verification engineer needs to identify the slice
of the implementation relevant to the partial property. The main contribution of
this paper is an automated method for computing such program slices defined by
partial specifications.

Our approach. Given a Java program and a partial requirement specification,
written using the Java Modeling Language (JML) [22], we construct a semantic



slice (an abstract program). In the slice, the program parts that are irrelevant
to the partial requirements are replaced by an abstraction (i.e., they are not
completely removed), whereas the rest of the program (i.e., the relevant parts)
remains unchanged. (In the rest of the paper we use the terms semantic slice
and abstract program interchangeably.) As said above, verifying slices requires
fewer auxiliary specifications (as the abstractions have less details), and their
correctness—by their construction—implies the correctness of the original pro-
gram w.r.t. the partial specification under consideration. As a result, our method
liberates the verification engineers from finding the relevant slice manually.

Figure 1 illustrates the structure of our novel approach. The core idea is
to use bounded program verification techniques to guide the construction of
slices. Bounded program verification systems (such as JForge [14], Jalloy [27],
and InspectJ [23]) do not require auxiliary specifications. They translate, based
on user-provided bounds (that, e.g., limit the number of objects or the number of
loop iterations), the analyzed program and its negated requirement specification
into a satisfiability problem—an SMT [3] formula consisting of a set of constraints,
and try to find a solution to that problem. If a solution to that satisfiability
problem is found, then that is a counterexample to the correctness of the original
program, and no further analysis is required. If no solution is found, the partial
property holds—but only w.r.t. the bounds, thus a deductive verification—an
unbounded program verification, is still needed.

Before continuing with the deductive verification we compute the slice of
the program relevant to the partial requirements. The computation is based on
the unsatisfiable core (unsat core)—a subset of constraints that is unsatisfiable,
obtained during the unsatisfiability proof for the bounded problem. Then we
minimize the unsat core to ensure that the proof requires all its elements. The
Java program statements that are related to the constraints in the unsat core
(by the construction of constraints from the Java code) are known to be relevant
for the bounded proof of the requirement specification. We generate a semantic
slice by over-approximating the behaviors of the other statements.

Finally, if the semantic slice can be verified using deductive program veri-
fication, which requires auxiliary specifications, the original program satisfies
the specification as well (by the construction of the slice). Otherwise, we use
counterexample-guided refinement to refine the abstraction and repeat the de-
ductive verification.

The semantic slice is generated based on a particular bounded proof. Therefore
it (i) may be too abstract, and thus deductive verification is not possible, and
(ii) may exclude unnecessary, yet helpful, details, hence deductive verification
may require more effort. But, as our evaluation shows, in practice the slice is
sufficiently precise.

Our approach not only lessens the burden of writing auxiliary specifications
but also eases the deductive verification: less proof steps are needed. Besides, by
the small-scope hypothesis [20], if the program does not satisfy its specification,
in many cases that will be detected during the bounded-verification phase of our
approach, avoiding unnecessary attempts at deductive verification.
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Fig. 1: Structure of our approach.

We have built a prototype tool, AbstractJ, that implements the abstraction
as well as the refinement and validity check, and we have performed several
experiments to evaluate the benefits of our approach.

2 Motivating Examples

We use two examples (Figs. 2 and 3) to demonstrate our approach. To specify the
Java modules we employ JML, a behavioral interface specification language. We
shortly explain the JML clauses used in the examples; for more details see [22]. The
specification is written between /*@ and */. The ensures clause specifies properties
that are guaranteed to hold at the end of the method call, and \result refers to
the value returned by the method. (Both clauses refer to the case that the method
terminated normally.) The diverges clause is used to specify when a method may
either loop forever or not return normally to its caller. Writing diverges true

means that non-termination is allowed for the method. The assignable clause
provides the locations that can be assigned to during the execution of the method
(frame conditions). The clause assignable \strictly_nothing denotes that the
relevant methods neither modify heap locations nor allocate objects, whereas
assignable \nothing allows object allocations; assignable \everything enables
the method both to modify any heap location and to allocate objects.

The program in Fig. 2(a) computes the number of prime numbers between
two given integers x and y (exclusive). The first line denotes that if the number
of prime numbers is larger than 0, then x < y. Carefully inspecting the code, a
verification engineer will notice that the ensures clause becomes false only when
x >= y. In that case, the outer loop (Fig. 2(a), statement 2) is never executed
and the variable size remains equal to 0. However, using traditional static
slicing techniques, all statements (Fig. 2(a), statements 1-9) will be relevant w.r.t.
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/*@ ensures \result>0==>x<y;

@ diverges true;

@ assignable \everything;*/

int numberOfPrime(int x, int y){

1 int size = 0;

2 for(int i=x; i<y; i++){

3 boolean isPrime = true;

4 for(int j=2; j<i; j++)

5 if (i%j==0){

6 isPrime=false;

7 break;

}

8 if (isPrime)

9 size++;

}

10 if(size > 0){

11 int[] a = new int[y-x];

}

12 return size;

}

(a) Original program

/*@ ensures \result>0==>x<y;

@ diverges true;

@ assignable \everything;*/

int numberOfPrime(int x, int y){

1 int size = 0;

2 for(int i=x; i<y; i++){

3 size = pure_int();

}

4 pure_allocArrayInt();

5 return size;

}

//@ assignable \strictly_nothing;

native int pure_int();

//@ assignable \nothing;

native int[] pure_intArray();

(b) Abstract program

Fig. 2: A data-structure-poor program to compute the number of prime numbers
between two integers. The empty lines in the abstract program are left deliberately
for an intuitive comparison.

the variables x, y, and size at the return statement. Thus loop invariants are
required for the two loops. Our tool generates an abstract program as shown in
Fig. 2(b) where the outer loop body (Fig. 2(a), statements 3-9) and the branch
(Fig. 2(a), statements 10-11) are abstracted. Thus, it becomes easier to write
loop invariants for outer loop and no loop invariant is needed for the inner loop.
The abstract program is proved with KeY [1] (a deductive verification system)
using 646 rules and 8 auxiliary specifications (counted as the number of JML
constructs and logical connectors), while the original program is proved using
5802 rules and 26 auxiliary specifications.

The abstract statements over-approximate the behaviors of the irrelevant
statements. The abstract statements invoke pure methods which have been
generated automatically by our tool. The identifier of each pure method refers to
the type of original statement. Each native method returns an unspecified value
of the appropriate type.

Figure 3(a) shows the second example. It provides a map data type imple-
mented using associative arrays. Keys and values are recorded in separate arrays,
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class Key {} class Value {}

class Map {

/*@ nullable */ Key[] keys;

/*@ nullable */ Value[] values;

/*@ ensures (\exists int i;0<=i&&

@ i<values.length;values[i]==v);

@ diverges true;

@ assignable \everything; */

void put(Key k, Value v){

1 int pos = getIndexOf(k);

2 if (pos>=0)

3 values[pos] = v;

else {

4 addKey(k);

5 addValue(v);

}

}

int getIndexOf(Key k){

6 int r = -1;

7 for(int i=0;i<keys.length;i++)

8 if (keys[i] == k)

9 r = i;

10 return r;

}

void addKey(Key k){

11 Key[] oldKs = keys;

12 keys = new Key[keys.length+1];

13 keys[keys.length - 1] = k;

14 for (int i=0;i<oldKs.length;i++)

15 keys[i] = oldKs[i];

}

void addValue(Value v){

16 Value[] oldVs = values;

17 values=new Value[values.length+1];

18 values[values.length - 1] = v;

19 for (int i=0;i<oldVs.length;i++)

20 values[i] = oldVs[i];

}

}

(a) Original program

class Key {} class Value {}

class Map {

/*@ nullable */ Key[] keys;

/*@ nullable */ Value[] values;

/*@ ensures (\exists int i;0<=i&&

@ i<values.length;values[i]==v);

@ diverges true;

@ assignable \everything; */

void put(Key k, Value v){

1 int pos = pure_int(k);

2 if(pure_boolean())

3 values[pos] = v;

else {

4 impure_keys(k);

5 addValue(v);

}

}

void addValue(Value v){

6 Value[] oldVs = values;

7 values=new Value[values.length+1];

8 values[values.length - 1] = v;

9 for (int i=0;i<oldVs.length;i++)

10 values[i] = pure_Value();

}

//@ assignable \strictly_nothing;

native int pure_int();

//@ assignable \strictly_nothing;

native boolean pure_boolean();

//@ assignable this.keys;

native void impure_keys();

//@ assignable \strictly_nothing;

native /*@nullable*/ Value

pure_Value();

}

(b) Abstract program

Fig. 3: A data-structure-rich program to put a key and a value to a map.

keys and values, respectively, and have the same index in the arrays. The method
put(k,v) invokes the method getIndexOf to check whether k already exists in
the map. If it exists, the old value is replaced by v; otherwise, the methods
addKey and addValue reallocate the arrays keys and values, respectively, and add
k and v to the new arrays. The ensures clause guarantees that the value v is in
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this map (the \exists quantifier). By default, referenced variables are not null,
thus the nullable clause enables also the null value. The abstract program is
shown in Fig. 3(b), where the methods getIndexOf and addKey are irrelevant
to the property of interest, thus their call sites (Fig. 3(a), statements 4, 5) are
abstracted, such that this fact is directly exposed to the verification engineers.
The abstract method put contains half of the statements of the original program,
relieving the user from the burden of writing some auxiliary specifications. The
methods getIndexOf and addKey are abstracted, thus loop invariants are not
needed for them. It is difficult to discover this fact without non-trivial efforts.
Besides, the abstraction indicates that the loop (Fig. 3(a), statements 19-20)
only modifies locations [0 ... (values.length − 2)] of the values array, whereas
the concrete behaviors to modify the other slots can be left out completely in the
loop invariants. The abstract program has been proved with KeY using 3879 rules
and 4 auxiliary specifications, while the original program requires 14684 rules
and 14 auxiliary specifications.

3 Techniques

We now explain the principle techniques of our approach. We describe: pro-
gram translation, program abstraction, validity check of counterexamples and
refinement of abstract programs, and runtime exception handling. See Fig. 1.

We focus on analyzing object-oriented programs, and currently support a
basic subset of Java that does not include floating point numbers, concurrency,
and user-defined exceptions. We support a class hierarchy definition without
interfaces and abstract classes. A detailed program syntax can be found in a
previous work (cf. [23, Sect. 2]). We currently support a basic subset of JML that
does not include model fields and exceptional behaviors.

3.1 Translation

void f(int a, int b){
if (a != b) a = b; }

(assert (or E_0_1 E_0_2))
(assert (=> E_0_1 E_1_2))

(a) (c)

0 1 2
a0 != b0 a1 = b0

a0 == b0 && a1 = a0
(assert (=> E_1_2 (= a_1 a_0)))

(d)
(assert (=> E_0_1 (not (= a_0 b_0))))
(assert (=> E_0_2 (= a_0 b_0)))
(assert (=> E_1_2 (= a_1 b_0)))

(b) (e)

Fig. 4: Encoding: (a) a sample Java code, (b) computation graph, (c) control
constraints, (d) frame conditions, (e) data constraints.

We explain the translation techniques of bounded program verification (the
“Translation” box in Fig. 1). Based on user-provided bounds we translate a Java
program and its JML requirement specifications into an SMT formula. Some code
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transformations are performed on the analyzed program before the translation:
Loops are unrolled the number of times defined in bounds; methods are inlined
into their call sites; constructors are split into object allocation and initialization;
and all variables and fields are renamed such that they are assigned at most once.
The preprocessed program (called bounded program in the paper) is represented
using a computation graph [27], a directed acyclic graph that has a single entry
node and a single exit node. The nodes of the graph represent the control points
in the bounded program, and the edges represent the state transitions. Figure 4
provides a simple example. The computation graph of the program in Fig. 4(a) is
shown in Fig. 4(b), where variable names are indexes; the initial index is 0, and
the index is incremented every time the variable is updated. Figure 4(c) gives the
SMT constraints encoding the control flow. An SMT formula consists of logical
conjunction-connected SMT constraints (enclosed in the assert command).
Basic constraint are combined using the boolean operators and, or, not, and =>

(implies).We introduce a boolean variable E i j to represent an edge from node i

to node j; the data constraints in Fig. 4(e) provide the correct semantics for state
transitions; the frame condition in Fig. 4(d) explicitly prevents variables to be
unspecified. Variables (fields) in JML expressions are replaced by the appropriate
variables (fields) in the pre-/post-state of the bounded program. More details
can be found in a previous work [23].

3.2 Abstraction

When an SMT formula is unsatisfiable, an SMT solver capable of generating
proofs is used to find a proof of invalidity, i.e., an unsat core. Minimization is
performed on the core returned by an SMT solver to ensure the core is locally
minimal: removing any single constraint from the core renders it satisfiable. (The
algorithm is presented later in this section.) Let the set C denote the inconsistent
constraints extracted from the SMT formula; i.e., C encodes the reason that no
post-state violates the requirement specification. To discover which statements
are responsible for a constraint in the unsat core, we maintain a constraint map
M := {C 7→ S} to store the connection between the constraints C and statements
S. When generating data constraints (e.g., Fig. 4(e)), the mapping from a data
constraint c ∈ C to the statement s ∈ S (where the constraint is generated) is
added to the constraint map M . Figure 5 presents the rules used for updating
the constraint map M . Rules R1 and R2 shows data constraints are directly
mapped to the simple assignment statements. We translate the assignments e.f
= e to two constraints: e.f ′ = e and ∀T o, o 6= e⇒ o.f ′ = o.f (T represents the
type of e), where only the former is used to update the constraint map M (R3).
The translations of the create statement and the array update statement are
handled in the same way (R4 and R5 respectively). The rule R6 shows that the
constraints translated from branch conditions are mapped to the branch (or loop)
statement. The loop condition is negated after the last iteration, the rule R7

maps the negation of the loop condition to the loop statement. The statements
mapped by the constraints of C are the relevant statements w.r.t. the property
under consideration for user-provided bounds.
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R1: TdJT v = e;, EK → M ′ = M ∪ {(E ⇒ (v0 = TeJeK)) 7→ S}
R2: TdJv = e;, EK → M ′ = M ∪ {(E ⇒ (v′ = TeJeK)) 7→ S}
R3: TdJe.f = e;, EK → M ′ = M ∪ {(E ⇒ (e.f ′ = TeJeK)) 7→ S}
R4: TdJe = new T;, EK → M ′ = M ∪ {(E ⇒ (e′ = TeJnewT K)) 7→ S}
R5: TdJe[e] = e;, EK → M ′ = M ∪ {(E ⇒ (e[TeJeK)] = TeJeK)) 7→ S}
R6: TdJif (e), Et, Ef K → M ′ = M ∪ {(Et ⇒ TeJeK) 7→ S, (Ef ⇒ TeJ!eK) 7→ S}
R7: TdJassume (e), EK → M ′ = M ∪ {(E ⇒ TeJeK) 7→ S}

Fig. 5: The rules for updating the constraint map M to M ′. The new variables
(or fields) are marked with apostrophes. Td and Te represent the translation of
program statements and expressions respectively. S denotes a program statement
and E represents the edge for the statement. Et and Ef denote the outgoing
edges of branch statements.

R1: AJT v = e;K := T v = pure T();

R2: AJv = e;K := v = pure T();

R3: AJe.f = e;K := e.f = pure T();

R4: AJif (e)K := if (pure T())

R5: AJwhile (e)K := while (pure T())

R6: AJreturn e;K := return pure T();

Fig. 6: The rules for transforming original statements to abstract statements. The
transformation is denoted by A. The concrete Java statements on the left are
replaced by the abstract statements on the right. The pure T methods return
unspecified values.

These relevant statements are marked as mustHave statements and will not
be abstracted. The other statements in the bounded program, that are named
mayHave statements, are not necessary for bounded verification, but may be
helpful in the deductive program verification. We generate an abstract program
by over-approximating the behaviors of the statements in the original program
when their transformed statements are mayHave statements—each transformed
statement gets the location of its original statement. Thus all feasible executions
of the original program are feasible in the abstract program, but not vice versa.
Abstract programs are generated using the abstraction rules in Fig. 6. The
original statement (on the left of Fig. 6), from which the mayHave statement
has been transformed, is replaced with a statement (on the right of Fig. 6) that
calls a JML-annotated pure T method /*@ assignable \strictly_nothing;*/

native /*@ nullable */ T pure_T();. The JML assignable clause ensures that
no memory location is changed by the pure method and that distinct unspecified
values will be returned by the pure method, T represents an appropriate type
required by the original statement, and the pure method returns an unspecified
value of T which includes null as well. The Java keyword native is used to avoid
implementations of the pure methods.

Using the rules in Fig. 6, the generated abstract programs provide to the
verification engineers the information which statements are necessary for the
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properties under consideration. Thus, writing auxiliary specifications could be
easier. However, it may increase the proof complexity compared to the concrete
programs. Typically, a deductive program verification system (e.g., KeY [1])
symbolic executes a program and applies various calculus rules to make a proof.
During symbolic execution, the symbolic states of the original program are very
likely more concrete than those of the abstract program. Therefore, the symbolic
execution paths which are invalid for the concrete programs are traversed when
proving the abstract programs. Furthermore, symbolic execution of an abstract
statement may require more rules than its original statement.

We optimize the abstract program. In order for the abstract programs to
have appropriate concrete states, statements that are unnecessary for bounded
program verification, yet helpful for the deductive program verification, are
marked as mustHave statements. For example, assignment statements where the
expression on the right-hand side is an object allocation, constant, etc., and that
their defined variables are used in some mustHave statements. When possible, we
abstract a set S of mayHave statements into one single statement, thus reducing
the number of abstract statements. This is available for any two nodes m and n

in the computation graph g (see, e.g., Fig. 4(b)), where m dominates n, n post-
dominates m, and all the statements in S whose edges are in the paths from m to n

are mayHave statements. The new abstract statement calls an impure method /*

@ assignable loc;*/ native T impure_T();, where the JML specification denotes
the memory locations modified by the statements. We compute the modifiable
locations loc as a collection of the fields and variables that are updated in the
mayHave statements.

Minimization of an unsat core. A locally minimal unsat core is useful for
computing optimal abstractions. To the best of our knowledge, none of the SMT
solvers guarantees its unsat core is locally minimal. We present an algorithm
(Algorithm 1) that minimizes an unsat core by exhaustively checking whether a
constraint is necessary for the unsatisfiability of the SMT formula. If the formula
remains unsatisfiable when deactivating (negating) the constraints of a program
statement, the constraints are not needed and their statement is a mayHave
statement. The new unsat core returned by the SMT solver is the input for
the next check. Otherwise, we reactivate the constraints and check the other
constraints till all constraints are flipped.

Algorithm 1: Minimize an unsat core

Input: C: unsatisfiable SMT constraints; S ← ∅: unnecessary constraints;
muc← ∅: locally minimal unsat core.
for c ∈ C do

if c /∈ S then
if (check-sat ((C − c) \ S)) is UNSAT then

muc← getUnsatCoreFromSolver();
S ← S ∪ ((C − c) \muc)

return muc
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3.3 Validity Check and Refinement

To check the validity of the counterexamples, new bounds are always required
since the abstract program fulfills the property w.r.t. the old bounds. For a coun-
terexample ce, the new bound of class C is CPrece +max(CPath1, . . . , CPathn),
where CPrece is the number of C instances in ce, CPathn is the number of
allocations of C instances on the n-th program path, and function max returns the
maximum. To compute new loop unrolls, we transform a while(cond){stmts;}

loop into if(cond){stmts; if(!cond)var=var;}, where var is a variable that is
modifiable in stmts. This transformation prevents unrolling the loops that are
irrelevant for the program correctness.

We compute a new SMT formula that is the conjunction of the translation
of the counterexample and the translation of the original program for the new
bounds. When the formula is satisfiable, then either the counterexample is valid,
or the loop requires further iterations if the loop condition is still true after
traversing the last iteration. In the latter case, we double the loop bounds and
repeat the validity check. If the formula is unsatisfiable, we find the statements
w.r.t. the counterexample using the techniques as shown in Sect. 3.2. In the
bounded program, we highlight a mayHave statement as a mustHave statement
when the statement is in the newly found statements. Finally, using the technique
shown in Sect. 3.2, we generate a new abstract program for deductive verification.

3.4 Runtime Exceptions

For each property to be proved, verification systems also prove that no run-
time exception is thrown. When more than one functional property has to
be verified, the same proof steps for checking runtime exceptions are redone.
Our approach separates the verification of functional properties from check-
ing runtime exceptions: usually the statement o = o.f, e.g., is translated into
(o 6= null⇒ o′ = o.f) ∨ (o = null⇒ exc), where exc denotes runtime exception,
whereas we translate it into o 6= null ∧ o′ = o.f . To check that there are no
runtime exceptions, we also inject guards into the code, such that if a guard
passes an exception is thrown. We treat the possible exception types separately.

Figure 7 presents the code from Fig. 2(a) with one guard injected. We
insert a guard (statements 11-13) which sets to true the flag NASE in the
class RTE if a NegativeArraySizeException is about to be thrown (statement
14). Thus, when the program in Fig. 7 preserves the value of the exception
flag (it is false when calling the method and when returning from it4), no
NegativeArraySizeException is thrown in the original program, as the guard
is checking the statement at line 14. All program parts not relevant to whether
the exception is thrown are abstracted. In our approach, when there is no runtime
exception and the functional properties have been fulfilled by the analyzed
abstract programs, the original program is also verified.

4 The requires clause specifies the method’s precondition.
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/*@ requires RTE.NASE = false;

@ ensures RTE.NASE = false;

@ diverges true;

@ assignable \everything;*/

int numberOfPrime(int x, int y) {

...// statements 1-9 are omitted to save space.

10 if (size>0){

11 if (y-x < 0) {

12 RTE.NASE = true;

13 return;

}

14 this.a = new int[y-x];

}

15 return size;}

Fig. 7: The example from Fig. 2(a) with an injected guard.

4 Evaluation

The approach that we have presented (i) liberates verification engineers from
finding the relevant program slices manually, and (ii) reduces the proof complexity
especially for partial properties, for which most of the program slices are irrelevant.

We have implemented the techniques introduced in the paper in a prototype
tool, AbstractJ . We use InspectJ [23] as the bounded verification tool and
KeY [1] as the deductive verification tool. The KeY system performs symbolic
execution [21] of sequential Java programs, using various calculus rules. Program
verification with KeY is usually done in auto-active style: the user interacts
with the system only through provided auxiliary specifications, while the proof
result is obtained automatically. The number of rule applications is our primary
measure of proof complexity. We have used 5 benchmark programs, all taken
from the related program verification literature and from the KeY repository.
Each program has 2 to 6 partial properties to be verified. We have considered also
two other approaches to evaluate the effectiveness of our approach (abstraction)
in program verification. One approach, baseline, proves the original programs
using KeY as usual. The other approach, highlight, is similar to the abstraction
approach, but it only highlights the relevant program statements and retains
the irrelevant statements rather than abstracting them. We have completed
21 verification tasks using each approach, and in total we have completed 63
(= 21 ∗ 3) verification tasks in our experiments. We have written the auxiliary
specifications as compact as possible and measured the auxiliary specifications
as the number of the operands of JML expressions, JML constructs, and logical
connectors, e.g., loop_invariant, assignable, forall, &&, etc.5 We used the SMT
solver Z3 [25] to compute the unsat cores. For the experiments described in this

5 Different engineers may write different auxiliary specifications for the same programs.
We have asked an experienced KeY engineer to prove the original programs and a
relatively inexperienced KeY user to prove the abstract programs. They carefully
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Table 1: Evaluation Results
origin baseline highlight abstraction

method properties
stmts specs rules specs rules stmts specs rules

List. nullPointer 27 22 3578 12 3046 4 0 196
merge(list) indexBounds 43 59 4641 46 4434 33 46 3717

negSize 31 13 4316 14 2723 16 6 1188
leElems 22 14 2962 14 2962 13 6 1715
subset 22 82 6299 56 5715 15 52 4404

Map. nullPointer 32 28 4485 14 3780 9 0 512
put(key,value) indexBounds 48 61 6154 54 5557 48 54 5488

negSize 32 17 4084 12 3753 16 0 654
oldKey 26 30 4295 30 4295 11 22 1725
sameValues 26 27 9823 34 8494 12 26 4647
kvMatched 26 50 7327 50 7327 26 50 8814

LRS. nullPointer 39 11 3022 8 2818 13 0 753
doLRS() indexBounds 43 44 5006 14 4545 30 14 4502

foundOrNot 26 32 4155 14 2908 17 10 1255

Set. nullPointer 48 23 10937 18 10226 25 6 5505
intersect(set) negSize 38 17 14555 14 9963 23 10 4586

indexBounds 58 57 19715 33 12287 51 33 6714
emptySet 33 94 64807 46 13557 16 38 3875
subset 33 142 RO 60 136225 16 52 11211

Graph. sameNodes 54 78 RO 60 14985 13 39 3923
remove(nodes) sameEdges 54 119 RO 83 RO 18 67 12334

paper, we have used the default minimal bounds of InspectJ—at most 3 objects
and at most 3 loop iterations. All experiments6 have been performed on an Intel
Core i5-2520M CPU with 2.50 GHz running on a 64-bit Linux.

To evaluate the effect of the abstraction approach on reducing the complexity
of programs, we have compared the number of Java statements of original and
abstract programs. The results are shown in Table 1. The column method shows
the Java class and its method to be verified; the verified properties are listed in the
column properties. The nullPointer, indexBounds, and negSize represent the run-
time exceptions NullPointerException, ArrayIndexOutOfBoundsException,
and NegativeArraySizeException, respectively. The orgStmts column displays
the number of the original program statements.7 The column stmts shows the
number of the program statements that have been generated by the abstraction
approach. On average, 49.5% (median 50%, maximum 85.2%) of statements in
the original programs have been abstracted by the abstraction approach. There
are 2 properties (indexBounds, and kvMatched for the method put) for which

inspected and ensured that the annotations are compact enough w.r.t. the requirement
specifications.

6 The complete experiments can be found at http://asa.iti.kit.edu/458.php.
7 The injected guard statements are treated as original statements when handling

runtime exceptions.
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the approach abstraction seems has no effect. A careful inspection reveals that
one single concrete statement is abstracted. From the results, the abstract pro-
grams contain less, yet enough details for partial properties. The more partial
the verified property, the fewer details the abstract programs have. Conserva-
tively speaking, even in the case where the abstract programs are identical to
the original programs, the abstraction approach assists verification engineers at
exploring the relevant statements—all program statements that have not been
abstracted are necessary for the properties under consideration. The highlight
approach shows the relevant program statements to verification engineers, while
the abstraction approach provides additional benefits: (i) automatic generation
of auxiliary specifications for the irrelevant program statements, and (ii) possible
reduction of proof complexity for partial properties. Besides, the abstraction can
increase users confidence in the correctness of their programs, before starting
deductive verification.

For a fair comparison of the amount of manually written auxiliary specifica-
tions, the highlight approach reused the auxiliary specifications that have been
written manually in the abstraction approach (shown in the column specs of the
column abstraction in Table 1). The abstraction approach generates annotations
for the unnecessary program slices, for which the verification engineers need
to write annotations using the highlight approach. On average, 37.2% (median
26.7%) of annotations for the highlighted programs have been automatically
generated by the abstraction approach.

All properties in Table 1 have been proved using the abstraction approach.
When using the approaches highlight and baseline, several properties are un-
provable. The column rules provides the number of rule applications. Any rule
application beyond our threshold of 20000008 is denoted by RO. For 18 properties
that have been proved by all approaches, the abstraction approach needed only
50.1% (median 55.2%) of the rules required by the highlight approach. It is not
guaranteed that the abstraction approach requires less rule applications than
the other two approaches for arbitrary properties. Besides of the reasons talked
in Sect. 3.2, KeY creates branches for each abstract statement, to check its
pre-/post-conditions.9 When the rule cost introduced by the abstract statements
is lower than the cost of symbolic execution of the irrelevant original statements,
only then the abstraction approach requires fewer rules than other approaches,
by assuming they use same auxiliary specifications. In other words, the more
partial the verified property, the less proof complexity of the abstract programs.
The property kvMatched is an example for less partial property.

Although we used small bounds for InspectJ in the experiments, there are
no refinement cases in Table 1. On the other hand, when the refinement of an
abstract program is needed, the abstract program will contain much less details,
thus it is easy to find the relevant program statements. The verification engineers
are free to provide even higher bounds for InspectJ. Given the same input formula,

8 The time cost and memory consumption grow exponentially w.r.t. the rule applica-
tions. It required ∼30 min and more than 4 GB memory for 2000000 rules.

9 The trivial pre-/post-conditions of each abstract statement requires ∼20-100 rules.
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Z3 may find an unsat core that is different from the core found by other SMT
solvers. AbstractJ may generate different abstract programs using other SMT
solver, but the abstract programs will still contain less details than the concrete
programs if the analyzed property is partial enough.

5 Related Work

Several methods have been proposed to split the program under analysis with
respect to particular concerns. Traditional program slicing techniques (e.g., static/-
dynamic slicing) generate a group of accessible statement (a slice) w.r.t. variables
of interest at particular locations. Due to the complexity of the specification
expressions and various data structures in the analyzed programs, it is very
difficult to find specification-sensitive slices correctly.

Conditioned slicing techniques [4, 8, 9, 12,13,17] have been widely applied to
simplify programs with respect to the specifications. Comuzzi et al. [12] introduced
predicates as a slicing criterion; the slice contains the statements affecting the
predicates. That idea has been extended by introducing preconditions [9], symbolic
execution [4], and program verification [13] into conditioned slicing techniques.
Typically, conditioned slicing produces a group of all accessible statements w.r.t.
the specification by symbolic execution with the inputs generated by a solver.
The pre/postcondition (generally formulas of first-order logic) are expressed in
terms of the (input) variables at program locations of interest. However, intensive
human interaction is required to guide the symbolic execution by choosing a
suitable criterion. GamaSlicer [13] verifies the program w.r.t. specifications before
generating semantic-based slices. Nevertheless, it may not terminate with a
conclusive result, since it targets an undecidable logic. Our approach ensures
that the soundness of the proof depends only on the deductive verification.

The following three approaches tried to improve the verification process
using bounded analysis. Bormer et al. [6] claim that verifying programs using
the bounded model checker LLBMC [24] facilitates proving with VCC [11].
Annotations written in VCCs specification language are translated into assertions
that can be checked by LLBMC. El Ghazi et al. [16] try to verify Alloy problems
using deductive verification, after the Alloy analyzer [20]—based on bounded
analysis, fails in finding a counterexample in bounds dictated by the machine.
Kroening et al. [15] combine k -induction and inductive invariant method to
facilitate program verification using significantly weaker annotations. These
approaches do not aim to reduce the overhead of writing specifications. However,
the k -induction frequently allows using weaker loop invariants than are required
by the inductive invariant approach. Our approach can reduce the burden of
specifications not only for loops.

Using unsat core is not new in bounded program verification. The authors
of [26] used the unsat core to refine the method summaries in program verification.
In [14], a code coverage metric is constructed by the program statements that
are mapped from the unsat core.
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Counterexample-guided abstraction refinement (CEGAR) has been widely
used in program verification. To the best of our knowledge, the abstractions
have been constructed mostly at the predicate level [2, 5, 7, 10,18] and rarely at
the function level [26]. Our approach constructs the abstractions at the levels
including the ones mentioned above and statement level.

6 Conclusion and Future Work

We presented a novel method to compute specification-sensitive abstractions
for program verification. The abstractions are constructed with the help of
bounded program verification. The counterexample-guided refinement framework
has been used to refine the abstractions. We exploited the characteristics of
the unsat core to discover irrelevant statements. The novelty of our approach
is to abstract the program statements that are irrelevant for the properties
of interest, to help verification engineers to write auxiliary specifications. We
described how to: encode programs, map program statements to constraints,
generate abstractions based on abstraction rules, and refine the abstractions with
new bounds computation. We evaluated our experiments on 5 programs that
were already used in related papers and in the KeY repository. Initial results
show that our approach generates suitable abstract programs for verification, and
all abstract programs have been proved for all 21 properties, while the original
programs have been proved for 18 properties. Our tool took off 50% of the user’s
workload in writing auxiliary specifications. Only about half of the proof rules
used to prove the original program are needed for proving the abstract program.

We plan to apply our approach to larger programs, and investigate incorpo-
rating loop invariant generators, e.g., Invgen [19], to improve the automation of
the approach.
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