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Applications of Formal Verification

Functional Verification of Java Programs:
Java Dynamic Logic

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov | SS 2012
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@ uJava CarD DL

Q Sequent Calculus

e Rules for Programs: Symbolic Execution
O A Calculus for 100% JAVA CARD

0 Loop Invariants
@ Basic Invariant Rule
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@ Java CarD DL
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I Syntax and Semantics (T
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m Basis: Typed first-order predicate logic

m Modal operators (p) and [p] for each
(JAVA CARD) program p

m Class definitions in background (not shown in formulas)
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m Basis: Typed first-order predicate logic

m Modal operators (p) and [p] for each
(JAVA CARD) program p

m Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

m [p]F: If pterminates normally, then
F holds in the final state  (“partial correciness”)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 4/38



I Syntax and Semantics (T
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m Basis: Typed first-order predicate logic

m Modal operators (p) and [p] for each
(JAVA CARD) program p

m Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

m [p]F: If pterminates normally, then
F holds in the final state  (“partial correciness”)
m (p)F: pterminates normally, and F holds in the final
state
(“total correctness”)
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| Why Dynamic Logic? AT

a Transparency wrt target programming language

m Programs are “first-class citizens”
a Real Java syntax
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I Why Dynamic Logic? AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

a Transparency wrt target programming language
® Encompasses Hoare Logic

Hoare triple  {¢} a {¢} equiv.to DL formula ¢ — [a]¢ |
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Why Dynamic Logic?

a Transparency wrt target programming language
@ Encompasses Hoare Logic
m More expressive and flexible than Hoare logic

Not merely partial/total correctness:

m can employ programs for specification (e.g., verifying
program transformations)

® can express security properties (two runs are
indistinguishable)

m extension-friendly (e.g., temporal modalities)
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| Why Dynamic Logic? AT

a Transparency wrt target programming language

@ Encompasses Hoare Logic

m More expressive and flexible than Hoare logic

m Symbolic execution is a natural interactive proof paradigm
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I Dynamic Logic Example Formulas AUT

(balance >=c¢ & amount > 0) >
(charge (amount) ;) balance > C
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I Dynamic Logic Example Formulas AT
(balance >=c¢ & amount > 0) >

(charge (amount) ;) balance > C

(x = 1;)([while (true) {}]false)
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(balance >=c¢ & amount > 0) >
(charge (amount) ;) balance > C

(x = 1;)([while (true) {}]false)
m Program formulas can appear nested
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I Dynamic Logic Example Formulas AUT

(balance >=c¢ & amount > 0) >
(charge (amount) ;) balance > C

(x = 1;)([while (true) {}]false)
m Program formulas can appear nested

\forall int val; (((p)x = val) <= ({(q)x = val))
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I Dynamic Logic Example Formulas

(balance >=c¢ & amount > 0) >
(charge (amount) ;) balance > C

(x = 1;)([while (true) {}]false)
m Program formulas can appear nested

\forall int val; (((p)x = val) <= ({(q)x = val))
® p, g equivalent relative to computation state restricted to x
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Dynamic Logic Example Formulas AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

a !'= null
>
<
int max = 0;
if ( a.length > 0 ) max = a[0];
int 1 = 1;
while ( i < a.length ) {
if ( ali]l > max ) max = a[i];

++1;
}
> (
\forall int j; (j >= 0 & j < a.length —> max >= a[j])
&
(a.length > 0 —>
\exists int j; (j >= 0 & j < a.length & max = a[]j]))
)
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I Variables A\KIT

m Logical variables disjoint from program variables

a No quantification over program variables
a Programs do not contain logical variables
m “Program variables” actually non-rigid functions
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| Validity AT

e Institute of Technology

A JAVA CARD DL formula is valid iff it is true in all states.
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| Validity AT

e Institute of Technology

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas
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Tell

0 JAVA CARD DL
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Tell

0 Sequent Calculus
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I Sequents and their Semantics AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

¢17"'a¢m = ¢17"'7¢n
—— ———
Antecedent Succedent

where the ¢;, ¢; are formulae (without free variables)
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I Sequents and their Semantics AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

¢17"'a¢m = ¢17"'7¢n
—— ———
Antecedent Succedent

where the ¢;, ¢; are formulae (without free variables)

Semantics

Same as the formula

(V1 & - & Ym) = (p1 ] -+ | én)
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I Sequent Rules KIT

uhe Istitute of Technology

General form

Premisses

r‘]:A‘l cte rr:Ar

[= A
N —

Conclusion

rule_.name
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I Sequent Rules KIT

ruhe Institute of Technology

General form

Premisses

r‘]:A‘l cte rr:Ar

[= A
N —

Conclusion

rule_.name

(r = 0 possible: closing rules)
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I Sequent Rules KIT

ruhe Institute of Technology

General form

Premisses
r‘l = A‘l cte rr = Ar
rule_name
[= A
——
Conclusion

(r = 0 possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid
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I Sequent Rules KIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

General form

Premisses

' ~

r‘]:A‘l cte rr:Ar

[= A
N —

Conclusion

rule_.name

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion
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I Some Simple Sequent Rules AUT

r=AA

not_left ———
NA= A
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I Some Simple Sequent Rules

r=AA

not_left ———
NA= A

r=AA NnNB= A
NNA—B= A

imp_left

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 14/38



I Some Simple Sequent Rules

r=AA

not_left ———
NA= A

r=AA NnNB= A
NNA—B= A

imp_left

close.goal ———
NNA= A A
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I Some Simple Sequent Rules

r=AA

not_left ———
NA= A

r=AA NB= A
NNA—B= A

imp_left

close goal ——— close by true ———
NNA= A A [ = true, A
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Some Simple Sequent Rules AT

r=AA

not_left ———
NA= A

r=AA NB= A

imp-left NnNA—>B= A

close. gopal —— close_by_true —————
P T A= AN y [ — true, A

M \foralltx; ¢, {x/elp = A

all_left
M\foralltx;,¢ = A

where e var-free term of type t' < t
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I Sequent Calculus Proofs AT

uhe Istitute of Technology

a Proof is tree structure with Proof

goal sequent as root @8 Proof Tree
1:imp_right
2:imp_left
@ EEcCase 1
2:double_not
6:imp_right
8:close_goal
@ 10:Closed goal

©- (B8 Case 2
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I Sequent Calculus Proofs AT

ruhe Institute of Technology

m Proof is tree structure with Proof

goal sequent as root (=5 Proof Tree
0 Liimp_right
a Rules are applied 2:imp_left

. (el C
from conclusion (old goal) ree=

to premisses (new goals) Smp.nght

8:close_goal

@ 10:Closed goal

©- (B8 Case 2
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I Sequent Calculus Proofs AUT

stitute of Technology

m Proof is tree structure with

-Proof
goal sequent as root (=5 Proof Tree
0 Liimp_right
a Rules are applied 2mp-left
. @ B8 Case 1
from conclusion (old goal) et
1 &limp_right
to premisses (new goals) o-tloen aoul
i i § 10:Closed goal
a Rule with no premiss closes proof -
branch
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I Sequent Calculus Proofs AUT

stitute of Technology

m Proof is tree structure with

-Proof
goal sequent as root (=5 Proof Tree
0 l:imp_right
a Rules are applied 2:imp_left
f e Id | @ @8 Case 1
rom conclusion (old goal) 3-double_not
i :imp_ri
to premisses (new goals) o
i i § 10:Closed goal
a Rule with no premiss closes proof -
branch
a Proof is finished when all goals are
closed
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Tell

0 Sequent Calculus
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Tell

0 Rules for Programs: Symbolic Execution
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Proof by Symbolic Program ST
Execution b

m Sequent rules for program formulas?
m What corresponds to top-level connective in a program?
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Proof by Symbolic Program SAT
Execution e

m Sequent rules for program formulas?
m What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ 1=0; 3j=0; } finally{ k=0; }}
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Proof by Symbolic Program SAT
Execution e

m Sequent rules for program formulas?
m What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ 1=0; j=0; } finally{ k=0; }}
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Proof by Symbolic Program AT
Execution e

m Sequent rules for program formulas?
m What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ 1=0; j=0; } finally{ k=0; }}
— <

-~

™ w
passive prefix ™
active statement 1i=0;

rest
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Proof by Symbolic Program AT
Execution

m Sequent rules for program formulas?
m What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ 1=0; j=0; } finally{ k=0; }}
— <

™ w

passive prefix ™
active statement 1i=0;
rest

m Sequent rules execute symbolically the active statement
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Rules for Symbolic Program SAT
Execution = TS

If-then-else rule

M,B=true= (p w)p,A B = false = (q w)p,A
= (if (B) { p} else { q } w)p,A
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Rules for Symbolic Program SAT
Execution = TS

If-then-else rule

M,B=true= (p w)p,A B = false = (q w)p,A
= (if (B) { p} else { q } w)p,A

Complicated statements/expressions are simplified first,
e.g.

= (v=y; y=y+1l; x=v; w)¢,A
= (x=y++; w)¢p,A

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification $S 2012 19/38



Rules for Symbolic Program SAT
Execution = TS

If-then-else rule

M,B=true= (p w)p,A B = false = (q w)p,A
= (if (B) { p} else { q } w)p,A

Complicated statements/expressions are simplified first,
e.g.

= (v=y; y=y+1l; x=v; w)¢,A
= (x=y++; w)¢p,A

Simple assignment rule

= {loc := val}(w)p, A
= (loc=val; w)¢,A
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I Treating Assignment with “Updates” AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

explicit syntactic elements in the logic
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I Treating Assignment with “Updates”

explicit syntactic elements in the logic

Elementary Updates

{loc .= val} ¢

where (roughly)

m /oc is a program variable x, an attribute access o.attr, or an
array access 4/

m val is same as loc, or a literal, or a logical variable
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I Treating Assignment with “Updates” AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

explicit syntactic elements in the logic

Elementary Updates

{loc .= val} ¢

where (roughly)

m /oc is a program variable x, an attribute access o.attr, or an
array access 4/

m val is same as loc, or a literal, or a logical variable

Parallel Updates
{locy .=t || --- || locnh .= th} ¢
no dependency between the n components (but ‘right wins’

semantics)
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I Why Updates? AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

m /azily applied (i.e., substituted into postcondition)
w eagerly parallelised + simplified

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification $S 2012 21/38



I Why Updates? AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

m /azily applied (i.e., substituted into postcondition)
w eagerly parallelised + simplified

Advantages

® no renaming required

m delayed/minimized proof branching (efficient aliasing
treatment)
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Symbolic Execution with Updates ST
(by Example) bt}

= x <y —> (int t=x; x=y; y=t;)y <x
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Symbolic Execution with Updates ST
(by Example) bt}

x <y = {t:=x}(x=y; y=t;)y<x
= x<y—> (int t=x; x=y; y=t;)y <X
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Symbolic Execution with Updates ST
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Symbolic Execution with Updates ST
(by Example) bt}

x <y = {ti=x|[|x:=yHy:=t}() vy <x

x<y = {t:=x}{-x::y}<y=t;> y < X

x <y = {t:=x}(x=y; y=t;)y<x
= x<y—> (int t=x; x=y; y=t;)y <X
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Symbolic Execution with Updates ST
(by Example) =S

x<y = {t:i=x||x:=y||y:=x}{) y <x
x<y = {eiox | xioyHyi-t}) vy <x

x<y = {t:=x}{-x::y}<y=t;> y <x
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Symbolic Execution with Updates ST
(by Example) =S

x<y = x<y
x<y = {xi=y |l y:=x}0)y <x
x<y = f{eimx |y [[yi=x}) y < x
x<y = {t==XH>;==y}{y::t}<>y<x
x<y = {t:=x}{:x::y}<y=t;>y<x
x<y = {t::x}gxzy; y=t;)y<x

= x<y—> (int t=x; x=y; y=t;)y <X
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I Handling Abrupt Termination AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

® Abrupt termination handled by program transformations
m Changing control flow = rearranging program parts

Example
TRY-THROW

= (try{throw exc; g} catch(T e){r} finally{s} w)¢, A
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I Handling Abrupt Termination AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

® Abrupt termination handled by program transformations
m Changing control flow = rearranging program parts

TRY-THROW

if (exc instanceof T)
r=>< {try {e=exc; r} finally {s}}>¢, A

else {s throw exc;} w

= (try{throw exc; g} catch(T e){r} finally{s} w)¢, A
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I Handling Abrupt Termination AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

® Abrupt termination handled by program transformations
m Changing control flow = rearranging program parts

TRY-THROW

mi1f (exc instanceof T)
r=>< {try {e=exc; r} finally {s}}>¢,A

else {s throw exc;} w

= (7 try{throw exc; g} catch(T e){r} finally{s} w)¢, £
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Tell

0 Rules for Programs: Symbolic Execution
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Tell

0 A Calculus for 100% JAVA CARD
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I Supported Java Features AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

m method invocation with polymorphism/dynamic binding
m object creation and initialisation

m arrays

m abrupt termination

m throwing of NullPointerExceptions, etc.

® bounded integer data types

m transactions
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I Supported Java Features AIT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

m method invocation with polymorphism/dynamic binding
m object creation and initialisation

m arrays

m abrupt termination

m throwing of NullPointerExceptions, etc.

® bounded integer data types

m transactions

All JAvA CARD language features are fully addressed in KeY |
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I Java—A Language of Many Features T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Ways to deal with Java features

a Program transformation, up-front

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes
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I Java—A Language of Many Features T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Ways to deal with Java features

m Program transformation, up-front
m Local program transformation, done by a rule on-the-fly

Pro: Flexible, easy to implement, usable

Contra: Not expressive enough for all features

Example in KeY: Complex expression eval, method inlining,
etc., etc.
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\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Ways to deal with Java features

m Program transformation, up-front
m Local program transformation, done by a rule on-the-fly
a Modeling with first-order formulas

I Java—A Language of Many Features T

Pro: No logic extensions required, enough to express most
features

Contra: Creates difficult first-order POs, unreadable
antecedents

Example in KeY: Dynamic types and branch predicates
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I Java—A Language of Many Features T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Ways to deal with Java features

m Program transformation, up-front

m Local program transformation, done by a rule on-the-fly
@ Modeling with first-order formulas

m Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates
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I Components of the Calculus AUT

@ Non-program rules
a first-order rules
a rules for data-types
a first-order modal rules
a induction rules
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I Components of the Calculus AT
@ Non-program rules

m first-order rules

a rules for data-types

a first-order modal rules
a induction rules

@ Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

m case distinctions (proof branches) and
m sequences of updates
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Components of the Calculus AIT

@ Non-program rules

m first-order rules

a rules for data-types

a first-order modal rules
a induction rules

@ Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

m case distinctions (proof branches) and
® sequences of updates
@ Rules for handling loops

® using loop invariants
® using induction
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Components of the Calculus

@ Non-program rules

m first-order rules

a rules for data-types

a first-order modal rules
a induction rules

@ Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

m case distinctions (proof branches) and
® sequences of updates
@ Rules for handling loops
® using loop invariants
® using induction
@ Rules for replacing a method invocations by the method’s
contract
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Components of the Calculus AIT

@ Non-program rules
m first-order rules
a rules for data-types
a first-order modal rules
a induction rules

@ Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by
m case distinctions (proof branches) and
m sequences of updates
@ Rules for handling loops

® using loop invariants
® using induction

@ Rules for replacing a method invocations by the method’s
contract

@ Update simplification
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I Loop Invariants

Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A
= U[rwhile (b) p w]p, A

unwindLoop
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I Loop Invariants

Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A
= U[rwhile (b) p w]p, A

unwindLoop

How to handle a loop with. ..
a 0 iterations?
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Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A
= U[rwhile (b) p w]p, A

unwindLoop

How to handle a loop with. ..
m 0O iterations? Unwind 1 x
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Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A
= U[rwhile (b) p w]p, A

unwindLoop

How to handle a loop with. ..
a 0 iterations? Unwind 1 x
a 10 iterations?
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I Loop Invariants AT
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Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A
= U[rwhile (b) p w]p, A

unwindLoop

How to handle a loop with. ..
a 0 iterations? Unwind 1 x
a 10 iterations? Unwind 11 x
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I Loop Invariants T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A
= U[rwhile (b) p w]p, A

unwindLoop

How to handle a loop with. ..
m 0 iterations? Unwind 1x
m 10 iterations? Unwind 11x
a 10000 iterations?
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I Loop Invariants AT
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Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A
= U[rwhile (b) p w]p, A

unwindLoop

How to handle a loop with. ..
a 0 iterations? Unwind 1 x
a 10 iterations? Unwind 11 x

m 10000 iterations? Unwind 10001 x
(and don’t make any plans for the rest of the day)
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Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A

nwindLoo
unwi p = U[rwhile (b) p w]p, A

How to handle a loop with. ..
a 0 iterations? Unwind 1 x
a 10 iterations? Unwind 11 x

m 10000 iterations? Unwind 10001 x
(and don’t make any plans for the rest of the day)
® an unknown number of iterations?
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Symbolic execution of loops: unwind

= U[rif (b) { p; while (b) p} w|p,A

unwindLoo
P [ = U[rwhile (b) p w]p, A

How to handle a loop with. ..
a 0 iterations? Unwind 1 x
a 10 iterations? Unwind 11 x

m 10000 iterations? Unwind 10001 x
(and don’t make any plans for the rest of the day)
® an unknown number of iterations?

We need an invariant rule (or some other form of induction) |
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I Loop Invariants Cont’d AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Idea behind loop invariants

a A formula /Inv whose validity is preserved by loop guard
and body

m Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations

m If the loop terminates at all, then Inv holds afterwards
m Encode the desired postcondition after loop into /Inv
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I Loop Invariants Cont’d AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Idea behind loop invariants

a A formula /Inv whose validity is preserved by loop guard
and body

m Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations

m If the loop terminates at all, then Inv holds afterwards
m Encode the desired postcondition after loop into /Inv

Basic Invariant Rule

(initially valid)
(preserved)

. (use case)
looplnvariant

= U[rwhile (b) p w]p, A
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Idea behind loop invariants

a A formula /Inv whose validity is preserved by loop guard
and body

m Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations

m If the loop terminates at all, then Inv holds afterwards
m Encode the desired postcondition after loop into /Inv

Basic Invariant Rule

r=Ulnv,A (initially valid)
(preserved)

. (use case)
looplnvariant

= U[rwhile (b) p w]¢p, A
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Idea behind loop invariants

a A formula /Inv whose validity is preserved by loop guard
and body

m Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations

m If the loop terminates at all, then Inv holds afterwards
m Encode the desired postcondition after loop into /Inv

Basic Invariant Rule

r=Ulnv,A (initially valid)
Inv, b= TRUE = [p]Inv (preserved)
. (use case)
looplnvariant

= U[rwhile (b) p w]p, A
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I Loop Invariants Cont’d AT
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Idea behind loop invariants

a A formula /Inv whose validity is preserved by loop guard
and body

m Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations

m If the loop terminates at all, then Inv holds afterwards
m Encode the desired postcondition after loop into /Inv

Basic Invariant Rule

r=Ulnv,A (initially valid)
Inv, b= TRUE = [p]Inv (preserved)
Inv, b=FALSE = [rw]¢p (use case)

B T e == S e o) o i,
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I Loop Invariants Cont’d AT
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Basic Invariant Rule: Problem

r=Ulnv,A (initially valid)
Inv, b = TRUE = [p]/nv (preserved)
Inv, b =FALSE = [t w|¢p  (use case)
= U[rwhile (b) p w]p, A

looplnvariant
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I Loop Invariants Cont’d AIT
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Basic Invariant Rule: Problem

r=Ulnv,A (initially valid)
Inv, b = TRUE = [p]/nv (preserved)
Inv, b =FALSE = [t w|¢p  (use case)
= U[rwhile (b) p w]p, A

looplnvariant

m Context I', A, U must be omitted in 2nd and 3rd premise
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\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Basic Invariant Rule: Problem

r=Ulnv,A (initially valid)
Inv, b = TRUE = [p]/nv (preserved)
Inv, b =FALSE = [t w|¢p  (use case)
= U[rwhile (b) p w]p, A

looplnvariant

m Context I', A, U must be omitted in 2nd and 3rd premise

m But: context contains (part of) precondition and class
invariants
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I Loop Invariants Cont’d AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Basic Invariant Rule: Problem

r=Ulnv,A (initially valid)
Inv, b = TRUE = [p]/nv (preserved)
Inv, b =FALSE = [t w|¢p  (use case)
= U[rwhile (b) p w]p, A

looplnvariant

m Context I', A, U must be omitted in 2nd and 3rd premise

m But: context contains (part of) precondition and class
invariants

a Required context information must be added to loop
invariant Inv
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Example T

Karlsruhe Institute of Technology

int i = 0;

while(i < a.length) {
ali] = 1;
i++;
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I Example

Precondition: a # null

int i = 0;

while(i < a.length) {
ali] = 1;
B
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Example A\‘(IT

Precondition: a # null

int i = 0;

while(i < a.length) {
ali] = 1;
i++;

}

Postcondition: Vint x; (0 < x < a.length — a[x] =1)
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Example A\‘(IT

Precondition: a # null

int i = 0;

while(i < a.length) {
alil] = 1;
i++;

}

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loopinvariant: 0 < i & i <a.length
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Precondition: a # null

int i = 0;

while(i < a.length) {
alil] = 1;
i++;

}

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loopinvariant: 0 < i & i <a.length
& Vint x; (0<x<i—al[x]=1)
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Example %\\("

Precondition: a # null

int i = 0;

while(i < a.length) {
ali] = 1;
i++;

}

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loopinvariant: 0 < i & i <a.length
& Vint x; (0<x<1i—alx]=1)
& a # null
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Example A\‘(IT

Precondition: a # null & Classinv

int i = 0;

while(i < a.length) {
ali] = 1;
i++;

}

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loopinvariant: 0 < i & i <a.length
& Vint x; (0<x<i—alx]=1)
& a #null
& Classinv’
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I Keeping the Context T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

a Want to keep part of the context that is unmodified by loop
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I Keeping the Context A\‘("

a Want to keep part of the context that is unmodified by loop

®m assignable clauses for loops can tell what might be
modified

@ assignable i, a[~*];
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I Keeping the Context A\‘("

a Want to keep part of the context that is unmodified by loop

®m assignable clauses for loops can tell what might be
modified

@ assignable i, a[~*];
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Example with Improved Invariant
Rule

int i = 0;
while(i < a.length) {
ali] = 1;
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Eﬁ:;l;nple with Improved Invariant A\‘(lT

Precondition: a # null

int i = 0;
while(i < a.length) {
ali] = 1;
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Eﬁ:;l;nple with Improved Invariant A\‘(lT

Precondition: a # null

int i = 0;
while(i < a.length) {
ali] = 1;

Postcondition: Vint x; (0 < X < a.length — a[x] =1)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 34/38



E);T;nple with Improved Invariant A\‘(lT

Precondition: a # null

int i = 0;
while(i < a.length) {
ali] = 1;

Postcondition: Vint x; (0 < X < a.length — a[x] =1)

Loopinvariant:0 < i & i <a.length
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Precondition: a # null
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while(i < a.length) {
ali] = 1;

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loopinvariant: 0 < i & i <a.length
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Eﬁ:;l;nple with Improved Invariant A\‘(lT

Precondition: a # null & Classinv

int i = 0;
while(i < a.length) {
ali] = 1;

Postcondition: Vint x; (0 < X < a.length — a[x] =1)

Loopinvariant: 0 < i & i <a.length
& Vint x; (0<x<i—alx]=1)
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Example in JML/Java — Loop . java AT

public int[] a;

/*@ public normal behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true;

@x/
public void m() {
int i = 0;

/@ loop invariant
@ (0 <=1 && i <= a.length &&
@ (\forall int x; 0<=x && x<i; a[x]==1));
@ assignable i, a[«*];

@x/

while(i < a.length) {
a(i] = 1;
it+;

}
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I Example A“(IT

V int X;
(n=xAx>=0—
[i =0; v =0;
while (i<n) { i =1 + 1; r =1 + 1i;}
r=r+r-n;
Iz =7)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 36/38



I Example A“(IT

V int X;
(n=xAx>=0—
[i =0; v =0;
while (i<n) { i =1 + 1; r =1 + 1i;}
r=r+r-n;
Jr = x * X)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?
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I Example A“(IT

V int X;
(n=xAx>=0—
[i =0; v =0;
while (i<n) { i =1 + 1; r =1 + 1i;}
r=r+r-n;
Jr = x * X)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Solution:

@ loop invariant
@ 1i>=0 && 2+r == ix (1 + 1) && 1 <= n;
@ assignable i, r;
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I Example A“(IT

V int X;
(n=xAx>=0—
[i =0; v =0;
while (i<n) { i =1 + 1; r =1 + 1i;}
r=r+r-n;
Jr = x * X)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Solution:

@ loop invariant
@ 1i>=0 && 2+r == ix (1 + 1) && 1 <= n;
@ assignable i, r;

File: Loop2. java
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stitute of Technology

Proving assignable

m The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove
nonsense

m Invariant rule of KeY generates proof obligation that
ensures correctness of assignable

| Hints AT
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| Hints IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Proving assignable

m The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove
nonsense

m Invariant rule of KeY generates proof obligation that
ensures correctness of assignable

Setting in the KeY Prover when proving loops

a Loop treatment: /Invariant
m Quantifier treatment: No Splits with Progs

m If program contains x, /:
Arithmetic treatment: DefOps

m Is search limit high enough (time out, rule apps.)?
® When proving partial correctness, add diverges true;

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 37/38



I Total Correctness T

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

m v > 0isinitially valid

m v > 0is preserved by the loop body

m v is strictly decreased by the loop body
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I Total Correctness T
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Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

m v > 0isinitially valid

m v > 0is preserved by the loop body

m v is strictly decreased by the loop body

Proving termination in JML/Java

@ Remove directive diverges true;

@ Add directive decreasing v; to loop invariant
m KeY creates suitable invariant rule and PO (with (. . .)¢)
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Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

m v > 0isinitially valid

m v > 0is preserved by the loop body

m v is strictly decreased by the loop body

Proving termination in JML/Java

@ Remove directive diverges true;

@ Add directive decreasing v; to loop invariant
m KeY creates suitable invariant rule and PO (with (. . .)¢)

Example: The array loop
@ decreasing
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I Total Correctness T
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Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

m v > 0isinitially valid

m v > 0is preserved by the loop body

m v is strictly decreased by the loop body

Proving termination in JML/Java

@ Remove directive diverges true;

@ Add directive decreasing v; to loop invariant
m KeY creates suitable invariant rule and PO (with (. . .)¢)

Example: The array loop
@ decreasing a.length - i;
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I Total Correctness AT

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

m v > 0isinitially valid

m v > 0is preserved by the loop body

m v is strictly decreased by the loop body

Proving termination in JML/Java
@ Remove directive diverges true;

@ Add directive decreasing v; to loop invariant
m KeY creates suitable invariant rule and PO (with (. . .)¢)

Files:

Example: The array loop ,
@ LoopT. java

@ decreasing a.length - i; ® Loop2T. java
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