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Abstract State Machines (ASMs)

Purpose
Formalism for modelling/formalising (sequential) algori thms

Not. Computability / complexity analysis

Invented/developed by

Yuri Gurevich, 1988

Old name

Evolving algebras
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Features of ASMs

Universality: ASMs can represent all sequential algorithms
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Features of ASMs

Universality: ASMs can represent all sequential algorithms

Precision: ASMs use classical mathematical structures
that are well-understood

Faithfulness: ASMs require a minimal amount of notational coding

Understandability: ASMs use an extremely simple syntax,
which can be read as a form of pseudo-code

Executablity: ASMs can be tested by executing them

Scalability: ASMs can describe a system/algorithm
on different levels of abstraction

Generality: ASMs have been shown to be useful in
many different application domains
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Three Postulates

Sequential Time Postulate

An algortihm can be described by defining a set of states,
a subset of initial states, and a state transformation funct lon
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Three Postulates

Sequential Time Postulate

An algortihm can be described by defining a set of states,
a subset of initial states, and a state transformation funct lon

Abstract State Postulate

States can be described as first-order structures

Bounded Exploration Postulate

An algorithm explores only finitely many elements in a state
to decide what the next state is

There Is a finite number of names (terms) for all these
“Interesting” elements in all states
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Example: Computing Squares

Initial State
square = ()
count = 0

ASM for computing the square of  input

If «nput < 0 then

nput == —input
else if input > 0 A count < input then
par
square = square + input
count = count+1
endpar
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Example: Turing Machine

par
currentState = newState(currentState, content(head))
content(head) := newSymbol(currentState, content(head))
head := head + move(currentState, content(head))
endpar
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The Sequential Time Postulate

Sequential algorithm

An algorithm is associated with

& aset S of states
& aset I C s ofinitial states

& A function T:S—S
(the one-step transformation of the algorithm)
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The Sequential Time Postulate

Sequential algorithm

An algorithm is associated with

& aset S of states
& aset I C S ofinitial states

& A function T:S—S
(the one-step transformation of the algorithm)

Run (computation)

A run (computation) is a sequence  Xp, X1, X», ... of states such that

o Xg€I
» T(Xi):Xi—i—l for all ZZO
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Termination

The definition avoids the issue of termination

Possible solutions

o Add aset F C 7 of final states
& Make the function 7 partial

o Define a state sto befinalif 7(s) =s
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The Abstract State Postulate

States are first-order structures where
& all states have the same vocabulary (signature)
& the transformation 7 does not change the base set (universe)
& S and I are closed under isomorphism

o if ( is anisomorphism from a state X onto a state Y,
then ( is also an isomorphism from  7(X) onto 7(Y)
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Vocabulary (Signature)

Signatures
A signature is a finite set of function symbols, where

— each symbol is assigned an arity #n >0
— symbols can be marked relational (predicates)
— symbols can be marked static (default: dynamic)
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Vocabulary (Signature)

Signatures
A signature is a finite set of function symbols, where

— each symbol is assigned an arity #n >0
— symbols can be marked relational (predicates)
— symbols can be marked static (default: dynamic)

Each signature contains

— the constant | (“undefined”)

— the relational constants true, false

— the unary relational symbols  Boole, —

— the binary relational symbols A, V, —, <, =

These special symbols are all static
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Variables and Terms

Variables
There is an infinite set of variables

An infinite subset of these are boolean variables
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Variables and Terms

Variables
There is an infinite set of variables

An infinite subset of these are boolean variables

Terms
Terms are build as usual from variables and function symbols
A term is boolean if

— it I1s a boolean variable or
— its top-level symbol is relational
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First-order Structures (States)

First-order structures (states) consist of
& anon-empty universe (called BaseSet)

& an interpretation [ of the symbols in the signature
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First-order Structures (States)

First-order structures (states) consist of
& anon-empty universe (called BaseSet)

& an interpretation I of the symbols in the signature

Restrictions on states

— tt, ff, L € BaseSet (different elements)

— I(true) = tt
— I(false) = ff
- I(L)=_1

— If fis relational, then I(f) : BaseSet — {it, ff}

— I(Boole) = {tt, ff }
- =, \, V, —, <>, = are Iinterpreted as usual
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The Reserve of a State

Reserve

Consists of the elements that are “unknown” in a state
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The Reserve of a State

Reserve

Consists of the elements that are “unknown” in a state

An element a is in the reserve If;
s |If f isrelational, then I(f)(a) = ff
s If f is not relational, then I(f)(a) = L

s For no function symbol  f is a in the domain of I(f)

Definition

The reserve of a state must be infinite

B. Beckert: Formal Specification and Verification of Software - p.13



Extended States

Variable assignment

A function

(3 : Var — BaseSet

(boolean variables are assigned ¢t or ff)

Extended state

A pair
(X, 0)

consisting of a state X and a variable assignment (3
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Evaluation of Terms

Given: Extended state (X, )

Evaluation of terms

The evaluation of terms in an extended states is defined by:
s (X,0)(x)=pP(x) forvariables x
s (X, 0)f(s1,...y80) = I(F)UX, 5)(s1), - - -, (X, B)(sn))

where [ is the interpretation function of X
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Evaluation of Terms

Given: Extended state (X, )

Evaluation of terms

The evaluation of terms in an extended states is defined by:

s (X,0)(x)=pP(x) forvariables x

s (X, 0)f(s1,-.580) = I )X, f)(51), - - -, (X, B)(sn))

where [ is the interpretation function of X

Notation

X for 1(7)
tX for (X, B)(t) if tis a ground term
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Example: Trees

Vocabulary

nodes :

strings .
parent :

firstChald :

nextSibling :

label :

C .

unary, boolean:

unary, boolean:
unary:
unary:
unary:
unary:

constant:

the class of nodes

(type/universe)
the class of strings
the parent node
the first child node
the first sibling
node label

the current node
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Example: Trees

Terms

parent(parent(c))
label(firstChald(c))

parent(firstChild(c)) = ¢
nodes(x) — parent(x) = parent(nextSibling(x))

(x is a variable)
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Isomorphism of States

Isomorphism

A bijection ( from X to Y is an isomorphism if:

— for all symbols f
— all a4, ...,a, € BaseSet(X)

C(FA @, - - an) = F1(C(@), - - -, C(an))
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Isomorphism of States

Isomorphism

A bijection ( from X to Y is an isomorphism if:

— for all symbols f
— all a4, ...,a, € BaseSet(X)

C(FA @, - - an) = F1(C(@), - - -, C(an))

Equivalent condition:

fAar,....a0)=b it (@), ..., an) = (D)
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Isomorphism of States

Lemma (Isomorphism)

Isomorphic states are indistinguishable by ground terms:
s ((t*)=1tY forall ground terms

s (t=s)X=ttiff t =s)Y =t forall groundterms s, ¢
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Isomorphism of States

Lemma (Isomorphism)

Isomorphic states are indistinguishable by ground terms:
s ((t*)=1tY forall ground terms

s (t=s)X=ttiff t =s)Y =t forall groundterms s, ¢

Justification for postulate
If ¢ is an isomorphism from a state X onto a state Y,

then ( is also an isomorphism from  7(X) onto 7(Y)

Algorithm must have the same behaviour for indistinguishab le states

Isomorphic states are different representations of
the same abstract state!
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Isomorphism of States: Example

Vocabulary
constants (dynamic): a, b, count
unary functions (dynamic): f,g

static functions: 1, +

Algorithm
par
if a = bthen count := count + 1
endif else skip
a = f(a)
b = g(b)
endpar
Initial State
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State Updates

Locations

A location is a pair
(f,a)
with

— f an n-ary function symbol
— a C BaseSet an n-tuple
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State Updates

Locations

A location is a pair

(f,a)

with

— f an n-ary function symbol
— a C BaseSet an n-tuple

Examples
(parent,(a)), (firstChild,{(a)), (nextSibling,{(a)), (c,())

are locations ( a is an element from BaseSetryee)
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State Updates

Updates

An update is a triple
(f,a,b)

with

— (f,a) alocation

— f not static

— b € BaseSet

— if fis relational, then b€ {it, ff'}
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State Updates

Updates

An update is a triple
(f,a,b)
with

— (f,a) alocation

— f not static

— b € BaseSet

— if fis relational, then b€ {it, ff'}

Trivial update

An update is trivial if  fX(@) = b
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State Updates: Consistency

Clash

Two updates
(f1,a1,b1)  (f2,42,b2)

clash if
(f1,a1) = (f2,42) but by # by
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Example
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State Updates: Consistency

Clash

Two updates
(f1,a1,b1)  (f2,42,b2)

clash if

(f1,81) = (f2,42) but by # by
Example
These two updates clash: (nodes,a,tt) (nodes,a, ff)

Consistent set of updates

A set of updates is consistent if it does not contain clashing updates
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State Updates: Execution

Executing an update

An update is executed by changing the value of ~ f*(a)to b
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A consistent set of updates is executed by
simultaneously executing all updates in the set

An inconsistent set of updates is executed by doing nothing

B. Beckert: Formal Specification and Verification of Software — p.24



State Updates: Execution

Executing an update

An update is executed by changing the value of ~ f*(a)to b

Executing a set of updates

A consistent set of updates is executed by
simultaneously executing all updates in the set

An inconsistent set of updates is executed by doing nothing

Notation

The result of executing a set A of updates in a state X is denoted with

X+A
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State Updates: Uniqueness

Lemma (State Update Uniqueness)
X, Y states with

— the same vocabulary
— the same base set

Then there is exactly one consistent set A of non-trivial updates
such that

Y=X+4+A
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State Updates: Uniqueness

Lemma (State Update Uniqueness)

X, Y states with

— the same vocabulary
— the same base set

Then there is exactly one consistent set A of non-trivial updates
such that

Y=X+4+A

Notation

We write A(X) for the set of updates such that

7(X) = X + A(X)
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The Bounded Exploration Postulate

There is a finite set T of ground terms for such that for all states X.,Y:
If
tX =t forall teT

then

A(X) = A(Y)

B. Beckert: Formal Specification and Verification of Software — p.26



The Bounded Exploration Postulate

There is a finite set T of ground terms for such that for all states X.,Y:

If

tX =¥ forall teT

then
A(X) = AY)

Bounded exploration withess

If such a set T is closed under the sub-term relation,
It is called a bounded exploration withess
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Bounded Exploration: Example

Algorithm given by
if p(c) then ¢ :=s(c)

Bounded exploration withess

{ ¢, s(c), ple) }
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Bounded Exploration: Counter Examples

“Algorithms” not satisfying the bounded exploration postulate

for all x,y with edge(x, y) A reachable(x) A —reachable(y)
do
reachable(y) := true
enddo
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Bounded Exploration: Counter Examples

“Algorithms” not satisfying the bounded exploration postulate

for all x,y with edge(x, y) A reachable(x) A —reachable(y)
do
reachable(y) := true
enddo

Bounded change is not enough

if Vx3y edge(x,y) then
haslsolatedPoints := false
else
haslsolatedPoints := true
endif
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Accessibility Lemma

Lemma (Accessibility Lemma)

Given a bounded exploration withess T

If
(fa <611, v o 7an>7 610) < A(X)
then there are terms ty,...,t; € T such that

tl-X:ai for 0<i<m
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Accessibility Lemma

Lemma (Accessibility Lemma)
Given a bounded exploration withess T

If
(fa <611,...,61n>,610) = A(X)

then there are terms ty,...,t; € T such that

=g, for0<i<nm

1

Corollary

There is a finite limit on the size of A(X),
which does not depend on X
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Update Rules

An update rule has the form

f(s1,...,84) =t

where

— fis afunction symbol of arity n
- $1,...,8,,t and t are ground terms
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Update Rules

An update rule has the form

f(s1,...,84) =t

where

— fis afunction symbol of arity n
- $1,...,8,,t and t are ground terms

Executing an update rule

An update rule R is executed in state X by executing the update set

R(X) = {(f,(s7,.--,8,),t0)}
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Update Rules: Computability and Complexity

Note
The interpretation gX of function symbols ¢ occurring in an update rule

f(s1,...,84) =t

in the s; orin t can be

& an “external” static function defined in the initial state
& of high computational complexity

& even non-computable

This allows to describe algorithms on arbitrary levels of ab straction
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Block Rules

A block rule has the form

endpar

where Rq,..., Ry arerules (k > 0)
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Block Rules

A block rule has the form

where Rq,..., Ry arerules (k > 0)

Executing a block rule
A block rule R is executed in state X by executing the update set

R(X) = R{(X)U...URKX)

B. Beckert: Formal Specification and Verification of Software — p.32



Empty Block

The empty block is written as

skip
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State Update Representation Lemma

Consequence of the Accessibility Lemma

Lemma (State Update Representation)

For every state X, there is a block rule Rx such that

Rx(X) = A(X)

B. Beckert: Formal Specification and Verification of Software — p.34



State Update Representation Lemma

Consequence of the Accessibility Lemma

Lemma (State Update Representation)

For every state X, there is a block rule Rx such that

Rx(X) = A(X)

Note

In general

Rx(Y) # A(Y)
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T-Similar States

T-similarity
Given a bounded exploration withess T

States X, Y are T-similarif forall t,t, € T

=t iff =t
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T-Similar States

T-similarity
Given a bounded exploration withess T

States X, Y are T-similarif forall t,t, € T
o=t i H =1t

Note

T-similar states X, Y are “isomorphic’ on  TX resp. TY

B. Beckert: Formal Specification and Verification of Software — p.35



T-Similar States

T-similarity
Given a bounded exploration withess T

States X, Y are T-similarif forall t,t, € T
o=t i H =1t

Note

T-similar states X, Y are “isomorphic’ on  TX resp. TY

Lemma ( T-similarity)
There is a finite number of states  Xj,..., X;,; such that

every state is T-similar to one of the X
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Conditional State Update Representation Lemma

Lemma ( T-similarity Representation)
There is a relational term  ¢@x such that

¢x istruein Y iff Yis T-similarto X
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Conditional State Update Representation Lemma

Lemma ( T-similarity Representation)
There is a relational term  ¢@x such that

¢x istruein Y iff Yis T-similarto X

Lemma (Conditional State Update Representation)

If X,Y are T-similar, then

Rx(Y) = A(Y)
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If Rule

An If rule has the form

endif

if cnd then

else

Rq
R;

where Rq, R, are rules

and

cnd is a relational term

B. Beckert: Formal Specification and Verification of Software - p.37



If Rule

An If rule has the form

if cnd then R4
else R»
endif

where Rq{,R, arerules and c¢nd is arelational term

Executing an if rule

An if rule R is executed in state X by executing the update set
(Rl(X) if cond* = tt

\Rz(X) otherwise

R(X) = <
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Main Theorem

Theorem

For every algorithm there isa rule R such that

R(X) =A(X) forall states X
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Main Theorem

Theorem

For every algorithm there isa rule R such that

R(X) =A(X) forall states X

Proof

An example for such a rule is

If ¢X1 then RX1
elseif ¢x, then Ry,

elseif ¢x,  then Ry,
endif .. .endif
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Abstract State Machine Representing an Algorithm

An abstract state machine representing an algorithm consis ts of

& the rule (program) R such that
R(X)=A(X) forallstates X

& the set of states of the algorithm

& the set of initial states of the algorithm
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Abstract State Machine Representing an Algorithm

An abstract state machine representing an algorithm consis ts of

& the rule (program) R such that
R(X)=A(X) forallstates X

& the set of states of the algorithm

& the set of initial states of the algorithm

Note

The interpretation of static functions is “built into” the | nitial states
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ASM Applications

& Abstract Algorithms
Lamport’s Bakery Algorithm

& Architectures
Pipelining in the ARM2 RISC Microprocessor
Hennessey and Patterson DLX pipelined microprocessor

& Benchmark Examples
Production Cell Control Problem
Steam Boiler Problem

& Compiler Correctness
Compiling Occam to Transputer code

& Databases
Formalization of Database Recovery
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ASM Applications

& Distributed Systems
Communicating evolving algebras

& Hardware
Specification of the DEC-Alpha Processor Family

& Java
Semantics of Java
Defining the Java Virtual Machine
Investigating Java Concurrency

& Logic & Computability
Linear Time Hierarchy Theorems for ASMs

& Mechanical Verification
Model Checking Support for the ASM
Mechanical verification of the correctness proof in WAM Case Study
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ASM Applications

& (Other) Models of Computation
Investigating the formal relation between
— ASMs and Predicate Transition Nets
— ASM and Schonhage Storage Modification Machines

& Montages

A version of ASMs for specifying static and dynamic semantic s of
programming languages
Combines graphical and textual elements to yield specificat lons

similar in structure, length, and complexity to those in
common language manuals

& Natural Languages
Mathematical Models of Language
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ASM Applications

& Programming Languages
Operational semantics of
Prolog, Parlog, C, C++, COBOL, Occam, Oberon

& Real-time Systems
Railway crossing system

& Security
Formal analysis of the Kerberos Authentication System

s VHDL
Semantical analysis of VHDL-AMS
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Features of ASMs Revisited

Universality: ASMs can be represent all sequential algorithms

Precision: ASMs use classical mathematical structures
that are well-understood

Faithfulness: ASMs require a minimal amount of notational coding

Understandability: ASMs use an extremely simple syntax,
which can be read as a form of pseudo-code

Executablity: ASMs can be tested by executing them

Scalability: ASMs can describe a system/algorithm
on different levels of abstraction

Generality: ASMs have been shown to be useful in
many different application domains
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