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Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,
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JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior //<hello!<
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



Visibility Modifiers

public class ATM {
private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/

boolean customerAuthenticated = false;

/*@ public normal_behavior ... @*/

Modifiers to specification cases have no influence on their
semantics.
public specification items cannot refer to private fields.
Private fields can be declared public for specification
purposes only.
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Method Contracts

/*@ requires r;
@ assignable a;
@ diverges d;
@ ensures post;
@ signals_only E1,...,En;
@ signals(E e) s;
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
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Class Invariants

//@ invariant i;

can be placed anywhere in a class (or interface)
express global consistency properties (not specific to a
particular method)
must hold “always”
(cf. visible state semantics, observed state semantics)
instance invariants can, static invariants cannot refer
to this

default: instance within classes, static within
interfaces
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Pure Methods

Pure methods terminate and have no side effects.

After declaring

public /*@ pure @*/ boolean cardIsInserted() {
return insertedCard!=null;

}

cardIsInserted()

could replace
insertedCard != null

in JML annotations.
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Pure Methods

‘pure’ ≈ ‘diverges false;’ + ‘assignable \nothing;’
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Expressions

All Java expressions without side-effects
==>, <==>: implication, equivalence
\forall, \exists
\num of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions
\result: referring to return value in postconditions
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Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Generalised and Numerical
Quantifiers

(\num_of T i; e) #{i |[e]}, number of elements of
type T with property e

(\sum T i; p; t)
∑
i:[p]

[t ]

(\product T i; p; t)
∏
i:[p]

[t ]

(\min T i; p; t) min
i:[p]
{[t ]}

(\max T i; p; t) max
i:[p]
{[t ]}
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The assignable Clauses
Comma-separated list of:

e.f (where f a field)

a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y; //allowed (in assignable clause)
x.i = 27; //forbidden (not local, not in assignable)

}

assignable clauses are always evaluated in the pre-state!
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The diverges Clause

diverges e;

with a boolean JML expression e specifies that the method may
may not terminate only when e is true in the pre-state.

Examples
diverges false;

The method must always terminate.
diverges true;

The method may terminate or not.

diverges n == 0;
The method must terminate, when called in a state with n!=0.
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The signals Clauses

ensures p;
signals_only ET1, ..., ETm;
signals (E1 e1) s1;
...
signals (En en) sn;

normal termination ⇒ p must hold (in post-state)
exception thrown ⇒ must be of type ET1, . . . , or ETm
exception of type E1 thrown ⇒ s1 must hold (in
post-state)
. . .

exception of type En thrown ⇒ sn must hold (in
post-state)
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Model Fields

public interface IBonusCard {

public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.
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Model Fields
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Model Fields

public interface IBonusCard {

/*@ public instance model int bonusPoints; @*/

/*@ ensures bonusPoints == \old(bonusPoints)+newBonusPoints;
@ assignable bonusPoints;
@*/
public void addBonus(int newBonusPoints);

}
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Implementing Interfaces

public interface IBonusCard {
/*@ public instance model int bonusPoints; @*/

/*@ ... @*/
public void addBonus(int newBonusPoints);

Implementation

public class BankCard implements IBonusCard{
public int bankCardPoints;

/*@ private represents bonusPoints = bankCardPoints; @*/

public void addBonus(int newBonusPoints) {
bankCardPoints += newBonusPoints; }

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 16/22



Implementing Interfaces

public interface IBonusCard {
/*@ public instance model int bonusPoints; @*/

/*@ ... @*/
public void addBonus(int newBonusPoints);

Implementation

public class BankCard implements IBonusCard{
public int bankCardPoints;

public void addBonus(int newBonusPoints) {
bankCardPoints += newBonusPoints; }

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 16/22



Implementing Interfaces

public interface IBonusCard {
/*@ public instance model int bonusPoints; @*/

/*@ ... @*/
public void addBonus(int newBonusPoints);

Implementation

public class BankCard implements IBonusCard{
public int bankCardPoints;

/*@ private represents bonusPoints = bankCardPoints; @*/

public void addBonus(int newBonusPoints) {
bankCardPoints += newBonusPoints; }

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 16/22



Other Representations

/*@ private represents bonusPoints
= bankCardPoints; @*/

/*@ private represents bonusPoints
= bankCardPoints * 100; @*/

/*@ represents x \such_that A(x); @*/
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Inheritance of Specifications in JML

An invariant to a class is inherited by all its subclasses.
An operation contract is inherited by all overridden
methods.
It can be extended there.
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Other JML Features

assertions ‘//@ assert e;’
loop invariants ‘//@ loop invariant p;’
data groups
refines
many more. . .
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Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable
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Problems with Specifications Using
Integers

/*@ requires y >= 0;
@ ensures \result >= 0;
@ ensures \result * \result <= y;
@ ensures (\result+1) * (\result+1) > y;
@ */
public static int isqrt(int y)

For y = 1 and \result = 1073741821 = 1
2(MAX INT − 5) the

above postcondition is true, though we do not want
1073741821 to be a square root of 1.
JML uses the Java semantics of integers:

1073741821 ∗ 1073741821 = −2147483639
1073741822 ∗ 1073741822 = 4

The JML type \bigint provides arbitrary precision integers.
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JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing
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