
Formal Specification and Verification
Introduction

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at
Chalmers University, Göteborg

Formal Specification and Verification: Introduction B. Beckert 1 / 36

Organisational Stuff

Course Home Page

http:
//www.uni-koblenz.de/~beckert/Lehre/Formale-Verifikation/
Also linked from KLIPS

Passing Criteria

I Written or oral exam

I Two lab hand-ins

Formal Specification and Verification: Introduction B. Beckert 2 / 36

http://www.uni-koblenz.de/~beckert/Lehre/Formale-Verifikation/
http://www.uni-koblenz.de/~beckert/Lehre/Formale-Verifikation/

Organisational Stuff: Course Structure

Course Structure

I Intro

I Propositional & Temporal Logic

I First-Order Logic

I Modeling & Verification with Promela & Spin

I Modeling & Verification with JML & KeY

Promela/Spin abstract programs, model checking, automatic

JML/KeY executable Java, deductive verification, semi-automatic

. . . more on this later!

Formal Specification and Verification: Introduction B. Beckert 3 / 36

Motivation:
Software Defects cause BIG Failures

Tiny faults in technical systems can have catastrophic consequences

In particular, this goes for software systems

I Ariane 5

I Mars Climate Orbiter, Mars Sojourner

I London Ambulance Dispatch System

I Denver Airport Luggage Handling System

I Pentium-Bug

I NEDAP Voting Computer Attack

Formal Specification and Verification: Introduction B. Beckert 4 / 36

Motivation:
Software Defects cause OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software these days is inside just about anything:

I Mobiles

I Smart devices

I Smart cards

I Cars

⇒ software—and specification—quality is a growing legal issue

Formal Specification and Verification: Introduction B. Beckert 5 / 36

Motivation:
Software Defects cause OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software these days is inside just about anything:

I Mobiles

I Smart devices

I Smart cards

I Cars

⇒ software—and specification—quality is a growing legal issue

Formal Specification and Verification: Introduction B. Beckert 5 / 36

Motivation:
Software Defects cause OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software these days is inside just about anything:

I Mobiles

I Smart devices

I Smart cards

I Cars

⇒ software—and specification—quality is a growing legal issue

Formal Specification and Verification: Introduction B. Beckert 5 / 36

Achieving Reliability in Engineering

Some well-known strategies from civil engineering

I Precise calculations/estimations of forces, stress, etc.

I Hardware redundancy (“make it a bit stronger than necessary”)

I Robust design (single fault not catastrophic)

I Clear separation of subsystems
Any air plane flies with dozens of known and minor defects

I Design follows patterns that are proven to work

Formal Specification and Verification: Introduction B. Beckert 6 / 36

Why This Does Not Work For Software

I Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

I Redundancy as replication doesn’t help against bugs
Redundant SW development only viable in extreme cases

I No clear separation of subsystems
Local failures often affect whole system

I Software designs have very high logic complexity

I Most SW engineers untrained to address correctness

I Cost efficiency favoured over reliability

I Design practice for reliable software in immature state
for complex, particularly, distributed systems

Formal Specification and Verification: Introduction B. Beckert 7 / 36

How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, . . .)

Testing against inherent SW errors (“bugs”)

I design test configurations that hopefully are representative and

I ensure that the system behaves intentionally on them

Testing against external faults

I Inject faults (memory, communication) by simulation or radiation

Formal Specification and Verification: Introduction B. Beckert 8 / 36

Limitations of Testing

I Testing shows the presence of errors, in general not their absence
(exhaustive testing viable only for trivial systems)

I Representativeness of test cases/injected faults subjective
How to test for the unexpected? Rare cases?

I Testing is labor intensive, hence expensive

Formal Specification and Verification: Introduction B. Beckert 9 / 36

Formal Methods: The Scenario

I Rigorous methods used in system design and development

I Mathematics and symbolic logic ⇒ formal

I Increase confidence in a system
I Two aspects:

I System implementation
I System requirements

I Make formal model of both and use tools to prove mechanically
that formal execution model satisfies formal requirements

Formal Specification and Verification: Introduction B. Beckert 10 / 36

Formal Methods: The Vision

I Complement other analysis and design methods

I Are good at finding bugs
(in code and specification)

I Reduce development (and test) time

I Can ensure certain properties of the system model

I Should ideally be as automatic as possible

Formal Specification and Verification: Introduction B. Beckert 11 / 36

Formal Methods: Relation with Testing

I Run the system at chosen inputs and observe its behaviour
I Randomly chosen (no guarantees, but can find bugs)
I Intelligently chosen (by hand: expensive!)
I Automatically chosen (need formalized spec)

I What about other inputs? (test coverage)

I What about the observation? (test oracle)

Formal Specification and Verification: Introduction B. Beckert 12 / 36

Specification — What a System Should Do

I Simple properties
I Safety properties

Something bad will never happen (eg, mutual exclusion)
I Liveness properties

Something good will happen eventually

I General properties of concurrent/distributed systems

I deadlock-free, no starvation, fairness

I Non-functional properties

I Runtime, memory, usability, . . .

I Full behavioural specification
I Code satisfies a contract that describes its functionality
I Data consistency, system invariants

(in particular for efficient, i.e. redundant, data representations)
I Modularity, encapsulation
I Program equivalence
I Refinement relation

Formal Specification and Verification: Introduction B. Beckert 13 / 36

The Main Point of Formal Methods is Not

I To show “correctness” of entire systems
What IS correctness? Always go for specific properties!

I To replace testing entirely

I Formal methods work on models, on source code, or, at most, on
bytecode level

I Many non-formalizable properties

I To replace good design practices

There is no silver bullet!

I No correct system w/o clear requirements & good design

I One can’t formally verify messy code with unclear specs

Formal Specification and Verification: Introduction B. Beckert 14 / 36

But . . .

I Formal proof can replace (infinitely) many test cases

I Formal methods can be used in automatic test case generation

I Formal methods improve the quality of specs
(even without formal verification)

I Formal methods guarantee specific properties of a specific system
model

Formal Specification and Verification: Introduction B. Beckert 15 / 36

Formal Methods Aim at:

I Saving money
Intel Pentium bug
Smart cards in banking

I Saving time
otherwise spent on heavy testing and maintenance

I More complex products
Modern µ-processors
Fault tolerant software

I Saving human lives
Avionics, X-by-wire
Washing machine

Formal Specification and Verification: Introduction B. Beckert 16 / 36

A Fundamental Fact

Formalisation of system requirements is hard

Let’s see why . . .

Formal Specification and Verification: Introduction B. Beckert 17 / 36

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

Abstraction

Formal Specification and Verification: Introduction B. Beckert 18 / 36

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

over simplification

e.g., zero delay

Formal Specification and Verification: Introduction B. Beckert 18 / 36

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

missing requirement

e.g., max stack size

Formal Specification and Verification: Introduction B. Beckert 18 / 36

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

wrong modeling

e.g., ZZ vs int

Formal Specification and Verification: Introduction B. Beckert 18 / 36

Formalization Helps to Find Bugs in Specs

I Wellformedness and consistency of formal specs machine-checkable

I Declared signature (symbols) helps to spot incomplete specs

I Failed verification of implementation against spec
gives feedback on erroneous formalization

Errors in specifications are at least as common as errors in code

,
but their discovery gives deep insights in (mis)conceptions of the system.

Formal Specification and Verification: Introduction B. Beckert 19 / 36

Formalization Helps to Find Bugs in Specs

I Wellformedness and consistency of formal specs machine-checkable

I Declared signature (symbols) helps to spot incomplete specs

I Failed verification of implementation against spec
gives feedback on erroneous formalization

Errors in specifications are at least as common as errors in code,
but their discovery gives deep insights in (mis)conceptions of the system.

Formal Specification and Verification: Introduction B. Beckert 19 / 36

Another Fundamental Fact

Proving properties of systems can be hard

Formal Specification and Verification: Introduction B. Beckert 20 / 36

Level of System (Implementation) Description

I Abstract level
I Finitely many states (finite datatypes)
I Tedious to program, worse to maintain
I Over-simplification, unfaithful modeling

inevitable
I Automatic proofs are (in principle) possible

I Concrete level
I Infinite datatypes

(pointer chains, dynamic arrays, streams)
I Complex datatypes and control structures,

general programs
I Realistic programming model (e.g., Java)
I Automatic proofs (in general) impossible!

Formal Specification and Verification: Introduction B. Beckert 21 / 36

Expressiveness of Specification

I Simple
I Simple or general properties
I Finitely many case distinctions
I Approximation, low precision
I Automatic proofs are (in principle) possible

I Complex
I Full behavioural specification
I Quantification over infinite domains
I High precision, tight modeling
I Automatic proofs (in general) impossible!

Formal Specification and Verification: Introduction B. Beckert 22 / 36

Main Approaches

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY
1st part
of course

Spin
2nd part
of course

Formal Specification and Verification: Introduction B. Beckert 23 / 36

Main Approaches

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY
1st part
of course

Spin
2nd part
of course

Formal Specification and Verification: Introduction B. Beckert 23 / 36

Main Approaches

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY
1st part
of course

Spin
2nd part
of course

Formal Specification and Verification: Introduction B. Beckert 23 / 36

Proof Automation

I “Automatic” Proof
Perhaps better called “batch-mode” proof

I No interaction during verification necessary
I Proof may fail or result inconclusive

Tuning of tool parameters necessary
I Formal specification still “by hand”

I “Semi-Automatic” Proof
Perhaps better called “interactive” proof

I Interaction may be required during proof
I Need certain knowledge of tool internals

Intermediate inspection can be helpful, too
I Proof is checked by tool

Formal Specification and Verification: Introduction B. Beckert 24 / 36

Model Checking

System Model

byte n = 0;
active proctype P() {

n = 1;
}
active proctype Q() {

n = 2;
}

System Property

[] ! (criticalSectP && criticalSectQ)

Model
Checker

48

criticalSectP=0 1 1
criticalSectQ=1 0 1

Formal Specification and Verification: Introduction B. Beckert 26 / 36

Model Checking in Industry

I Hardware verification
I Good match between limitations of technology and application
I Intel, Motorola, AMD, . . .

I Software verification
I Specialized software: control systems, protocols
I Typically no checking of executable sourse code, but of abstraction
I Bell Labs, Ericsson, Microsoft

Formal Specification and Verification: Introduction B. Beckert 27 / 36

Deductive Verification

Java Code Formal specification

correct?

Program Verification System

correct4

Formal Specification and Verification: Introduction B. Beckert 28 / 36

Deductive Verification

Java Code Formal specification

correct?

Program Verification System

correct4

Formal Specification and Verification: Introduction B. Beckert 28 / 36

Deductive Verification

Java Code Formal specification

correct?

Program Verification System

correct4

Formal Specification and Verification: Introduction B. Beckert 28 / 36

Deductive Verification

Java Code Formal specification

correct?

Program Verification System

correct4

Formal Specification and Verification: Introduction B. Beckert 28 / 36

Deductive Verification

Java Code Formal specification

correct?

Program Verification System

correct4

Proof rules establish relation “implementation conforms to specs”

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

I ca. 15.000 proof steps

I ca. 200 case distinctions

I Two human interactions, ca. 1 minute computing time

Formal Specification and Verification: Introduction B. Beckert 28 / 36

Deductive Verification in Industry

I Hardware verification
I For complex systems, most of all floating-point processors
I Intel, Motorola, AMD, . . .

I Software verification
I Safety critical systems:

I Paris driverless metro (Meteor)
I Emergency closing system in North Sea

I Libraries
I Implementations of Protocols

Formal Specification and Verification: Introduction B. Beckert 29 / 36

A Major Case Study with Spin

Checking feature interaction for telephone call processing software

I Software for PathStarTM server from Lucent Technologies

I Automated abstraction of unchanged C code into Promela

I Web interface, with Spin as back-end, to:
I track properties (ca. 20 temporal formulas)
I invoke verification runs
I report error traces

I Finds shortest possible error trace, reported as C execution trace

I Work farmed out to 16 computers, daily, overnight runs

I 18 months, 300 versions of system model, 75 bugs found

I strength: detection of undesired feature interactions
(difficult with traditional testing)

I Main challenge: defining meaningful properties

Formal Specification and Verification: Introduction B. Beckert 30 / 36

A Major Case Study with KeY

Mondex Electronic Purse

I Specified and implemented by NatWest ca. 1996

I Original formal specs in Z and proofs by hand

I Reformulated specs in JML, implementation in Java Card

I Can be run on actual smart card

I Full functional verification

I Total effort 4 person months

I With correct invariants: proofs fully automatic

I Main challenge: loop invariants, getting specs right

Formal Specification and Verification: Introduction B. Beckert 31 / 36

Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid clerical errors, etc.

I Cope with large/complex programs

I Make verification certifiable

Tools are Used in this Course in Both Parts:

Spin to verify Promela programs against Temporal Logic specs

jSpin as a Java interface for Spin

KeY to verify Java (Card) programs against contracts in JML

Both are free and run on Windows/Unixes/Mac
(will be available via course webpage)
Install them on your computer!

Formal Specification and Verification: Introduction B. Beckert 32 / 36

Future Trends

I Design for formal verification

I Combining semi-automatic methods with SAT, theorem provers

I Combining static analysis of programs
with automatic methods and with theorem provers

I Combining test and formal verification

I Integration of formal methods into SW development process

I Integration of formal method tools into CASE tools

I Applying formal methods to dependable systems design

I Scaling formal methods to open, distributed, adaptive systems

Formal Specification and Verification: Introduction B. Beckert 33 / 36

Literature for this Lecture

FM in SE B. Beckert, R. Hähnle, T. Hoare, D. Smith, C. Green, S.
Ranise, C. Tinelli, T. Ball, and S. K. Rajamani: Intelligent
Systems and Formal Methods in Software Engineering. IEEE
Intelligent Systems, 21(6):71–81, 2006.

Spin Gerard J. Holzmann: A Verification Model of a Telephone
Switch. In: The Spin Model Checker, pp 299–324, Chapter
14, Addison Wesley, 2004.

KeY R. Hähnle: A New Look at Formal Methods for Software
Construction. In: B. Beckert, R. Hähnle, and P. Schmitt,
editors. Verification of Object-Oriented Software: The KeY
Approach, pp 1–18, vol 4334 of LNCS. Springer, 2006.

Formal Specification and Verification: Introduction B. Beckert 34 / 36

Summary

Formal Methods . . .

I Are (more and more) used in practice

I Can shorten development time

I Can push the limits of feasible complexity

I Can increase quality/reliability of systems dramatically

Those responsible for software management should
consider formal methods, especially within the realm of

safety-critical, security-critical, and cost-intensive software

Formal Specification and Verification: Introduction B. Beckert 35 / 36

Summary

Formal Methods . . .

I Are (more and more) used in practice

I Can shorten development time

I Can push the limits of feasible complexity

I Can increase quality/reliability of systems dramatically

Those responsible for software management should
consider formal methods, especially within the realm of

safety-critical, security-critical, and cost-intensive software

Formal Specification and Verification: Introduction B. Beckert 35 / 36

You will gain experience in ...

... more than Formal Methods (in the strict sense)

I modelling, and modelling languages

I specification, and specification languages

I in depth analysis of possible system behaviour

I typical types of errors

I reasoning about system (mis)behaviour

I ...

Formal Specification and Verification: Introduction B. Beckert 36 / 36

	Organisation
	Motivation
	Formalisation

