
Poster: Security in E-Voting
Daniel Bruns†, Huy Quoc Do‡, Simon Greiner†, Mihai Herda†, Martin Mohr†, Enrico Scapin∗, Tomasz Truderung∗,

Bernhard Beckert†, Ralf Küsters∗, Heiko Mantel‡ and Richard Gay‡

∗University of Trier, lastname@uni-trier.de, †Karlsruhe Institute of Technology, firstname.lastname@kit.edu
‡Technische Universität Darmstadt, do@rbg.informatik.tu-darmstadt.de, {gay,mantel}@mais.informatik.tu-darmstadt.de

I. INTRODUCTION

In this work, we consider the verification of security prop-
erties of Java programs that use cryptographic operations. Our
motivating objective is to provide cryptographic guarantees on
the code level for a Java implementation of a realistic, usable
electronic-voting system, called sElect1.

While tools for verification of Java programs are available,
including tools for checking noninterference properties, they
cannot deal with cryptography: guarantees for cryptographic
primitives are based complexity arguments and therefore these
primitives do not provide absolute security against unbounded
adversaries (which is the adversary model employed in these
tools).

In our work, we propose a framework that allows the exist-
ing tools for checking noninterference to verify cryptographic
properties, such as cryptographic indistinguishability, of Java
programs. We applied our framework to several case studies,
using the Joana and KeY tools. The integration of these tools
in our framework led to interesting insights and motivated us
to improve the existing techniques and develop new techniques
for proving noninterference.

II. APPROACH

A. The CVJ framework

We have developed a framework for the cryptographic
analysis of Java programs (the CVJ framework) [1]. This
framework enables existing tools that can check (standard)
noninterference properties for Java programs, but a priori
cannot deal with cryptography, to establish cryptographic
indistinguishability properties for Java programs. The CVJ
framework combines techniques from program analysis and
universal composability [2], [3], a well-established concept
in cryptography. The idea is to first check noninterference
properties for the Java program to be analyzed where crypto-
graphic operations (such as encryption) are performed within
so-called ideal functionalities. Such functionalities typically
provide guarantees even in the face of unbounded adversaries
and can often be formulated without probabilistic operations
and, therefore, they can be carried out by tools that a priori
cannot deal with cryptography (probabilities, polynomially
bounded adversaries). The results of the framework now imply
that the original Java program (using actual cryptographic
operations) enjoys strong cryptographic indistinguishability.

1sElect, secure Election: https://github.com/ttruderung/sElect

As to checking non-interference, many program analysis
tools can only deal with closed Java programs. The systems to
be analyzed are, however, often open: they interact, for exam-
ple, with an untrusted (and unspecified) network. Therefore, as
part of the framework, we have proposed a proof techniques
that enable program analysis tools to verify noninterference
properties of open systems.

B. Tools
In our work we use two tools for Java programs, Joana

and KeY, in combination with the CVJ framework. In this
section we shortly introduce these tools and describe the
improvements which are part of this work. In the next section
we describe how these tools can be combined in order to prove
challenging properties of realistic programs.

Joana2 [4] is a tool for the fully automatic analysis of
noninterference properties of Java programs. It computes a
conservative approximation of the information flows inside a
given program in form of a program dependence graph (PDG).
Then, the PDG is checked for illegal information flows using
advanced dataflow analysis based on slicing. If no illegal
flow is found in the PDG, the program is guaranteed to be
noninterferent. The correctness of this implication has been
verified with a machine-checked proof [5].

Since Joana is an automatic tool which uses overapproxi-
mation, it may report information flows which are not actually
there (false alarms). Joana employs sophisticated program
analysis techniques that help to reduce such false alarms.
Within this work, we improved these techniques. For instance,
we added support for the recognition of killing definitions.
Recognizing killing definitions can improve precision in sit-
uations where a variable which contains a secret value is
overwritten before being propagated to a public channel.

KeY3 [6] is an program verification system, which targets
sequential Java. At its core lies an interactive theorem prover
for first-order dynamic logic (JavaDL) [7]. Program specifi-
cations can be given in the Java Modeling Language (JML)
[8]. The sequent calculus for JavaDL that is built into KeY
precisely reflects the semantics of sequential Java, i.e., it does
not use approximations. Thus, analysis techniques built on
KeY are precise. They do not report any false positives. Proofs
can be automated to a certain degree, while the user can
interact with the prover at any time. KeY can generate counter
examples and unit tests from failed proof attempts.

2The sourcecode of Joana is available at http://joana.ipd.kit.edu/.
3KeY is free software and can be downloaded from http://key-project.org/.

https://github.com/ttruderung/sElect
http://key-project.org/


C. The Hybrid approach.

Fully automated tools are often preferable over interactive
since with such tools program analysis is typically less time-
consuming and requires less expertise. However, if automated
tools fail due to false positives, the only option for proving
noninterference so far has been to drop the automated tools
altogether and instead turn to fine-grained but interactive, and
hence, more time-consuming approaches, such as theorem
proving. This “all or nothing” approach is unsatisfying and
problematic in practice.

We therefore propose a tool-independent hybrid approach,
which allows one to use (fully) automated verification tools for
checking noninterference properties (such as Joana) as much
as possible and only resort to more fine-grained, but possibly
interactive verification tools (typically theorem provers) at
places in a program where necessary. The latter verification
requires checking specific functional properties in (parts of)
the program only, rather than checking the more involved
noninterference properties.

The idea underlying this approach is as follows. If the
verification of noninterference of a program using an auto-
mated tool fails due to (what we think are) false positives,
then, following the rules of our approach, additional code
is added to the program in order to make it more explicit
and more clear for the automated tool that there is no illegal
information flow, and by this, avoid false positives. If the
automated tool now establishes that the extended program
enjoys the desired noninterference property, it remains to show
that the extended program is a conservative extension of the
original program. Intuitively, this means that the additional
code did not change the behavior of the original program
in an essential way, including, importantly, noninterference
properties. Proving that an extension is conservative requires
to prove functional properties of (parts of) the program and
will typically be carried out by an (interactive) theorem prover.

Our hybrid approach should be widely applicable—it is not
tailored to specific tools or specific applications, and the basic
idea is quite independent of a specific programming language.

In order to illustrate our hybrid approach, we use it to
establish cryptographic privacy properties for a non-trivial Java
program, namely a non-remote e-voting system, where voters
submit their choices using a voting machine.

D. Slicing

The high precision of deductive verification allows for
proving complex and detailed specifications for programs.
This however comes at the price of manual interaction in
the proof process. Therefore, in realistic programs it can
happen that the verification with interactive tools becomes
infeasible. At the same time, parts of the program tend to
be irrelevant with respect to the specification to be proven.
To remedy this, we came up with a general technique which
we call spec slicing. The idea behind spec slicing is the
following: If parts of the program do not influence the final
state w.r.t. the proof obligation, they can be safely removed and
function verification can be performed on the simpler program.

Verification of this simpler program can then be performed
without any loss of precision but with possibly much less
effort. The identification and removal of irrelevant program
parts can be performed by an automatic tool like Joana.

We already applied this technique to the E-Voting machine
mentioned above: Parts of its implementation perform mere
logging, which does not affect the voting result and therefore
does not have any influence on the functional property which
had to be verified. Using Joana, we gained a simpler but
equivalent program without logging, which we verified using
KeY to establish functional correctness for the whole program.

III. ONGOING AND FUTURE WORK

Our motivating application is to provide code level, crypto-
graphic security guarantees for a realistic and usable e-voting
system. We have designed and implemented such an e-voting
system, called sElect. In our ongoing work, we use the CVJ
framework and the verification techniques described above to
obtain formal, cryptographic guarantees for this system on the
code level. This work also involves further improvements of
the verification techniques used for proving non-interference.

ACKNOWLEDGMENT

This work was funded by Deutsche Forschungsgemein-
schaft (DFG) within the Priority Program 1496 “Reliably
Secure Software Systems - RS3”, project grants BE2334/6-2,
KU1434/6, SN11/12-1, GZ BU 2924/1-1.

REFERENCES

[1] R. Küsters, T. Truderung, and J. Graf, “A Framework for the Cryp-
tographic Verification of Java-like Programs,” in 25th IEEE Computer
Security Foundations Symposium (CSF 2012). IEEE Computer Society,
2012, pp. 198–212.

[2] R. Canetti, “Universally Composable Security: A New Paradigm for
Cryptographic Protocols,” in Proceedings of the 42nd Annual Symposium
on Foundations of Computer Science (FOCS 2001). IEEE Computer
Society, 2001, pp. 136–145.

[3] R. Küsters, “Simulation-Based Security with Inexhaustible Interactive
Turing Machines,” in Proceedings of the 19th IEEE Computer Security
Foundations Workshop (CSFW-19 2006). IEEE Computer Society, 2006,
pp. 309–320, see http://eprint.iacr.org/2013/025/ for a full and revised
version.

[4] J. Graf, M. Hecker, and M. Mohr, “Using joana for information flow
control in java programs - a practical guide,” in Proceedings of the 6th
Working Conference on Programming Languages (ATPS’13), ser. Lecture
Notes in Informatics (LNI) 215. Springer Berlin / Heidelberg, Feb. 2013,
pp. 123–138.

[5] D. Wasserrab, “From Formal Semantics to Verified Slicing
- A Modular Framework with Applications in Language
Based Security,” Ph.D. dissertation, Karlsruher Institut für
Technologie, Fakultät für Informatik, Oct. 2010. [Online]. Available:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678

[6] W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Gladisch, S. Grebing,
R. Hähnle, M. Hentschel, M. Herda, V. Klebanov, W. Mostowski,
C. Scheben, P. H. Schmitt, and M. Ulbrich, “The KeY platform
for verification and analysis of Java programs,” in Verified Software:
Theories, Tools, and Experiments (VSTTE 2014), ser. Lecture Notes
in Computer Science, D. Giannakopoulou and D. Kroening, Eds.,
no. 8471. Springer-Verlag, 2014, pp. 1–17. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-12154-3_4

[7] B. Beckert, “A dynamic logic for Java Card,” in Proceedings, 2nd ECOOP
Workshop on Formal Techniques for Java Programs, Cannes, France,
2000, pp. 111–119.

[8] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: a Java Modeling
Language,” in Formal Underpinnings of Java Workshop (at OOPSLA ’98),
Oct. 1998.

http://eprint.iacr.org/2013/025/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678
http://link.springer.com/chapter/10.1007/978-3-319-12154-3_4

	Introduction
	Approach
	The CVJ framework
	Tools
	The Hybrid approach.
	Slicing

	Ongoing and Future Work
	References

