A Tableau Calculus for
Quantifier-free Set Theoretic Formulae

Bernhard Beckert! and Ulrike Hartmer?:*

! University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,
D-76128 Karlsruhe, Germany. E-mail: beckert@ira.uka.de
2 Deutsche Telekom AG, Technologiezentrum Darmstadt,
D-64307 Darmstadt, Germany. E-mail: hartmer@tzd.telekom.de

Abstract. Set theory is the common language of mathematics. There-
fore, set theory plays an important role in many important applications
of automated deduction. In this paper, we present an improved tableau
calculus for the decidable fragment of set theory called multi-level syllo-
gistic with singleton (MLSS). Furthermore, we describe an extension of
our calculus for the bigger fragment consisting of MLSS enriched with
free (uninterpreted) function symbols (MLSSF).

1 Introduction

Set theory is the common language of mathematics. Therefore, set theory plays
an important role in many important applications of automated deduction. For
example, some of the most widely used specification languages, namely the Z and
B specification languages, are completely based on set theory. For other lan-
guages, sets are at least a very important construct, frequently used in specifi-
cations either on the meta-level or as a data structure of the specified programs.
Set theoretic proof obligations occur both as part of proving an implementation
to be sound w.r.t. a specification and as part of immanent reasoning (such as
consistency checks, proving invariants, pre- and post-conditions).

Set theoretic reasoning, i.e., employing special purpose techniques instead of
using the axioms of set theory, is indispensable for automated deduction in real
world domains. Automated deduction tools can, for example, be integrated into
interactive software verification systems and relieve the user from the need to
interactively handle simple set theoretic problems that do not require his or her
intuition but merely a combinatorial search.

In this paper, we present an improved tableau calculus for the decidable frag-
ment of set theory called Multi-level Syllogistic with Singleton (MLSS). Further-
more, we describe an extension of our calculus for the bigger fragment consisting
of MLSS enriched with free (uninterpreted) function symbols (MLSSF).

Multi-level Syllogistic (MLS) consists of quantifier-free formulae built using
the set theoretic predicates membership, equality, set inclusion, the binary func-
tions union, intersection, set difference, and a constant representing the empty

* This work was carried out while the author stayed at the University of Karlsruhe.

set. In the extension MLSS of MLS, n-ary functions {-}, can be used to construct
singletons, pairs, etc.

The expressiveness of MLSS is sufficient for many applications. MLSS formu-
lae can contain variables, which are implicitly universally quantified. The main
restriction is that there is no existential quantification; thus, sentences such as
“there is an infinite set” cannot be formalised within MLSS.

Our calculus for MLSS, which is a sound and complete decision procedure,
is an extension of the tableau-based calculus for MLSS that Cantone described
in [4]. It does not require formulae to be in normal form, whereas Cantone’s
calculus only contains rules for normalised MLSS literals (which are not allowed
to contain complex terms) and relies on a pre-processing transformation for
normalising formulae. The handling of free function symbols in the extended
calculus for MLSSF employs E-unification techniques for reducing the search
space by finding term pairs that, when shown to be equal, close a tableau branch.

Several methods for handling set theory in tableaux or the sequent calculus
(without the restriction to a certain fragment) have been proposed: In [2], Brown
presents a first-order sequent calculus that contains special rules for many set
theoretic symbols. De Nivelle [10] and Pastre [14] introduce sequent calculi for
set theory. Shults [15] describes a tableau calculus with special set theoretic
rules. All these calculi, however, are incomplete (no semi-decision procedures).

Decision and semi-decision procedures for various extensions of MLS have
been described in the literature; these, however, are not based on tableaux but
are highly non-deterministic search procedures and are not suitable for imple-
mentation; an overview can be found in [5, 6]. Extensions of MLS that are known
to be decidable include: MLS with powerset and singleton [3, 7], with relational
constructs [9], with unary union [8], and with a choice operator [11].

This paper is structured as follows: In Sect. 2, we define the syntax and
semantics of the fragments MLSS and MLSSF of set theory. In Sect. 3, we intro-
duce those parts of our calculus that are not specific for set theoretic formulae.
In Sect. 4, we describe our calculus for the fragment MLSS; and in Sect. 5, we
extend the calculus for handling the fragment MLSSF including free function
symbols. As an example, we present a proof for an MLSSF formula in Sect. 6.
Finally, in Sect. 7, we draw conclusions and discuss future work. Due to space
restrictions, proofs are not included in this paper; they can be found in [12].

2 Syntax and Semantics

2.1 Syntax of MLSS and MLSSF

We handle two classes of set theoretic formulae: The first are formulae in the
fragment multi-level syllogistic with singletons (MLSS); this is the quantifier free
fragment of set theoretic formulae using (a) the set theoretic predicate symbols
E (membership), ~ (equality), C (set inclusion), (b) the set theoretic function
symbols M (intersection), U (union), \ (set difference), and {-},, with arity n > 1
(singleton, pair, etc.), and (c) the set theoretic constant @ (the empty set). As

usual, the binary function and predicate symbols are written in infix notation,
and {-},, is written in circumfix notation.! The second fragment, called MLSSF,
is the extension of MLSS by free function symbols that have no special set
theoretic interpretation.

In the following, we assume that a fixed signature is given consisting of a set
Var of variables, a set Const of constants, and a set Func of function symbols.

Definition 1. The set of pure set terms is inductively defined by: (1) All vari-
ables x € Var, all constants ¢ € Const, and O are pure set terms. (2) If t1,to are
pure set terms, then t; Mta, t1 Uta, and t1 \ ta are pure set terms. (3) For all
n>1,if t1,...,t, are pure set terms, then {t1,...,t,}n is a pure set term.

The set of set terms is inductively defined by: (1) All pure set terms are set
terms. (2) If f € Func is a function symbol of arity n > 1 and t1,...,t, are set
terms, then f(t1,...,tn) is a set term.

A set term is called functional if it is of the form f(t1,...,tn).

Note that functional set terms can contain non-functional set terms (which
are not necessarily pure) and vice versa.

MLSS and MLSSF are built using the logical connectives V (disjunction),
A (conjunction), = (negation), and — (implication). Formulae that are identical
up to associativity of V and A are identified.

Definition 2. Iftq,to are pure set terms (resp. set terms), then t; Eta, t1 & ta,
and t1 C t2 are MLSS (resp. MLSSF) atoms. If p is an MLSS (MLSSF) atom,
then p and —p are MLSS (MLSSF) literals.

The sets of MLSS and MLSSF formulae are inductively defined by: (1) All
MLSS (MLSSF) literals are MLSS (MLSSF) formulae. (2) If ¢,v¢ are MLSS
(MLSSF) formulae, then —¢ and ¢ — 1 are MLSS (MLSSF) formulae. (3) If
1, .., On are MLSS (MLSSF) formulae, then ¢1 ANy and o1V -V ¢y
are MLSS (MLSSF) formulae (n > 2).

To simplify notation, we use the negative versions &, %, and I of the predicate
symbols E, =, and T, where s ¢ is an abbreviation for —(s Et), etc.

2.2 Semantics

We use the semantics of set theory (and thus its fragments MLSS and MLSSF)
as it is defined by the ZF axiom system or, equivalently, by the von Neumann
hierarchy (cumulative hierarchy) of sets (see for example [13] for a detailed dis-
cussion of the semantics of set theory).

Definition 3. Let Ord denote the class of all ordinals. The von Neumann hier-
archy of sets is defined by V = U, ¢ 0rg Vo where (1) Vo =0, (2) Vo =Us.o Vs

for each limit ordinal o, and (3) Va1 is the powerset of Vo, for each ordinal a.

! To avoid confusion we use the non-standard symbols £, =, C, M, LI, 0 on the object
level and the standard symbols €,=,C,N,U,) on the meta level.

We only define the semantics of the fragment MLSSF; the semantics of MLSS
is the same as that of MLSSF for the case of an empty set of function symbols.

Definition 4. A set structure M = (D,I) consists of a domain D and an
interpretation I with the following properties: The elements of D are sets in the
von Neumann hierarchy; D is closed under the set operations N, U, \, and {-},
(n > 1), and it contains the empty set; I interprets (1) each constant symbol
c € Const by an element of D, (2) each function symbol f € Func of arity n by a
function D™ — D, (3) the constant O by the empty set, (4) the predicate symbols
by their canonical interpretations, i.e., E by €, = by the identity relation, and
C by C, (5) the set theoretic function symbols by their canonical interpretations,
ie, Wby U, Mbyn, \ by \, and {-}, by {}n (m >1).

Definition 5. Given a set structure M = (D,I), a variable assignment is a
mapping p: Var — D from the set of variables to the domain D. The combina-
tion of M and a variable assignment u associates (by structural recursion) with
each set term t an element valMM(t) of D; and it associates with each MLSSF
formula ¢ either true or false. A formula ¢ is true in M (and M is a model
of ¢) if, for all variable assignments i, valy (@) = true; else ¢ is false in M.

Definition 6. An MLSSF formula ¢ is satisfiable if there is a set structure M
such that ¢ is true in M; ¢ is valid if it is true in all set structures.

3 Tableaux for Quantifier-free Formulae

In this section, we introduce those parts of our calculus that are not specific for
set theory. In particular, we define the expansion rules for logical connectives.

The non-literal MLSS and MLSSF formulae are divided into two classes:
« for formulae of conjunctive type and 3 for formulae of disjunctive type. In
the left part of Table 1, the expansion rules for a- and [-formulae are given
schematically. Premisses and conclusions are separated by a horizontal bar, while
vertical bars in the conclusion denote different extensions. The tableau expansion
rule corresponding to a formula ¢ is obtained by looking up the formula type
of ¢ in the right part of Table 1 and instantiating the matching rule schema. The
formulae in an extension are implicitly conjunctively connected, and different
extensions are implicitly disjunctively connected. We use n-ary a- and [-rules,
i.e., when the (-rule is applied to a formula ¥ = ¢ V ...V ¢y, then 1 is broken
up into n subformulae (instead of splitting it into two formulae ¢ V ...V ¢, and
¢r+1 V...V d)n)

Below, tableaux and tableau proofs are defined in general; which expansion
rules (besides those for the logical connectives) and which closure rules are to
be used is described in the following sections.

Definition 7. An MLSS tableau (an MLSSF tableau) is a finitely branch-
ing tree whose nodes are MLSS formulae (MLSSF formulae). A branch in a
tableau T is a mazximal path in T (where no confusion can arise, a branch is
often identified with the set of formulae it contains).

Table 1. Rule schemata for a- and -formulae, and correspondence between non-literal
formulae and rule types.

o B

oy Bil--|Bn | « | Q1,...,0n || Jo] | Bi,...,0n |

. G1 N ...\ P b1y s P G1 V...V pn D1y ooy Pn

: ﬂ(d)l\/...\/d)n)ﬂqbl,...,—\(bn —\(qbl/\.../\qbn)ﬂm,...,ﬂd)n

an (¢ —) ¢, =9 ¢, ¢
- ¢

Given an MLSS (MLSSF) formula ¢ and a set of tableau expansion rules, the
tableaux for ¢ are (recursively) defined by: (1) The tree consisting of a single node
labelled with ¢ is a tableau for ¢ (initialisation rule). (2) Let T be a tableau for ¢,
B a branch of T, and let the premiss of one of the expansion rules occur on B. If
the tree T' is constructed by extending B by as many new linear subtrees as the
tableau expansion rule has extensions, where the nodes of the new subtrees are
labelled with the formulae in the extensions, then T' is a tableau for ¢ (expansion
rule).

Since the free variables in quantifier-free formulae are implicitly universally
quantified, a formula ¢(z) is valid if and only if a Skolemisation —¢(c) of its
negation is unsatisfiable. Thus, free variables can be eliminated, and a tableau
calculus for formulae without free variables is sufficient for checking the validity
of a given formula ¢.

Definition 8. Given an MLSSF formula ¢(x1,...,x,), where x1,...,x, are
the (free) variables in ¢ (n > 0), a formula ¢(c1,...,cn) is a Skolemisation of ¢
if c1,...,cn are constants that do not occur in ¢(x1,...,Ty).

Definition 9. A tableau T is a tableau proof for an MLSS/MLSSF formula ¢,
if (1) T is a tableau for a Skolemisation of —¢ (Def. 8), and (2) all branches
of T are closed (Def. 11).

4 A Tableau Calculus for MLSS

In this section, we present tableau expansion rules that—in combination with
the expansion rules for the logical connectives—represent a sound and complete
calculus for MLSS, i.e., for formulae built using only pure set literals. It can
easily be turned into a decision procedure (see Sect. 4.5).

Since the (negation of) the formula to be proven is first Skolemised and is
then split into literals using the rules for logical connectives, it is sufficient to
define expansion rules for handling pure, variable free set literals.

4.1 Expansion Rules for Splitting Complex Set Terms

The first group of expansion rules applies simple set theoretic lemmata such as
“if s €t Uty then s € t1 or s € t2” to (a) eliminate literals containing the

set inclusion predicate C and replace them with (in-)equalities, and to (b) split
complex terms on the right side of the membership predicate E into their con-
stituents. These rules can be described using the a- and [-rule schemata (left
part of Table 1); the formula and rule types are listed in Table 2.

Table 2. Rule types for splitting complex set terms.

|Name| « | Qly...,0n ||Name| I6] | Biy...,Bn |
(R1) sCt s st (RT) sEti Ut sEt, sEts
(R2) sIZt s st (R8) S FEti Mta SHEti, st
(R3) sEt Mt sEt, sEts (Rg) SEtl\tQ SEtl, s Etg
(R4) SEt1\ t2 SEt1, sHEls (R10)|s E{t1,.. ., tuln|s = t1,...,s = tn
(R5) Sgh LI ts Sgth Sgtz

(R6) [sE{t1,. . -stntn|sHEt1,...,sFEln

4.2 Expansion Rules for Handling Equality and Inequality

There are three types of special rules for handling the equality and inequality
of sets. First, there are two rules ((EQ1) and (EQ2) in Table 3) that allow to
“apply” an equality t1 & to to other literals in a very restricted way: an equality
can only be applied at the top level and only to the right side of an atom whose
predicate symbol is E. That is, an equality can only be applied to derive one of
the atoms s E ¢; and s E to from the other one. This restriction is important,
because the possibility to apply equalities arbitrarily to other literals would lead
to a much larger search space.

Second, it is possible to derive s1 % s from s1 E¢ and so £t (rule (R11) in
Table 3). This rule is based on the fact that two objects are different if one of
them is an element of some set and the other is not.

Third, the opposite of the above holds as well: if two sets t; and ¢y are
different, then one of them contains an element ¢ that is not element of the
other set. Unfortunately, this leads to a branching rule (rule (R12) in Table 3),
because ¢ can be an element of ¢; (and not of t3) or of t3 (and not of t1). A new
constant has to be introduced representing the unknown element c.

Table 3. Rules for handling equality and inequality, and the restricted cut rule.
t1 =~ ta t1 =~ ta s1 Et t15€t2
sEt1 SEts sy Bt cEt|cEt SELsEL
sEts sEt $1 % s2 cBlzlcEtle where s resp. {...,s,...}
(EQ1) (EQ2) (R11) where c is a constant and t resp. {...,t,...} are
new to the tableau top-level terms on the branch

(R12) (Cut)

4.3 The Cut Rule

The cut rule (Table 3) may be applied to extend a tableau branch B using as cut
formula atoms s E t where the set terms s and ¢ occur (a) as top-level arguments
of a literal on B, or (b) as arguments on the second level if the top-level function
symbol is {-},. In practice the cut rule is rarely needed to find a proof; it is, for
example, needed to detect implicit membership cycles on a branch; see Sect. 4.4.

Ezample 10. If t; E {ta, (t3Mt4)} and t5Mte & t7 are literals on the branch, then
t1,to, (t3 Mts), (ts Mig), ty may be used in a cut rule application and ts, t4, t5, tg
may not be used.

4.4 The Closure Rules

Tableau expansion rules add formulae to a tableau branch being true in all set
structures that are models of the expanded branch; the purpose of closure rules
is to detect inconsistencies, i.e., formulae on a branch that are false in all set
structures. There are four types of inconsistencies that have to be considered:
(1) In no set structure both a formula ¢ and its complement —¢ are true; thus,
a pair ¢, ¢ is inconsistent (for completeness it is sufficient to only consider
complementary literals). (2) No object is an element of the empty set; therefore,
a literal of the form ¢t £ 0 is inconsistent. (3) As no object is different from itself,
literals of the form ¢ % ¢ are inconsistent. (4) The existence of a membership
cycle, i.e., of sets uy, ..., u; such that u; € u;y1 (1 <i < k) and uy € uy, would
contradict the Axiom of Foundation. In fact, there are by construction no sets
in the von Neumann hierarchy that form a membership cycle. Thus, literals
defining a membership cycle are inconsistent; in particular, ¢ E ¢ is inconsistent.

Definition 11. A tableau branch B is closed if it contains (1) a complementary
pair ¢ and —¢ of literals, (2) a literal of the form t E@, (3) a literal of the form
t#t, or (4) for some k > 1, literals t; Etiv1 (1 <i<k) and tp Et;.

4.5 Soundness, Completeness, Termination

The calculus for MLSS described in the previous sections is sound and complete:

Theorem 12. An MLSS formula ¢ is valid iff there is a tableau proof for ¢
using the expansion rules from Tables 1-3 and the closure rule from Def. 11.

Without further restrictions, the calculus is not a decision procedure. The
rule for inequalities ((R12) in Table 3) introduces new constants, and the cut
rule can—in connection with rule (R11)—construct new inequalities from the
new constants; the interaction of these rules can lead to infinite branches.

Fortunately, the calculus can easily be turned into a decision procedure, ob-
serving the fact that chains ¢y, ¢, ... where ¢; is derived applying the inequality
rule (R12) to an inequality that contains the constant ¢;—; cannot be infinite;
their length is bounded by the number of (sub-)terms in the initial tableau:

Definition 13. The rank rank(s) of a set term s in a tableau for an MLSS
formula ¢ that has been constructed using the expansion rules from Tables 1-3
and the closure rule from Def. 11 is defined as follows: If s occurs in ¢ or has
been generated by an application of rules (R1) and (R2), then rank(s) = 0;
otherwise, i.e., if s is a constant that has been introduced by applying rule (R12)
to an inequality t1 # to, then its rank is rank(s) = 1 + max{rank(t1), rank(t2)}.

Definition 14. A tableau T for an MLSS formula ¢ is exhausted, if no tableau
expansion Tule can be applied to T without either adding a constant whose rank
is greater than the number of (sub-)terms in the root node of T or adding only
formulae to a branch B that already occur on B.

Theorem 15. There is an exhausted tableaw for an MLSS formula ¢ if and only
if ¢ is satisfiable.

Thus, if a tableau for the Skolemisation of the negation of an MLSS formula ¢
is constructed in a fair way (i.e., all possible rule applications are executed sooner
or later), then the construction will terminate after a finite number of steps with
a tableau that is (a) closed, in which case ¢ is valid, or (b) exhausted, in which
case ¢ is not valid.

4.6 Restricting the Search Space

Although it is finite, the search space for a tableau proof is large because of the
indeterminism of the cut rule, and because the number of new constants that
can be introduced is exponential in the size of the formula to be proven.

Fortunately, it is possible to impose a strong restriction on cut rule appli-
cations, which at the same time restricts the number of new constants that
are introduced, because a constant ¢, of rank k can only be deduced from a
constant c;_1 of rank k — 1 after the cut rule has been applied to a literal con-
taining cx—1. The idea is to apply all rules except the cut rule until no further
applications are possible, and then to construct a realisation of open branches.
The realisation of a branch B approximates a model for B (if the branch is sat-
isfiable); it satisfies at least all literals of the form ¢; Et3 on B. If the realisation
does not satisfy all the other literals on B as well, it can be used to find cut rule
applications that are (at least potentially) useful.

The switching between the expansion of tableau branches and the construc-
tion of possible models, and the way in which we construct models are similar
to the method Cantone describes in [4].

Definition 16. Let 7 be a tableau for an MLSS formula ¢, and let B be a
branch of T. Then, G is the set of all (sub-)terms occurring in ¢; V is the set
of all terms t € G such that t Es occurs on B and of all constants in ¢; T is
the set of all constants on B that are not in V; ~ is the equivalence relation on
G UT induced by the equalities on B; T’ is the set of all ¢ € T such that ¢ # s
forall s € G; V' is the set (VUT)\T'; uc is, for each ¢ € T, an element of V
different from all ue for ¢ # .

Note, that 7" contains the new constants that have been introduced by ap-
plying the inequality rule (R12) and that are not equal to other terms (w.r.t.
the equalities on the branch). The interpretation of these constants has to be
different from the interpretation of all other terms, whereas different terms in V’
may have the same interpretation.

Definition 17. Let B be a branch of a tableau for an MLSS formula ¢, and let
t be a set term on B. Then the set P(t) of implicit predecessors of ¢ is defined by:
(1) P(@) =0; (2) P(c) ={s € VUT |sEc on B} ifc € Const; (3) P(t1Uts) =
P(t)UP(t2); (4) P(ta (t2) = P(t) 0 P(t2); (3) P(ta \ t2) = P(h) \ P(t2); and
(6) P({t1,...,tn}n) ={s €V UT | sE{t1,...,tn}n on By U{t1,...,tn}.

The sets of implicit predecessors can be used to detect implicit membership
cycles. If, for example, s € P(t),t € P(s) for some terms s, ¢, then the branch
can be closed, and it is not necessary to apply expansion rules (especially the
cut rule) to make the cycle explicit. Thus, using the predecessor sets we can add
another closure rule:

Definition 18. A tableau branch B is closed if it is (a) closed according to
Def. 11 or (b) its sets of implicit predecessors contain a cycle, i.e., there are
(sub-)terms t1,...,t, on B such that t; € P(ta), ..., th—1 € P(tn), tn € P(t1).

The set P(t) of implicit predecessors contains those terms denoting elements
of t whose membership can be deduced from literals on B of the form s = a (where
a € Const) and applying the definition of the set operators. The realisation of a
branch goes beyond that: it is a partial definition of a set interpretation (different
terms may be interpreted by the same set).

Definition 19. Let B be a branch of a tableaw for an MLSS formula ¢, and let
t be a set term on B. If B is not closed (Def. 18), then the realisation R of B is
defined by? (1) R(t) =0 ift =0, (2) R(t) = {R(s) | s € P(t)} U {w} ift € T,
and (3) R(t) = {R(s) | s € P(t)} otherwise.

The realisation can be effectively computed and can be used to restrict the
application of the cut rule: provided B is exhausted w.r.t. all other expansion
rules, the cut rule has only to be applied to terms occurring in literals which are
not satisfied by the realisation of B (if there is no such literal, then B is satisfiable
and we are done). If, for example, ¢; # t2 occurs on B but R(t1) € R(t2), then
there has to be a term s such that (a) R(s) = R(t1), i.e., the realisation of s is
the same as that of ¢1, and (b) s is an implicit member of t9, i.e., s € P(t3)—but
that membership is not (yet) made explicit on the branch (there is no literal
s Ety on B). In that case, the cut rule is applied to the literal s E t5.

Now everything is at hand to define the restricted version of the cut rule:

2 One has to make sure that the u.’s are different from R(t) for all terms ¢; it is always
possible to choose such u.’s.

Definition 20. The restricted cut rule (Cut’) is identical to rule (Cut) in Ta-
ble 8 with the exception that (1) it may only be applied to extend a tableau
branch B that is not closed (Def. 18) and is exzhausted w.r.t. all other expansion
rules; and (2) it may only be applied to a cut formula s Et satisfying one of the
following conditions

—t=x~t ison B, R(t) # R(t'), and (a) s € P(t), s ¢ P(t'), s £t is not on B,
or (b) s€ P(t'), s ¢ P(t), and s Et' is not on B;

—t#t,citEt, and c E are on B (for some constant ¢), R(t) = R(t'),
R(s) =R(c), s € P(t), s¢ P(t'), and s Et is not on B;

— t'#tison B, R(t") € R(t), R(s) =R(t'), s € P(t), and s Et is not on B.

Using the restricted version of the cut rule preserves completeness:

Theorem 21. An MLSS formula ¢ is valid if and only if there is a tableau proof
for ¢ using the expansion rules from Tables 1-3 with the restriction of the cut
rule according to Def. 20, and the closure rule from Def. 18.

4.7 A Comparison with Cantone’s Calculus

The calculus for MLSS described in the previous sections is similar to that
presented by Cantone in [4]. The main difference is that Cantone’s calculus is
restricted to normalised literals, i.e., literals not containing complex set terms:

Definition 22. A set literal ¢ is normalised iff it is of the form a Eb, a £ b,
a~b,a®b,a~blUc,axbMc,axb\c, orar{b,...,by}n (n>1), where
a,b,c and by,...,b, are constants.

There is a satisfiability preserving transformation of any finite set I" of set
literals into a set of normalised set literals by introducing new constants for
complex set terms. For example, a E (b M d') is replaced by ¢ ~ (bM ') and
a E c where c is a new constant. The overhead for computing the transformation
is negligible, because its complexity is polynomial in the size of the set to be
transformed. However, the introduction of new constants leads to a much bigger
search space, even more so as all these new constants occur in equalities.

Our rules (R7), (R3), (R4), and (R10) are—in combination with rules (EQ1)
and (EQ2) extensions for handling literals with complez set terms of the cor-
responding rules in Cantone’s calculus. For example, our rule (R3), that allows
to derive a Eb and a EV from a £ (bMb'), corresponds to Cantone’s rule that
allows to derive a Eb and a EV from ¢~ (bMY') and a Ec (for all a,b, c).

There are no rules in Cantone’s calculus corresponding to our rules (R5),
(R8), and (R9) for literals expressing negated membership. Consider the three
literals ¢ = ¢ £ (by U b2) \ b3, 1 = ¢ E by, and ¢35 = ¢ & bz, whose conjunction is
inconsistent. To close a branch containing these literals, our rules (R9) and (R5)
are applied to split the literal ¢ and derive that one of —; and —y holds,
thus closing the two resulting sub-branches. Since no rules for splitting ¢ exist
in Cantone’s calculus, instead rules for positive membership literals have to be

used to derive —¢ from 1 and s: first, ¢ has to be normalised, the result are the
literals ¢ #Zdy, di = da \ b3, and da = by L ba where d; abbreviates (by U b2) \ b3
and ds abbreviates by U bo. Then, with two rule applications, ¢ E de and ¢ E d;
are derived. The latter literal can be used to close the branch; it corresponds to
the non-normalised literal —¢.

The need (and possibility) to derive more complex terms from simpler ones
leads to a larger search space. Our rules, that split complex terms into simpler
ones, are more goal directed.

5 A Tableau Calculus for MLSSF

5.1 A Simple Extension of MLSS

To extend the calculus described in the previous sections from MLSS to MLSSF,
it suffices to (a) relax the restrictions on the equality rules ((EQ1’) and (EQ2’)
in Table 4), and (b) add a cut rule that uses equalities as cut formulae ((Cut’) in
Table 4). The new rules only need to be applied to functional set terms. Non-
functional terms, even if they are not pure, can be handled by the MLSS rules.
The result of using these additional rules is a sound and complete calculus for
MLSSF; it is, however, not a decision procedure.

Table 4. Additional expansion rules for MLSSF.

st t~s

ols] ols] b~ ot 7 t2
[t] ?t] where t1,t2 occur on the branch
where the occurrence of s in ¢ and at least one is a functional term
is inside a functional term (Cut’)

(EQU) (EQ2)

Theorem 23. An MLSSF formula ¢ is valid iff there is a tableau proof for ¢
using the expansion rules from Tables 1-4, and the closure rule from Def. 11.

5.2 Using Rigid E-Unification to Restrict the Equality Cut Rule

The additional rules for MLSSF introduced in the previous section are highly
non-deterministic. In this section, we describe an expansion rule for MLSSF that
is much more goal-directed and leads to a smaller search space. It is based on
the concept of rigid E-unification.

Definition 24. A rigid F-unification problem (FE, s,t) consists of a finite set E
of equalities and terms s and t; the equalities in E and the terms s and t may
contain free variables (and may have variables in common). A substitution o is
a solution to the problem iff Eo |= (so = to) where the free variables in Eo are
“held rigid”, i.e., treated as constants.

The problem of deciding whether a given rigid F-unification problem has a
solution is decidable (it is NP-complete). In general, the number of solutions is
infinite. An overview of methods for rigid E-unification can be found in [1].

The basic idea is to use rigid E-unification for handling the functional part of
formulae on a branch and to use the tableau rules for handling the non-functional
(i.e. set theoretic) part. The additional tableau rule we describe in the following
forms the connecting link between the two parts.

Consider, for example, a branch B containing the two literals f(a) ~ b and
g(f(am(bUa))) Eg(b). They are inconsistent, because aN (bUa) = a and, thus,
g(f(an(bUa))) = g(f(a)) = g(b); this implies g(b) € g(b), which is a membership
cycle. To close the branch, one first has to find out what the important set
theoretic identities are that have to be proven?, in this case aN (bU a) = a. It is
impossible to do this using only heuristics; here, for example, it is futile to try
to show that a N (bUa) = b.

The question of which set theoretic identities have to be proven to close the
branch is transformed into rigid E-unification problems as follows: for each pair
s,t of terms that, if they were identical would allow to close the branch (e.g. if
s % tis on B), one rigid F-unification problem is generated. In s and ¢ all maxi-
mal non-functional sub-terms are replaced by (new) variables; the resulting terms
t* and s* and the equalities on the branch form a rigid E-unification problem.
Each solution to the problem corresponds to identities between non-functional
sub-terms that, when proven, allow to close the branch. The corresponding in-
equalities are (disjunctively connected) added to the branch.

Definition 25. Given a set L of set literals, the set L™ is constructed by replac-
ing all non-functional (sub-)termst in L by a new variable x;. Let the substitu-
tion 11, be defined by: T(x) =t for all termst in L that have been replaced (i.e.,
T, is the inverse of the transformation that turns L into L*: 7(L*) = L).

Ezample 26. If L = {(aNc)Ub=c, f(c) EglaNec, f(d\ e))}, then the result of
the transformation is L* = {1 & xa, f(z2) E g(x3, f(z4))}.

Definition 27. The rigid F-unification expansion rule (EU) is defined as fol-
lows: Let B be a branch in a tableau for an MLSSF formula, and let Lg be
the set of all literals on B of the form t1 =~ ty, t1 E ta, or t1 & ta. Let
E%, be the set of all equalities in LY. Further let pn={x1 «— ri,...,Tn < rn}
(n > 1) be a solution to (1) a rigid E-unification problem (E%, (s1,11), (s2,t2))
such that sy Et1 and sy Ete are in LY or (2) a rigid E-unification problem
(E5, (t1, .-y tn), (th, ...,) such that literals t1 EtS, ... tn—1 Et,, and t, EY}
in LY form a potential membership cycle. Then B may be extended by n new
linear subtrees where the nodes of the new subtrees are labelled with the literals

TLp ('Tl) % TLy (r1)7 -+, TLp (‘T") #TLp (Tn)

Example 28. We continue the example from the beginning of this section and
apply the rule (EU) to show that a branch containing the literals f(a) = b and

3 An identity is proven by using it as a cut formula; after the branch that contains its
negation has been closed, it is available on the remaining open branch.

g(f(am(bUa))) Eg(b) is inconsistent. The only rigid F-unification problem that
can be extracted from these literals is ({f(z4) = 2b}, 9(f (Zan(bua))), 9(28)). Its
simplest solution is the substitution {2, < Zanua)}. Thus, the rule (EU) allows
to add a % a M (bUa) to the branch. The complete proof is shown in Fig. 1.

fla) = b
g(f(al_l(b'—lla))) Eg(b)
a#al(blUa)

-~ ~
cEa ca
cEal(bUa) cEan(bUa)

/ \ b |
c cEa
c%a c#a cEbUa

Fig. 1. A tableau proof using the rule (EU) (Example 28).

It is not necessary to consider rigid F-unification problems constructed from
inequalities s % t because, when rule (R11) has been applied, L% contains literals
TeESs,x. Etor x. £s,x. EL.

The (EU) expansion rule partly overlaps with other expansion rules. It al-
lows, for example, to derive s1 % so from s; Et and sg £t if s; and sy are
non-functional set terms. This is also possible applying the rule (R11).

Theorem 29. An MLSSF formula ¢ is valid if and only if there is a tableau
proof for ¢ using the expansion rules from Tables 1-4, the rule (EU) (Def. 27),
and the closure rule from Def. 11.

The rule (EU) is sound and helps to reduce the search space; we conjec-
ture that completeness is preserved if the rules (EQ1’), (EQ2’), and (Cut’) are
replaced by (EU), but have not proven this yet.

6 An Example

As an example, we proof that the MLSSF formula
¢ = [zE[(fl)\ fleu(yNz)UzUw] A wlyEz] — zE=

is valid; it contains the free function symbol f. Intuitively, the reason for the
validity of ¢ is the following: We assume that z is an element of (at least) one of
the three sets u = f(z) \ f(z U (y Nx)), 2z, and w, and that w Uy is an element
of . Now, the set u cannot contain x, because z = (z U (y Nx)) and therefore
u is empty for all interpretations of f; the set w cannot contain x, otherwise
there would be a membership cycle x € (w Uy) € x. Therefore, z contains x.

Figure 2 shows a tableau proof for ¢. Its root is labelled with the Skolemi-
sation = [a E[(f(a)\ flaU(bMa)))UdUe] A elbEal — aEd of ~¢. The
i-th formula in the tableau is labelled with [i; j; R], which indicates that it has
been derived from the j-th formula applying the expansion rule R.

Formula 9 is derived from formulae 7 and 8 applying the F-unification rule.
A solution to the E-unification problem (), (a4, za), (f(2a), f(ZaL(bra)))), which
is constructed from 7 and 8, is the substitution {2, < Zau@na)}. Accordingly,
the inequality a % a U (bMa) is added to the branch.

The branch ending in formula 21 is closed by the membership cycle e LIb E a
and a EelUb (formulae 2 and 21). All other branches are closed by complemen-
tary literals; their leaves are labelled with the numbers of the closing literals.

If the closure rule that uses the sets of implicit predecessors to detect implicit
membership cycles is used (Def. 18), the cut rule application that generates
formulae 22 and 23 is not needed. Instead, the branch ending in the literal 21 is
already closed; it contains an implicit cycle because a E e implies a E e Ub (this
cycle is made explicit by the cut rule application).

Implicit cycles can be detected by calculating the predecessor relation for the
branch. The set of possible predecessors for the branch ending in formula 21 is
{a,b,d,e, f(a), f(aU (bMa)),(eUb)}. The predecessor sets of the constants are
P(a) ={eUb}, P(b) =0, P(d) =0, and P(e) = {a}. The predecessor set of e LI b
is P(eUbd) = P(e) U P(b) = {a}. Thus, we have a € P(eUb) and e Ub € P(a),
which indicates the presence of an implicit membership cycle.

(05-5Tnit] ﬂ([a E[f(a)\ flaU(bMa))UdUe A eI_IbEa] —>aEd)

woal a E[(f(a)\ flaU(bMa)))UdUe] A eUbEa
2:0;0] @ £d
el a E[(f(a)\ flaU(bMa)))UdUe]
410 elUbEa

[5;3;R7] Q = f(a) \ J;(a{(b M a)) &3r7 a Edlle

= f(a) [20:6;R7] a Ed

[21;6;R7] G E€

®&s5ra a iz flal(bMa)) *[10, 2]
| 22;cut] a Eellb : | aWelb
23;—;Cut K

[9;(7,8);BU] Cﬁe all (b@) *[Cycle] 2azaws) a i e

[10;9;R12] €1 Ea (12;9;R12] €1 £ a (25:23m5] a B b

(11;9R12] €1 £ a ||_| (bMa) [18;9;R12] Cl/E al(bMa) *[24, 21]
(14;11;R5] €1 £ a 1e;13r7 C1 Ea arasmn ¢ EbMa

s;11R5] €1 ZbMa *[167 12] |

x[14, 10] 18;17;r3] €1 £ b
[19;17;R3] €1 Ea

%19, 12]

Fig. 2. Tableau proof for the formula ¢ from Sect. 6.

7 Conclusion

We have presented an improved tableau calculus for the fragment MLSS of set
theory that extends the calculus described in [4]. Our tableau expansion rules
are more goal-directed; this leads to a smaller search space, which is important
for the efficiency of an implementation. Our calculus is a sound and complete
decision procedure for MLSS. In addition, we have described a version of the
calculus for the larger fragment MLSSF (MLSS with free function symbols); and
we have shown how to use a special tableau rule based on rigid E-unification to
reduce the search space in the case of MLSSF.

Future work includes, besides an implementation and practical evaluation of
our calculus, its extension to larger (and undecidable) fragments that (a) contain
additional set theoretic operators such as, for example, the power set operator,
and that (b) allow existential quantification of variables.

Acknowledgement. We thank Domenico Cantone, Sebastiano Battiato, and
three anonymous referees for useful comments on an earlier version of this paper.

References

1. B. Beckert. Rigid F-unification. In W. Bibel and P. H. Schmitt, editors, Automated
Deduction — A Basis for Applications, volume 1. Kluwer, 1998. To appear.

2. F. M. Brown. Towards the automation of set theory. J. of Al, 10:218-316, 1978.

3. D. Cantone. Decision procedures for elementary sublanguages of set theory. X.
Journal of Automated Reasoning, 7:193-230, 1991.

4. D. Cantone. A fast saturation strategy for set-theoretic tableaux. In Proceedings,
TABLEAUX, Pont-a-Mousson, France, LNCS 1227, pages 122-137. Springer, 1997.

5. D. Cantone and A. Ferro. Techniques of computable set theory with applications
to proof verification. Comm. on Pure and Applied Mathematics, 48:901-946, 1995.

6. D. Cantone, A. Ferro, and E. Omodeo. Computable Set Theory. Oxford University
Press, 1989.

7. D. Cantone, A. Ferro, and T. J. Schwartz. Decision procedures for elementary
sublanguages of set theory. VI. Comm. on Pure and Applied Mathematics, 38:549—
571, 1985.

8. D. Cantone, A. Ferro, and T. J. Schwartz. Decision procedures for elementary
sublanguages of set theory. V. J. of Computer and Syst. Sciences, 34:1-18, 1987.

9. D. Cantone and T. J. Schwartz. Decision procedures for elementary sublanguages
of set theory. XI. Journal of Automated Reasoning, 7:231-256, 1991.

10. H. de Nivelle. Implementation of sequent calculus and set theory. Draft, Feb. 1997.

11. A. Ferro and E. Omodeo. Decision procedures for elementary sublanguages of set
theory. VII. Communications on Pure and Applied Mathematics, 40:265-280, 1987.

12. U. Hartmer. Erweiterung des Tableaukalkiils mit freien Variablen um die Behand-
lung von Mengentheorie. Diplomarbeit, Universitat Karlsruhe, 1997.

13. T. Jech. Set Theory. Academic Press, New York, 1978.

14. D. Pastre. Automatic theorem proving in set theory. J. of AI, 10:1-27, 1978.

15. B. Shults. Comprehension and description in tableaux. Draft, May 1997.

