
KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Applications of Formal Verification
Functional Verification of Java Programs:
Java Modelling Language
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov | SS 2012

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association



Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/22



Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/22



Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/22



Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/22



Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/22



Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/22



Design by Contract

Idea
Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

Interface documentation
Contracts described in a mathematically precise language
(JML)

higher degree of precision
automation of program analysis of various kinds
(runtime assertion checking, static verification)

Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



JML Annotations

/*@ public normal_behavior //<hello!<
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
...

Java comments with ‘@’ as first character are JML
specifications
Within a JML annotation, an ‘@’ is ignored:

if it is the first (non-white) character in the line
if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to
use them.
JML specifications may themselves contain comments

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/22



Visibility Modifiers

public class ATM {
private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/

boolean customerAuthenticated = false;

/*@ public normal_behavior ... @*/

Modifiers to specification cases have no influence on their
semantics.
public specification items cannot refer to private fields.
Private fields can be declared public for specification
purposes only.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/22



Visibility Modifiers

public class ATM {
private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/

boolean customerAuthenticated = false;

/*@ public normal_behavior ... @*/

Modifiers to specification cases have no influence on their
semantics.
public specification items cannot refer to private fields.
Private fields can be declared public for specification
purposes only.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/22



Visibility Modifiers

public class ATM {
private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/

boolean customerAuthenticated = false;

/*@ public normal_behavior ... @*/

Modifiers to specification cases have no influence on their
semantics.
public specification items cannot refer to private fields.
Private fields can be declared public for specification
purposes only.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/22



Visibility Modifiers

public class ATM {
private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/

boolean customerAuthenticated = false;

/*@ public normal_behavior ... @*/

Modifiers to specification cases have no influence on their
semantics.
public specification items cannot refer to private fields.
Private fields can be declared public for specification
purposes only.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/22



Method Contracts

/*@ requires r;
@ assignable a;
@ diverges d;
@ ensures post;
@ signals_only E1,...,En;
@ signals(E e) s;
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a;
@ diverges d;
@ ensures post;
@ signals_only E1,...,En;
@ signals(E e) s;
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d;
@ ensures post;
@ signals_only E1,...,En;
@ signals(E e) s;
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d; //when may m non-terminate?
@ ensures post;
@ signals_only E1,...,En;
@ signals(E e) s;
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d; //when may m non-terminate?
@ ensures post; //what must hold on normal termination?
@ signals_only E1,...,En;
@ signals(E e) s;
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d; //when may m non-terminate?
@ ensures post; //what must hold on normal termination?
@ signals_only E1,...,En; //what exc-types may be thrown?
@ signals(E e) s;
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d; //when may m non-terminate?
@ ensures post; //what must hold on normal termination?
@ signals_only E1,...,En; //what exc-types may be thrown?
@ signals(E e) s; //what must hold when an E is thrown?
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d; //when may m non-terminate?
@ ensures post; //what must hold on normal termination?
@ signals_only E1,...,En; //what exc-types may be thrown?
@ signals(E e) s; //what must hold when an E is thrown?
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d; //when may m non-terminate?
@ ensures post; //what must hold on normal termination?
@ signals_only E1,...,En; //what exc-types may be thrown?
@ signals(E e) s; //what must hold when an E is thrown?
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Method Contracts

/*@ requires r; //what is the caller’s obligation?
@ assignable a; //which locations may be assigned by m?
@ diverges d; //when may m non-terminate?
@ ensures post; //what must hold on normal termination?
@ signals_only E1,...,En; //what exc-types may be thrown?
@ signals(E e) s; //what must hold when an E is thrown?
@*/

T m(...);

Abbreviations
normal behavior = signals(Exception e) false;

exceptional behavior = ensures false;

keyword ‘also’ separates the contracts of a method
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/22



Class Invariants

//@ invariant i;

can be placed anywhere in a class (or interface)
express global consistency properties (not specific to a
particular method)
must hold “always”
(cf. visible state semantics, observed state semantics)
instance invariants can, static invariants cannot refer
to this

default: instance within classes, static within
interfaces

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/22



Class Invariants

//@ invariant i;

can be placed anywhere in a class (or interface)
express global consistency properties (not specific to a
particular method)
must hold “always”
(cf. visible state semantics, observed state semantics)
instance invariants can, static invariants cannot refer
to this

default: instance within classes, static within
interfaces

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/22



Class Invariants

//@ invariant i;

can be placed anywhere in a class (or interface)
express global consistency properties (not specific to a
particular method)
must hold “always”
(cf. visible state semantics, observed state semantics)
instance invariants can, static invariants cannot refer
to this

default: instance within classes, static within
interfaces

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/22



Class Invariants

//@ invariant i;

can be placed anywhere in a class (or interface)
express global consistency properties (not specific to a
particular method)
must hold “always”
(cf. visible state semantics, observed state semantics)
instance invariants can, static invariants cannot refer
to this

default: instance within classes, static within
interfaces

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/22



Class Invariants

//@ invariant i;

can be placed anywhere in a class (or interface)
express global consistency properties (not specific to a
particular method)
must hold “always”
(cf. visible state semantics, observed state semantics)
instance invariants can, static invariants cannot refer
to this

default: instance within classes, static within
interfaces

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/22



Class Invariants

//@ invariant i;

can be placed anywhere in a class (or interface)
express global consistency properties (not specific to a
particular method)
must hold “always”
(cf. visible state semantics, observed state semantics)
instance invariants can, static invariants cannot refer
to this

default: instance within classes, static within
interfaces

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/22



Pure Methods

Pure methods terminate and have no side effects.

After declaring

public /*@ pure @*/ boolean cardIsInserted() {
return insertedCard!=null;

}

cardIsInserted()

could replace
insertedCard != null

in JML annotations.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/22



Pure Methods

Pure methods terminate and have no side effects.

After declaring

public /*@ pure @*/ boolean cardIsInserted() {
return insertedCard!=null;

}

cardIsInserted()

could replace
insertedCard != null

in JML annotations.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/22



Pure Methods

Pure methods terminate and have no side effects.

After declaring

public /*@ pure @*/ boolean cardIsInserted() {
return insertedCard!=null;

}

cardIsInserted()

could replace
insertedCard != null

in JML annotations.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/22



Pure Methods

‘pure’ ≈ ‘diverges false;’ + ‘assignable \nothing;’

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/22



Expressions

All Java expressions without side-effects
==>, <==>: implication, equivalence
\forall, \exists
\num of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions
\result: referring to return value in postconditions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/22



Expressions

All Java expressions without side-effects
==>, <==>: implication, equivalence
\forall, \exists
\num of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions
\result: referring to return value in postconditions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/22



Expressions

All Java expressions without side-effects
==>, <==>: implication, equivalence
\forall, \exists
\num of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions
\result: referring to return value in postconditions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/22



Expressions

All Java expressions without side-effects
==>, <==>: implication, equivalence
\forall, \exists
\num of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions
\result: referring to return value in postconditions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/22



Expressions

All Java expressions without side-effects
==>, <==>: implication, equivalence
\forall, \exists
\num of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions
\result: referring to return value in postconditions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/22



Expressions

All Java expressions without side-effects
==>, <==>: implication, equivalence
\forall, \exists
\num of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions
\result: referring to return value in postconditions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Quantification in JML

(\forall int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\forall int i; 0<=i && i<\result.length ==> \result[i]>0)

(\exists int i; 0<=i && i<\result.length; \result[i]>0)
equivalent to
(\exists int i; 0<=i && i<\result.length && \result[i]>0)

Note that quantifiers bind two expressions, the range
predicate and the body expression.
A missing range predicate is by default true.
JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/22



Generalised and Numerical
Quantifiers

(\num_of T i; e) #{i |[e]}, number of elements of
type T with property e

(\sum T i; p; t)
∑
i:[p]

[t ]

(\product T i; p; t)
∏
i:[p]

[t ]

(\min T i; p; t) min
i:[p]
{[t ]}

(\max T i; p; t) max
i:[p]
{[t ]}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 11/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)

a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y; //allowed (in assignable clause)
x.i = 27; //forbidden (not local, not in assignable)

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)

\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y; //allowed (in assignable clause)
x.i = 27; //forbidden (not local, not in assignable)

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y; //allowed (in assignable clause)
x.i = 27; //forbidden (not local, not in assignable)

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x;
tmp.i = 27;
x = y;
x.i = 27;

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27;
x = y;
x.i = 27;

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y;
x.i = 27;

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y; //allowed (in assignable clause)
x.i = 27;

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y; //allowed (in assignable clause)
x.i = 27; //forbidden (not local, not in assignable)

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The assignable Clauses
Comma-separated list of:

e.f (where f a field)
a[*], a[x..y] (where a an array expression)
\nothing, \everything (default)

Example
C x, y; int i;
//@ assignable x, x.i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
x = y; //allowed (in assignable clause)
x.i = 27; //forbidden (not local, not in assignable)

}

assignable clauses are always evaluated in the pre-state!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/22



The diverges Clause

diverges e;

with a boolean JML expression e specifies that the method may
may not terminate only when e is true in the pre-state.

Examples
diverges false;

The method must always terminate.
diverges true;

The method may terminate or not.

diverges n == 0;
The method must terminate, when called in a state with n!=0.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 13/22



The diverges Clause

diverges e;

with a boolean JML expression e specifies that the method may
may not terminate only when e is true in the pre-state.

Examples
diverges false;

The method must always terminate.
diverges true;

The method may terminate or not.

diverges n == 0;
The method must terminate, when called in a state with n!=0.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 13/22



The diverges Clause

diverges e;

with a boolean JML expression e specifies that the method may
may not terminate only when e is true in the pre-state.

Examples
diverges false;

The method must always terminate.
diverges true;

The method may terminate or not.

diverges n == 0;
The method must terminate, when called in a state with n!=0.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 13/22



The diverges Clause

diverges e;

with a boolean JML expression e specifies that the method may
may not terminate only when e is true in the pre-state.

Examples
diverges false;

The method must always terminate.
diverges true;

The method may terminate or not.

diverges n == 0;
The method must terminate, when called in a state with n!=0.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 13/22



The signals Clauses

ensures p;
signals_only ET1, ..., ETm;
signals (E1 e1) s1;
...
signals (En en) sn;

normal termination ⇒ p must hold (in post-state)
exception thrown ⇒ must be of type ET1, . . . , or ETm
exception of type E1 thrown ⇒ s1 must hold (in
post-state)
. . .

exception of type En thrown ⇒ sn must hold (in
post-state)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 14/22



The signals Clauses

ensures p;
signals_only ET1, ..., ETm;
signals (E1 e1) s1;
...
signals (En en) sn;

normal termination ⇒ p must hold (in post-state)
exception thrown ⇒ must be of type ET1, . . . , or ETm
exception of type E1 thrown ⇒ s1 must hold (in
post-state)
. . .

exception of type En thrown ⇒ sn must hold (in
post-state)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 14/22



The signals Clauses

ensures p;
signals_only ET1, ..., ETm;
signals (E1 e1) s1;
...
signals (En en) sn;

normal termination ⇒ p must hold (in post-state)
exception thrown ⇒ must be of type ET1, . . . , or ETm
exception of type E1 thrown ⇒ s1 must hold (in
post-state)
. . .

exception of type En thrown ⇒ sn must hold (in
post-state)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 14/22



The signals Clauses

ensures p;
signals_only ET1, ..., ETm;
signals (E1 e1) s1;
...
signals (En en) sn;

normal termination ⇒ p must hold (in post-state)
exception thrown ⇒ must be of type ET1, . . . , or ETm
exception of type E1 thrown ⇒ s1 must hold (in
post-state)
. . .

exception of type En thrown ⇒ sn must hold (in
post-state)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 14/22



The signals Clauses

ensures p;
signals_only ET1, ..., ETm;
signals (E1 e1) s1;
...
signals (En en) sn;

normal termination ⇒ p must hold (in post-state)
exception thrown ⇒ must be of type ET1, . . . , or ETm
exception of type E1 thrown ⇒ s1 must hold (in
post-state)
. . .

exception of type En thrown ⇒ sn must hold (in
post-state)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 14/22



Model Fields

public interface IBonusCard {

public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/22



Model Fields

public interface IBonusCard {

public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/22



Model Fields

public interface IBonusCard {

public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/22



Model Fields

public interface IBonusCard {

public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/22



Model Fields

public interface IBonusCard {

/*@ public instance model int bonusPoints; @*/

public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/22



Model Fields

public interface IBonusCard {

/*@ public instance model int bonusPoints; @*/

/*@ ensures bonusPoints == \old(bonusPoints)+newBonusPoints;

public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/22



Model Fields

public interface IBonusCard {

/*@ public instance model int bonusPoints; @*/

/*@ ensures bonusPoints == \old(bonusPoints)+newBonusPoints;
@ assignable bonusPoints;
@*/
public void addBonus(int newBonusPoints);

}

How to add contracts to abstract methods in interfaces?
Remember: There are no attributes in interfaces.
More precisely: Only static final fields.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/22



Implementing Interfaces

public interface IBonusCard {
/*@ public instance model int bonusPoints; @*/

/*@ ... @*/
public void addBonus(int newBonusPoints);

Implementation

public class BankCard implements IBonusCard{
public int bankCardPoints;

/*@ private represents bonusPoints = bankCardPoints; @*/

public void addBonus(int newBonusPoints) {
bankCardPoints += newBonusPoints; }

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 16/22



Implementing Interfaces

public interface IBonusCard {
/*@ public instance model int bonusPoints; @*/

/*@ ... @*/
public void addBonus(int newBonusPoints);

Implementation

public class BankCard implements IBonusCard{
public int bankCardPoints;

public void addBonus(int newBonusPoints) {
bankCardPoints += newBonusPoints; }

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 16/22



Implementing Interfaces

public interface IBonusCard {
/*@ public instance model int bonusPoints; @*/

/*@ ... @*/
public void addBonus(int newBonusPoints);

Implementation

public class BankCard implements IBonusCard{
public int bankCardPoints;

/*@ private represents bonusPoints = bankCardPoints; @*/

public void addBonus(int newBonusPoints) {
bankCardPoints += newBonusPoints; }

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 16/22



Other Representations

/*@ private represents bonusPoints
= bankCardPoints; @*/

/*@ private represents bonusPoints
= bankCardPoints * 100; @*/

/*@ represents x \such_that A(x); @*/

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 17/22



Other Representations

/*@ private represents bonusPoints
= bankCardPoints; @*/

/*@ private represents bonusPoints
= bankCardPoints * 100; @*/

/*@ represents x \such_that A(x); @*/

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 17/22



Other Representations

/*@ private represents bonusPoints
= bankCardPoints; @*/

/*@ private represents bonusPoints
= bankCardPoints * 100; @*/

/*@ represents x \such_that A(x); @*/

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 17/22



Inheritance of Specifications in JML

An invariant to a class is inherited by all its subclasses.
An operation contract is inherited by all overridden
methods.
It can be extended there.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 18/22



Inheritance of Specifications in JML

An invariant to a class is inherited by all its subclasses.
An operation contract is inherited by all overridden
methods.
It can be extended there.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 18/22



Inheritance of Specifications in JML

An invariant to a class is inherited by all its subclasses.
An operation contract is inherited by all overridden
methods.
It can be extended there.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 18/22



Other JML Features

assertions ‘//@ assert e;’
loop invariants ‘//@ loop invariant p;’
data groups
refines
many more. . .

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 19/22



Other JML Features

assertions ‘//@ assert e;’
loop invariants ‘//@ loop invariant p;’
data groups
refines
many more. . .

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 19/22



Other JML Features

assertions ‘//@ assert e;’
loop invariants ‘//@ loop invariant p;’
data groups
refines
many more. . .

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 19/22



Other JML Features

assertions ‘//@ assert e;’
loop invariants ‘//@ loop invariant p;’
data groups
refines
many more. . .

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 19/22



Other JML Features

assertions ‘//@ assert e;’
loop invariants ‘//@ loop invariant p;’
data groups
refines
many more. . .

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 19/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Nullity
JML has modifiers non null and nullable

private /*@spec_public non_null@*/ Object x;

 implicit invariant added to class: ‘invariant x != null;’

void m(/*@non_null@*/ Object p);

 implicit precondition added to all contracts:
‘requires p != null;’

/*@non_null@*/ Object m();

 implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/22



Problems with Specifications Using
Integers

/*@ requires y >= 0;
@ ensures \result >= 0;
@ ensures \result * \result <= y;
@ ensures (\result+1) * (\result+1) > y;
@ */
public static int isqrt(int y)

For y = 1 and \result = 1073741821 = 1
2(MAX INT − 5) the

above postcondition is true, though we do not want
1073741821 to be a square root of 1.
JML uses the Java semantics of integers:

1073741821 ∗ 1073741821 = −2147483639
1073741822 ∗ 1073741822 = 4

The JML type \bigint provides arbitrary precision integers.
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 21/22



Problems with Specifications Using
Integers

/*@ requires y >= 0;
@ ensures \result >= 0;
@ ensures \result * \result <= y;
@ ensures (\result+1) * (\result+1) > y;
@ */
public static int isqrt(int y)

For y = 1 and \result = 1073741821 = 1
2(MAX INT − 5) the

above postcondition is true, though we do not want
1073741821 to be a square root of 1.
JML uses the Java semantics of integers:

1073741821 ∗ 1073741821 = −2147483639
1073741822 ∗ 1073741822 = 4

The JML type \bigint provides arbitrary precision integers.
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 21/22



Problems with Specifications Using
Integers

/*@ requires y >= 0;
@ ensures \result >= 0;
@ ensures \result * \result <= y;
@ ensures (\result+1) * (\result+1) > y;
@ */
public static int isqrt(int y)

For y = 1 and \result = 1073741821 = 1
2(MAX INT − 5) the

above postcondition is true, though we do not want
1073741821 to be a square root of 1.
JML uses the Java semantics of integers:

1073741821 ∗ 1073741821 = −2147483639
1073741822 ∗ 1073741822 = 4

The JML type \bigint provides arbitrary precision integers.
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 21/22



Problems with Specifications Using
Integers

/*@ requires y >= 0;
@ ensures \result >= 0;
@ ensures \result * \result <= y;
@ ensures (\result+1) * (\result+1) > y;
@ */
public static int isqrt(int y)

For y = 1 and \result = 1073741821 = 1
2(MAX INT − 5) the

above postcondition is true, though we do not want
1073741821 to be a square root of 1.
JML uses the Java semantics of integers:

1073741821 ∗ 1073741821 = −2147483639
1073741822 ∗ 1073741822 = 4

The JML type \bigint provides arbitrary precision integers.
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 21/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22



JML Tools
Many tools support JML (see JML homepage). Among them:

jml: JML syntax checker
jmldoc: code documentation (like Javadoc)
jmlc: compiles Java+JML into bytecode with assertion
checks
jmlunit: unit testing (like JUnit)
rac: runtime assertion checker
ESC/Java2: leightweight static verification
KeY: full static verification
OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no

autoboxing

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/22


	Java Modelling Language

