
Software Model
Checking:
Theory and Practice

Lecture: Specification Checking -
LTL Model Checking

Copyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University and the University of Nebraska
in their current form or modified form without the express written permission of one of the copyright holders. During this
course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm
without the express written permission of one of the copyright holders.

Property Checking : LTL Model Checking 2

Objectives

To understand Büchi automata and their
relationship to LTL
To understand how Büchi acceptance
search enables a general LTL model
checking algorithm

Property Checking : LTL Model Checking 3

Safety Checking

For safety properties we automated the
“instrumentation” of checking for
acceptance of a regular expression for a
violation

This involved modifying the DFS algorithm to
Calculate states of the property automaton
Check to see whether an accept state is
reached

We will apply the same basic strategy for LTL

Property Checking : LTL Model Checking 4

Property

LTL Model Checking

From the semantics
An LTL formula defines a set of (accepting)
traces

We can
Check for trace containment

System

Property Checking : LTL Model Checking 5

LTL Model Checking

From the semantics
The negation of an LTL formula defines a set
of (violating) traces

We can
Check for non-empty language intersection

System

Negation of Property

Property Checking : LTL Model Checking 6

Emptiness Check

LTL is closed under complement
L(φ) = L(¬φ)

where the language of a formula defines a
set of infinite traces

A Büchi automaton accepts a set of infinite
traces

Property Checking : LTL Model Checking 7

Büchi Automata
A Büchi automaton is a quadruple (R,I,δ,F)

S is a set of states
I ⊆ R is a set of initial states
δ : R → P(R) is a transition relation
F is a set of accepting states

Unlike FSAs, Büchi automata are always non-
deterministic

set of initial states
multiple transitions from a state

Property Checking : LTL Model Checking 8

Büchi Automata

Automaton states are labeled with atomic
propositions of the formula
λ : R → P(A)

• where A are the set of observables for the
program

• λ(r) is the set of observables for a property
state

Note that the meaning of the automata is
defined via this mapping
• plays the role of alphabet in FSA

Property Checking : LTL Model Checking 9

Example : Büchi Automaton

cruise off true

S = {r0, r1, r2}
I = {r0}
δ = {(r0,{r0,r1}),(r1,{r2}),(r2,{r2})}
F = {r2}
λ = {(r0,cruire}),(r1,{off}),(r2,{})}

r0 r2r1

Property Checking : LTL Model Checking 10

Büchi Automata Semantics
An infinite trace

σ = r0, r1, …
is accepted by a Büchi automaton iff

r0 ∈ I starting in an initial state

∀i≥0 : ri+1∈ δ(ri) trace corresponds to
transition relation

∀i≥0 ∃j≥i : rj ∈ F can reach a final state
from end of all prefixes

Property Checking : LTL Model Checking 11

Büchi Trace Containment
Assume each system state (S) is labeled (Λ)

with set of observables (A)
A Büchi automaton accepts a system trace

s0, s1, …

∃r0 ∈ I : λ(r0)∈ Λ(s0)

∀i≥0 ∃ri+1∈ δ(ri) : λ(ri+1)∈ Λ(si+1)

∀i≥0 ∃j≥i : rj ∈ F

Property Checking : LTL Model Checking 12

Example : Büchi Automaton

cruise off true

cruise cruise off off accel accel cruise …
cruise cruise accel cruise off accel …

ro r1 r2

Property Checking : LTL Model Checking 13

LTL and Büchi Automata

Every LTL formula has a Büchi automaton
that accepts its language (not vice versa)

L(φ) ⊆ L(BA)
L(φ) ∩ L(BA) ≠∅

Büchi automata cannot be determinized
i.e., there is no canonical deterministic
automaton that accepts the same language

Büchi automata are closed under the
standard set operations

Property Checking : LTL Model Checking 14

Example : Büchi Automaton

cruise off true

What LTL property does this correspond to?

ro r1 r2

cruise U off

Property Checking : LTL Model Checking 15

Example : Büchi Automaton

true off true

What LTL property does this correspond to?

ro r1 r2

◊ off

Property Checking : LTL Model Checking 16

LTL Model Checking

Apply same strategy as before
Generate Büchi automaton for the negation
of the LTL property
Explore state space of the product of the
automaton and the system
Check for emptiness

Violation are indicated by accepting traces
Look for cycles containing an accept state
Use nested depth-first search

Property Checking : LTL Model Checking 17

errors := {}
seen := {}
for each r ∈ I do

seen := seen U {(s0 , r)}
stack := [(s0 , r)]
DFS((s0 , r))
pop(stack)

LTL Model Checking

For each initial property state

initialize DFS data structures

perform search of initial product state

Property Checking : LTL Model Checking 18

DFS ((s,r))
workSet := enabled (s)
for each α ∈ workSet do

s’ := α (s)
for each r’ ∈ δ(r) do

if λ(r’) ∉ Λ(s’) then
if (s’ ,r’) ∉ seen then

seen := seen ∪ {(s’ ,r’)}
push (stack, (s’ ,r’))
DFS((s’,r’))
if r’ ∈ A then

seen’ := {(s’ ,r’)}
stack’ := [(s’ ,r’)]
NDFS((s’,r’),(s’ ,r’))
pop(stack’)

pop(stack)
end DFS

LTL Model Checking

For each transition

check if state labels match

Only launch a cycle search
from property accept states

Property Checking : LTL Model Checking 19

NDFS ((s,r), seed)
workSet := enabled (s)
for each α ∈ workSet do

s’ := α (s)
for each r’ ∈ δ(r) do

if λ(r’) ∉ Λ(s’) then
if (s’ ,r’) = ∫eed then

errors := errors U {(stack,stack’)}
continue

if (s’,r’) ∉ seen’ then
seen’ := seen’ ∪ {(s’,r’)}
push (stack’, (s’,r’))
NDFS((s’,r’), seed)
pop(stack’)

end NDFS

LTL Model Checking

For each transition

check if state labels match

Same logic as for

progress checking

Property Checking : LTL Model Checking 20

Fairness

Liveness states that the system should
eventually do something

Often times in real systems threads rely on a
schedule to give them a chance to run
Abstracting scheduling to non-deterministic
choice introduces severe approximation

There are many forms of fairness
The intuition is that we restrict the systems
behaviors to only those on which each
process gets a chance to execute

Property Checking : LTL Model Checking 21

Fairness in LTL

LTL is expressive enough to state fairness
properties directly

[]<> (Phil1.eating || Phil2.eating)
([]<>Phil1.eating) && ([]<>Phil2.eating)

Fairness formula can be used to filter the
behaviors that are checked as follows

Fairness -> Property
If not Fairness then whole thing is true
Property checked only when Fairness holds

