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The Z Specification Language

Based on

Typed first-order predicate logic

Zermelo-Fraenkel set theory

Rich notation
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The Z Specification Language

Based on

Typed first-order predicate logic

Zermelo-Fraenkel set theory

Rich notation

Invented/developed by

J.-R. Abrial, Oxford University Computing Laboratory

International standard

ISO/IEC JTC1/SC22
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The Z Specification Language

Tools

LATEX style

Type checker

Z/Eves deduction system

But

No tools for simulation/execution/testing
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Built-in Operators

Logical operators

¬ negation

∧ conjunction

∨ disjunction

⇒ implication (note: not →)

⇔ equivalence (note: not ↔)

Equality

= equality

On all types (but not predicates)
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Built-in Operators

Quantification

Q x1 : S1; . . . ; xn : Sn | p • q

where Q is one of ∀ ∃ ∃1

Meaning

∀x1 : S1; . . . ; xn : Sn(p ⇒ q) resp.
∃x1 : S1; . . . ; xn : Sn(p ∧ q)

Abbreviation

∀x : T • q for ∀x : T | true • q
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Notation for Sets

Enumeration

{e1, . . . , en}

The set of type-compatible elements e1, . . . , en

Example

{3, 5, 8, 4}
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Notation for Sets

Set comprehension

{x : T | pred(x) • expr(x)}

The set of all elements that result from evaluating expr(x)

for all x of type T for which pred(x) holds

Example

{x : Z | prime(x) • x ∗ x}

The set of all squares of prime numbers
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Notation for Sets

Abbreviation

{x : T | pred(x)} for {x : T | pred(x) • x}

Example

N = {x : Z | x ≥ 0}

The empty set

∅ = {x : T | false}

Note:

∅ = ∅[T] is typed

B. Beckert: Formal Specification and Verification of Software – p.8



Set Operations

∈ element-of relation

⊆ subset relation

S1 and S2 must have the same type

S1 ⊆ S2 ⇔ (∀x : S1 • x ∈ S2)

P power set operator

S′ ∈ P S ⇔ S′ ⊆ S

× cartesian product

(x1, . . . , xn) ∈ S1 × . . .× Sn ⇔ (x1 ∈ S1 ∧ . . . ∧ xn ∈ Sn)
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Set Operations

∪,∪ union

Involved sets must have the same type T

x ∈ S1 ∪ S2 ⇔ (x ∈ S1 ∨ x ∈ S2)

x ∈∪S ⇔ (∃ s′ : T • s′ ∈ S ∧ x ∈ s′)

∩,∩ intersection

\ set difference
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Types

Pre-defined types

Z with constants: 0, 1, 2, 3, 4, . . .
functions: +,−,∗, /
predicates: <,≤,>,≥

Sets

Every set can be used as a type

Basic types (given sets)

Example

[Person]
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Free Type Definitions

Example

weekDay ::= mon | tue | wed | thu | fri | sat | sun

Example

Tree ::= leaf 〈〈Z〉〉 | node〈〈Tree × Tree〉〉

Meaning

[Tree] generated by leaf , node

∀x1, y1, x2, y2 : Tree |
node(x1, y1) = node(x2, y2) • (x1 = x2 ∧ y1 = y2)

∀x1, x2 : Z | leaf (x1) = leaf (x2) • x1 = x2

∀x : Z; y, z : Tree • leaf (x) 6= node(y, z)

Note: Generatedness is not expressible in first-order logicB. Beckert: Formal Specification and Verification of Software – p.12



Compound Types

Set type: P T

The type of sets of elements of type T

Cartesian product type: T1 × · · · × Tn

The type of tuples (t1, . . . , tn) with ti ∈ Ti
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Types: Overview

Possible type definitions

T = Z

T = [Type]

T ::= . . . (free type)

T = P T′

T = T1 × · · · × Tn
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Types: Overview

Possible type definitions

T = Z

T = [Type]

T ::= . . . (free type)

T = P T′

T = T1 × · · · × Tn

Note

All types are disjoint (not for sets that are used as types)

All terms have a unique type
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Variables

Variable declarations

Example

x : Z

sold : P Seat

Variables can range over types and over sets
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Syntactical Abbreviations

Abbreviations

must not be recursive

can be generic

Examples

numberPairs == Z×Z

pairWithNumber[S] == Z× S

Note

Type variables are “meta-variables” (cannot be quantified)
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Abbreviations vs. Generated Types

weekDay1 == {mon, tue, wed, thu, fri, sat, sun}

vs.

WeekDay2 ::= mon | tue | wed | thu | fri | sat | sun
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Abbreviations vs. Generated Types

weekDay1 == {mon, tue, wed, thu, fri, sat, sun}

vs.

WeekDay2 ::= mon | tue | wed | thu | fri | sat | sun

Not the same

Type definition implies elements to be different
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Axiomatic Definitions

Form of an axiomatic definition

SymbolDeclarations

ConstrainingPredicates

Example

N1 : PZ

∀ z : Z • (z ∈ N1 ↔ z ≥ 1)
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Relations

Relation types/sets

S ↔ T is the type/set of relations between types/sets S and T

S ↔ T = P(S× T)

Notation

a 7→ b for (a, b) if (a, b) ∈ S× T
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Operations on Relations

Domain dom R

dom R = {a : S, b : T | a 7→ b ∈ R • a}

Range ran R

ran R = {a : S; b : T | a 7→ b ∈ R • b}
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Operations on Relations

Domain dom R

dom R = {a : S, b : T | a 7→ b ∈ R • a}

Range ran R

ran R = {a : S; b : T | a 7→ b ∈ R • b}

Restrictions of relations

S′
⊳ R = {a : S; b : T | a 7→ b ∈ R ∧ a ∈ S′ • a 7→ b}

R ⊲ T′
= {a : S; b : T | a 7→ b ∈ R ∧ b ∈ T′ • a 7→ b}

S′ −⊳ R = {a : S; b : T | a 7→ b ∈ R ∧ a 6∈ S′ • a 7→ b}

R −⊲ T′
= {a : S; b : T | a 7→ b ∈ R ∧ b 6∈ T′ • a 7→ b}
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Operations on Relations

Inverse relation R−1

R−1
= {a : S; b : T | a 7→ b ∈ R • b 7→ a}
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Operations on Relations

Inverse relation R−1

R−1
= {a : S; b : T | a 7→ b ∈ R • b 7→ a}

Composition R o
9 R′ R : S ↔ T and R′ : T ↔ U

R o
9 R′

= {a : S; b : T; c : U
| a 7→ b ∈ R ∧ b 7→ c ∈ R′ • a 7→ c}
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Operations on Relations

Inverse relation R−1

R−1
= {a : S; b : T | a 7→ b ∈ R • b 7→ a}

Composition R o
9 R′ R : S ↔ T and R′ : T ↔ U

R o
9 R′

= {a : S; b : T; c : U
| a 7→ b ∈ R ∧ b 7→ c ∈ R′ • a 7→ c}

Closures R : S ↔ S

iteration Rn
= R o

9 Rn−1

identity R0
= {a : S | true • a 7→ a}

refl./trans. R∗
=∪{n : N | true • Rn}

transitive R+
=∪{n : N | n ≥ 1 • Rn}

symetric Rs
= R ∪R−1

reflexive Rr
= R ∪R0

B. Beckert: Formal Specification and Verification of Software – p.21



Functions

Special relations

Functions are special relations

Notation

Instead of ↔

→ total function

7→ partial function
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Functions

Partial functions

f ∈ S 7→ T ⇔

f ∈ S ↔ T ∧
∀ a : S, b : T, b′ : T | (a 7→ b ∈ f ∧ a 7→ b′ ∈ f ) • b = b′
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Functions

Partial functions

f ∈ S 7→ T ⇔

f ∈ S ↔ T ∧
∀ a : S, b : T, b′ : T | (a 7→ b ∈ f ∧ a 7→ b′ ∈ f ) • b = b′

Total functions

f ∈ S → T ⇔

f ∈ S 7→ T ∧
∀ a : S • ∃b : T • a 7→ b ∈ f
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λ Notation for Functions

General form

λ a : S | p • e

Example

double : Z 7→ Z

double = λ n : Z | n ≥ 0 • n + n

Equivalent to

double : Z 7→ Z

double = {n : N | true • n 7→ n + n}
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Prefix and Infix Notation

Notation

Relations and functions can be declared prefix and infix

Parameter positions are indicated with “ ”

Example

even : Z → B

∀x : Z • (even x ⇔ (∃y : Z • x = y + y))

Equivalent to

even : Z → B

even = {x : Z | (∃y : Z • x = y + y)}
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More Notation for Functions

Notation

7֌ partial injective function

֌ total injective function

7→→ partial surjective function

→→ total surjective function

֌→ total bijective function

B. Beckert: Formal Specification and Verification of Software – p.26



Three Definitions of abs

Relation (in infix notation)

abs : Z ↔ N

∀m : Z, n : N • (m abs n) ↔
((m = n ∧ m ≥ 0) ∨ (−m = n ∧ m ≤ 0))
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Three Definitions of abs

Relation (in infix notation)

abs : Z ↔ N

∀m : Z, n : N • (m abs n) ↔
((m = n ∧ m ≥ 0) ∨ (−m = n ∧ m ≤ 0))

Function

abs : Z → N

abs = (λ m : Z | m ≤ 0 • −m) ∪ (λm : Z | m ≥ 0 • m)
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Three Definitions of abs

Relation (in infix notation)

abs : Z ↔ N

∀m : Z, n : N • (m abs n) ↔
((m = n ∧ m ≥ 0) ∨ (−m = n ∧ m ≤ 0))

Function

abs : Z → N

abs = (λ m : Z | m ≤ 0 • −m) ∪ (λm : Z | m ≥ 0 • m)

Function (in prefix notation)

abs : Z 7→ N

∀x : Z | x ≤ 0 • x = −(abs x)
∀x : Z | x ≥ 0 • x = abs x
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Finite Constructs

Finite subsets of Z

m..n = {n′ : N | m ≤ n′ ∧ n′ ≤ n}
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Finite Constructs

Finite subsets of Z

m..n = {n′ : N | m ≤ n′ ∧ n′ ≤ n}

Finite sets

F T consists of the finite sets in P T

[S]
F : P(P S)

F = {s : P S | (∃n : N • (∃ f : 1..n ֌→ s • true))}
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Finite Sets: Cardinality

Cardinality operator #

[S]
# : F S → N

∀ s : F S; n : N • (n = #s ↔ (∃ f : 1..n ֌→ s • true))

B. Beckert: Formal Specification and Verification of Software – p.29



Finite Functions

Notation

7 7→ finite (partial) functions (e.g. arrays)

S 7 7→ T = {f : S 7→ T | dom f ∈ F S}

7 7֌ finite (partial) injective functions (e.g. duplicate-free arrays)

S 7 7֌ T = {f : S 7֌ T | dom f ∈ F S}
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Sequences

Definition

seq T == {s : Z 7 7→ T | dom s = 1..#s}

Note

sequences are functions, which are relations, which are set s

the length of s is #s
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Sequences

Definition

seq T == {s : Z 7 7→ T | dom s = 1..#s}

Note

sequences are functions, which are relations, which are set s

the length of s is #s

Notation

The sequence {1 7→ x1, 2 7→ x2, . . . , n 7→ xn}

is written as 〈x1, x2, . . . , xn〉
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Example: Concatenation of Sequences

s a t ==

s ∪
(λ n : Z | n ∈ #s + 1..#s + #t • n − #s) o

9 t
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Schemata

General form

Name
SymbolDeclarations

ConstrainingPredicates

Linear notation

Name =̂ [SymbolDeclarations | ConstrainingPredicates]
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Schemata

With empty predicate part

Name
SymbolDeclarations

Linear notation

Name =̂ [SymbolDeclarations]
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Schemata: Example

Theater tickets

[Seat]
[Person]

TicketsForPerformance0
seating : P Seat
sold : Seat 7→ Person

dom sold ⊆ seating
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Schemata as Sets/Types

Schema

Name
x1 : T1

. . .
xn : Tn

ConstrainingPredicates

can be seen as the following set (type) of tuples:

Name =

{x1 : T1; . . . ; xn : Tn | ConstrainingPredicates • (x1, . . . , xn)}
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Schema Inclusion

Inclusion

Schemata can be used (included) in

– schema
– set comprehension
– quantification

by adding the schema name to the declaration part

Meaning

– declarations
– constraining predicates

are added to the corresponding parts of the including
schema / set comprehension / quantification

Note: Matching names merge and must be type compatible
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Schema Inclusion

Example

NumberInSet
a : Z

c : PZ

a ∈ c

{NumberInSet | a = 0 • c}

is the same as

{a : Z, c : PZ | a ∈ c ∧ a = 0 • c}

(the set of all integer sets containing 0)
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Schemata as Predicates

Schemata can be used as predicates in

– schema
– set comprehension
– quantification

by adding the schema name to the predicate part
(occurring variables must already be declared)

Meaning

The constraining predicates (not: the declaration part)
are added to the corresponding part of the
schema / set comprehension / quantification
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Schemata as Predicates

Example

NumberIn01
a : Z

c : PZ

a ∈ c
c ⊆ {0, 1}

∀ a : Z; c : PZ | NumberIn01 • NumberInSet

is the same as

∀ a : Z; c : PZ | a ∈ c ∧ c ⊆ {0, 1} • a ∈ c
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Generic Schemata

Type/set variables can be used in schema definitions

Example

NumberInSetGeneric[X]
a : X
c : P X

a ∈ c

Then

NumberInSetGeneric[Z] = NumberInSet
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Variable Renaming in Schemata

Variables in schemata can be renamed

Example

NumberInSet[a/q, c/s]

is equal to

q : Z

s : PZ

q ∈ s
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Conjunctions of Schemata

Schemata can be composed conjunctively

Example

Given

ConDis1
a : A; b : B

P

ConDis2
b : B; c : C

Q

Then the following are equivalent

ConDis1 ∧ ConDis2
a : A; b : B; c : C

P
Q
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Disjunctions of Schemata

Schemata can be composed disjunctively

Example

Given

ConDis1
a : A; b : B

P

ConDis2
b : B; c : C

Q

Then the following are equivalent

ConDis1 ∨ ConDis2
a : A; b : B; c : C

P ∨ Q

B. Beckert: Formal Specification and Verification of Software – p.44



Example

Informal specification

Theater: Tickets for first night are only sold to friends

Specification in Z

Status ::= standard | firstNight

Friends
friends : P Person
status : Status
sold : Seat 7→ Person

status = firstNight ⇒ ran sold ⊆ friends
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Example

TicketsForPerformance1 =̂

TicketsForPerformance0 ∧ Friends

and

TicketsForPerformance1
Friends
TicketsForPerformance0
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Example

TicketsForPerformance1 =̂

TicketsForPerformance0 ∧ Friends

and

TicketsForPerformance1
Friends
TicketsForPerformance0

are the same as

TicketsForPerformance1
friends : P Person; status : Status
sold : Seat 7→ Person; seating : P Seat

status = firstNight ⇒ ran sold ⊆ friends
dom sold ⊆ seating
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Normalisation of Schemata

Normalisation

A schema is normalised if in the declaration part

Variables are typed

but not restricted to subsets of types
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Normalisation of Schemata

Normalisation

A schema is normalised if in the declaration part

Variables are typed

but not restricted to subsets of types

Example

The normalisation of

x : N

P

is

x : Z

x ≥ 0
P
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Negation of Schemata

A schema is negated by negating the predicate part in
its normalised form

Example

The negation of

x : N

P

which is

x : Z

¬ (x ∈ N ∧ P)

is the negation of

x : Z

x ∈ N

P
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Schemata as Operations

States

A state is a variable assignment

A schema describes a set of states

Operations

To describe an operation,
a schema must describe pairs of states (pre/post)
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Schemata as Operations

States

A state is a variable assignment

A schema describes a set of states

Operations

To describe an operation,
a schema must describe pairs of states (pre/post)

Notation

Variables are decorated with ′ to refer to their value in the post state

Whole schemata can be decorated
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Schemata as Operations

Example

NumberInSet′

is the same as

NumberInSet′

a′ : Z

c′ : PZ

a′ ∈ c′
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Schemata as Operations

Example

NumberInSet′

is the same as

NumberInSet′

a′ : Z

c′ : PZ

a′ ∈ c′

Further decorations

input variables are decorated with “ ?”

output variables are decorated with “ !”
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Example

Theater: Selling tickets

Purchase0
TicketsForPerformance0
TicketsForPerformance0′

s? : Seat
p? : Person

s? ∈ seating\dom sold

sold′ = sold∪ {s? 7→ p?}
seating′ = seating

(no output variables in this schema)
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Example

Response ::= okay | sorry

Success
r! : Response

r! = okay

Then

Purchase0 ∧ Success

is a schema that reports successful ticket sale
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Schemata as Operations

General Form

StateSpace
x1 : T1; . . . ; xn : Tn

inv(x1, . . . , xn)

Operation
StateSpace
StateSpcae′

i1? : U1; . . . ; im? : Um

o1! : V1; . . . ; op! : Vp

pre(i1?, . . . , im?, x1, . . . , xn)
op(i1?, . . . , im?, x1, . . . , xn, x′1, . . . , x′n, o1!, . . . , op!)
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The ∆ Operator

Definition

∆Schema abbreviates Schema ∧ Schema′

General form of operation schema using ∆

Operation
∆StateSpace
i1? : U1; . . . ; im? : Um

o1! : V1; . . . ; op! : Vp

pre(i1?, . . . , im?, x1, . . . , xn)
op(i1?, . . . , im?, x1, . . . , xn, x′1, . . . , x′n, o1!, . . . , op!)
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The Ξ Operator

Definition

ΞSchema abbreviates ∆Schema ∧ (x1 = x′1 ∧ . . . ∧ xn = x′n)

where x1, . . .xn are the variables declared in Schema

General form of operation schema using Ξ

Operation
ΞStateSpace
i1? : U1; . . . ; im? : Um

o1! : V1; . . . ; op! : Vp

pre(i1?, . . . , im?, x1, . . . , xn)
op(i1?, . . . , im?, x1, . . . , xn, o1!, . . . , op!)

Using Ξ indicates that the operation does not change the state
B. Beckert: Formal Specification and Verification of Software – p.55



The Operators ∆ and Ξ: Example

The following schemata are equivalent

ΞNumberInSet

∆NumberInSet

a = a′

c = c′

NumberInSet
NumberInSet′

a = a′

c = c′
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Example

Theater: Selling tickets, but only to friends if first night p erformance

Purchase1
∆TicketsForPerformance1
s? : Seat
p? : Person

s? ∈ seating\dom sold
status = firstNight ⇒ (p? ∈ friends)

sold′ = sold∪ {s? 7→ p?}
seating′ = seating
status′ = status
friends′ = friends
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Example

NotAvailable
ΞTicketsForPerformance1
s? : Seat
p? : Person

s? ∈ dom sold ∨ (status = firstNight ∧ ¬ p? ∈ friends)

Failure
r! : Response

r! = sorry

TicketServiceForPerformance =̂

(Purchase1 ∧ Success) ∨
(NotAvailable ∧ Failure)
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Quantifying Variables in Schemata

Schema quantification

∀x : S • Schema resp.
∃x : S • Schema

(existential quantification is also called “variable hidin g”)
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Quantifying Variables in Schemata

Schema quantification

∀x : S • Schema resp.
∃x : S • Schema

(existential quantification is also called “variable hidin g”)

Example

∃ a : Z • NumberInSet

is the same as

c : PZ

∃ a : Z • a ∈ c
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Composition of Operation Schemata

Definition

Operation schemata can be composed using o
9, where

every variable with ′ in the first schema must occur without ′

in the second schema

these variables are identified and

hidden from the outside
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Composition: General form

Op1
x1 : T1; . . . ; xp : Tp

z1 : V1; . . . ; zn : Vn

z′1 : V1; . . . ; z′n : Vn

op1(x1, . . . , xp,
z1, . . . , zn, z′1, . . . , z′n)

Op2
y1 : U1; . . . ; yq : Uq

z1 : V1; . . . ; zn : Vn

z′1 : V1; . . . ; z′n : Vn

op2(y1, . . . , yq,
z1, . . . , zn, z′1, . . . , z′n)

Op1 o
9 Op2

x1 : T1; . . . ; xp : Tp

y1 : U1; . . . ; yq : Uq

z1 : V1; . . . ; zn : Vn

z′1 : V1; . . . ; z′n : Vn

∃ z′′1 : V1; . . . ; z′′n : Vn •
op1(x1, . . . , xp, z1, . . . , zn, z′′1 , . . . , z′′n)
op2(y1, . . . , yq, z′′1 , . . . , zn, z′1, . . . , z′n)
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Example

Purchase1 o
9 Purchase1[s?/s2?]

is equivalent to

∆TicketsForPerformance1
s? : Seat; s2? : Seat; p? : Person

s? ∈ seating\dom sold
s2? ∈ seating\dom(sold∪ {s? 7→ p?})
status = firstNight ⇒ (p? ∈ friends)

sold′ = sold∪ {s? 7→ p?, s2? 7→ p?}
seating′ = seating
status′ = status
friends′ = friends
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