
Proof Confluent Tableau Calculi

Reiner Hähnle and Bernhard Beckert

Dept. of Computer Science, University of Karlsruhe

76128 Karlsruhe, Germany, {reiner,beckert}@ira.uka.de

1 Introduction

A tableau calculus is proof confluent if every partial tableau proof for an unsat-
isfiable formula can be extended to a closed tableau. A rule application may be
redundant but it can never prevent the construction of a proof; there are no “dead
ends” in the proof search. Proof confluence is a prerequisite of (a) backtracking-
free proof search and (b) the generation of counter examples to non-theorems.

In this tutorial we discuss the rôle and perspectives of proof confluent cal-
culi in tableau-based theorem proving. For the sake of simplicity the discussion
focuses on clause tableaux.

2 Tableaux with Selection Function

Among the more effective resolution refinements are those based on selection
functions such as hyperresolution and semantic resolution. A number of calculi
related to these concepts were also introduced into the world of semantic tableaux
in form of various proof confluent refinements.

The emphasis so far were tableau calculi corresponding to positive hyper-
resolution and binary resolution with selection function. In this tutorial, more
general calculi based on arbitrary selection functions with hyper extension steps
are discussed. For those selection functions that correspond to Herbrand inter-
pretations one obtains a semantic tableau analogue of semantic resolution. All
introduced calculi are based on a simple, generic saturation principle leading to
brief and schematic completeness proofs.

It is shown that just as model generation theorem proving (MGTP) is an
instance of hyper tableaux, constraint MGTP turns out to be an instance of
hyper tableaux with selection function. This gives a formal justification why
constraint MGTP is a complete procedure for many applications such as quasi-
group problems.

3 Proof Confluence and Strong Completeness

For practical purposes, a completeness theorem merely stating the existence of
a tableau proof is not sufficient. A stronger result is needed giving the guarantee
that a concrete tableau proof search procedure will find a closed tableau if there
exists one. Let us call this (as usual) the strong completeness problem.



This problem can easily be solved if the calculus is non-destructive, i.e., if all
tableaux that can be constructed from a given tableau contain that tableau as
an initial subtree. In that case, one can simply arrange input clauses in a queue
(on each branch) and thus ensure that enough instances of each clause are used
on each branch to obtain a proof. Examples of non-destructive tableau calculi
are Smullyan tableaux and Fitting’s delayed instantiation rule.

Unfortunately, the standard version of clause tableaux is a destructive cal-
culus. The culprit is the closure rule, which allows to instantiate free variables.

The standard solution for proof search in all destructive calculi is depth-first

iterative deepening search, it was pioneered by Stickel, and is used, for example,
in the provers Setheo, 3TAP , and KoMeT. One enumerates all tableaux up to a
fixed size via backtracking over possible closure rule applications. Completeness
is achieved by iterative increase of the bound on tableau size.

But how, besides backtracking, can be dealt with the strong completeness
problem in case the calculus is destructive but proof confluent? A strongly com-
plete procedure performing a depth-first proof search has several advantages.
The information represented by the constructed tableaux increases at each proof
step; no information is lost since there is no backtracking. In addition, consid-
ering similar tableaux or sequences of tableaux in different paths of the search
tree is avoided.

The problem of constructing a strongly complete proof procedure without
backtracking is discussed in the last part of the tutorial. A possible solution is
presented that is based on a notion of regularity to make sure that there are
no “cycles” in the search (it is not possible to deduce the same literals, clauses,
or sub-tableau again and again). In addition, each literal is assigned a “weight”
in such a way that there are only finitely many different literals (up to variable
renaming) of a certain weight; thus, since literals with lesser weight are deduced
first, sooner or later each possible conclusion is added to all branches containing
its premiss, i.e., the strategy is fair. To handle the destructiveness of clause
tableaux, the strategy employs reconstruction steps. Immediately after a rule
application that instantiates free variables, the expansion steps that are needed
to recreate the destroyed part of the tableau are executed.

Further Information

There is a Web page for this tutorial, where slides, references, and related papers
are available; the URL is i12www.ira.uka.de/tab99-tutorial.


