Formal Specification and Verification

Formal Modeling with Propositional Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hahnle at
Chalmers University, Goteborg

Formal Specification and Verification: Formal Modeling with PL B. Beckert

1/24

Formalisation

Real Formalisation Formal
World Model

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2 /24

Formalisation: Syntax, Semantics

Formal

Languages

Formal

Semantics

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2/24

Formalisation: Syntax, Semantics

Formal

Languages

Interpretation

Formal

Semantics

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2 /24

Formalisation: Syntax, Semantics

Propositional

Logic

Interpretation

Valuation

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2/24

Formalisation: Syntax, Semantics

Promela +

Temporal Logic

Interpretation

All Runs o +

Valuation in o

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2/24

Formalisation: Syntax, Semantics

Temporal Logic

Promela \
xa*
SY° All Runs o =
Semantics Transition System

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2/24

Formalisation: Syntax, Semantics, Proving

Temporal Logic

Promela \
xar
SY° All Runs o =
Semantics Transition System

How to do

proving?

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2/24

Formal Verification: Model Checking

TL
Promela \

Transition '

System

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

2724

Formal Verification: Model Checking

Translation

TL of Negation
Promela \

Automaton

Transition '

System

Formal Specification and Verification: Formal Modeling with PL B. Beckert 2 /24

Formal Verification: Model Checking

Promela |

\

Translation

of Negation

Semantics

)[System ‘

Automaton

Transition

2 7

Product

accepts

no run?

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

2724

Syntax, Semantics, Calculus

Syntax

Formula/Program

Semantics
“valid”

Calculus
“Derivable”

Formal Specification and Verification: Formal Modeling with PL B. Beckert 3/24

Syntax, Semantics, Calculus

Syntax

Formula/Program

Semantics
“valid”

Completenes¢

Calculus
“Derivable”

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

3/ 2

Syntax, Semantics, Calculus

Syntax

Formula/Program

Semantics
“valid”

Completenes¢ ‘rSoundness

Calculus
“Derivable”

Formal Specification and Verification: Formal Modeling with PL B. Beckert 3/24

Propositional Logic

Propositional

Formulas

=

Magping
Var - {T, F}

s 2 Zall

Sequent Calculus

SAT Solver

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

4724

Propositional Logic— Syntax

Propositional

Formulas

=2

Magping
Var - T, F}

2 1

Sequent Calculus

SAT Solver

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

4/ 24

Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,...) J

Formal Specification and Verification: Formal Modeling with PL B. Beckert 5/24

Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,..

)

v

Propositional Connectives
true false & | ! — <>

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

5 /24

Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,...)

Propositional Connectives

true false & | | 9 — <>

Set of Propositional Formulas For
» Truth constants true, false and variables P are formulas
» If ¢ and 1 are formulas then

Lo, (¢ &), (]4), (¢ =>19) (6 <>1)

are also formulas

» There are no other formulas (inductive definition)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 5/24

Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,...)

Propositional Connectives (KeY notation)

true false & | | — <>

Set of Propositional Formulas For
» Truth constants true, false and variables P are formulas
» If ¢ and 1) are formulas then

Lo, (0 &) (0]9) (0 =>79) (& <>79)

are also formulas

» There are no other formulas (inductive definition)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 5/24

Remark on Concrete Syntax

Text book SpPIN KeY
Negation - ! !
Conjunction A && &
Disjunction Y I |
Implication —, D — -
Equivalence - <> <>

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

6 /24

Remark on Concrete Syntax

Text book SpPIN KeY
Negation - ! !
Conjunction A && &
Disjunction Y I |
Implication —, D — -
Equivalence — <> <>

Today, we use KeY notation.
Be flexible during the course!

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

6 /24

Propositional Logic— Semantics

Propositional

Formulas

l_

Mapgping
Var - {T, F}

+ 4F1

Sequent Calculus

SAT Solver

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

7/ 2

Semantics of Propositional Logic

Interpretation 7
Assigns a truth value to each propositional variable

I:P—{T,F}

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

8/ 24

Semantics of Propositional Logic

Interpretation 7

Assigns a truth value to each propositional variable

I:P—{T,F}

Valuation function

valz: Continuation of Z on Forg
valr : Forp — {T,F}
valz(pi) = Z(pi)

valz(true) = T
valz(false) = F

(cont'd next page)

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

8/ 24

Semantics of Propositional Logic (Cont’d)

Valuation function (Cont’d)

valz(! ¢) = { T if valz(¢) = F

F otherwise

T if valz(¢) =T and valz(yp) =T
F otherwise

T if valz(¢) = T or valz(¢)) =T
F otherwise

valr(¢ &) = {

vair(o | 4) = {

T if valz(¢) = F or valz(¢)) = T
F otherwise

vai(6 =) = {

F otherwise

valp(d <>) = { T if valz(¢) = valz()

Formal Specification and Verification: Formal Modeling with PL B. Beckert 9 /24

Examples

Formula

p—=> (g = p)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 10 /24

Examples

Formula

p—=> (g = p)
Interpretation
One of four different ones on P = {p, g} that are possible:
I(p)=T
I(q) = F

B. Beckert 10 /24

Formal Specification and Verification: Formal Modeling with PL

Examples

Formula
p = (@ = p) }

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation
valz(g — p) =

Formal Specification and Verification: Formal Modeling with PL B. Beckert 10 /24

Examples

Formula

p—=> (g = p)

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation
valz(g —> p) = T

Formal Specification and Verification: Formal Modeling with PL

B. Beckert 10 /24

Examples

Formula

p—=> (g = p)

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation

valz(g —> p) = T
valz(p — (¢ = p))

Formal Specification and Verification: Formal Modeling with PL

B. Beckert 10 /24

Examples

Formula

p—=> (g = p)

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation

valz(g —> p) = T
)

valz(p —> (¢ > p)) = T

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

10/ 24

Semantic Notions of Propositional Logic

Let ¢ € Fory, I C Forg

Definition (Model and Consequence Relation, overloading =)
¢ is true in Z and Z is a model of ¢ (write: Z |= ¢) iff valz(¢p) = T

¢ follows from I (write: T = ¢) iff for all interpretations Z:

If Z =1 for all ¢ €T then also Z |= ¢

Formal Specification and Verification: Formal Modeling with PL B. Beckert 11 /24

Semantic Notions of Propositional Logic

Let ¢ € Fory, I C Forg

Definition (Model and Consequence Relation, overloading =)
¢ is true in Z and Z is a model of ¢ (write: Z |= ¢) iff valz(¢p) = T

¢ follows from I (write: T = ¢) iff for all interpretations Z:

If Z =1 for all ¢ €T then also Z |= ¢

Definition (Satisfiability, Validity)
A formula is satisfiable if it is true in some interpretation.
If ¢ is true in every interpretation, i.e.

DE¢ (short: = ¢)
then ¢ is called (logically) valid.

Formal Specification and Verification: Formal Modeling with PL B. Beckert 11 /24

Examples

Formula (same as before)

p— (g = p)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 12 /24

Examples

Formula (same as before)

p— (g = p)

Is this formula valid?

Fp = (g = p)?

Formal Specification and Verification: Formal Modeling with PL B. Beckert 12 /24

Examples

p& (('p) | 9))

Satisfiable?

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Examples

p& (('p) | 9))

Satisfiable? v

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Examples

p & (('p) | q)

Satisfiable? v
Satisfying Interpretation?

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

13/ 24

Examples

p & (('p) | q))

Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Examples

p & (('p) | q)]

Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations?

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Examples

p & (('p) | q)]

Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Examples

p & (('p) | q)]

Satisfiable? v

Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X

Therefore, also not valid!

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Examples

p & (('p) | q)]

Satisfiable? v

Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X

Therefore, also not valid!

p& (('p) la)Eqlr)

Does it hold?

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Examples

p & (('p) | q)]

Satisfiable? v

Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X

Therefore, also not valid!

p& (('p) la)Eqlr)

Does it hold? Yes. Why?

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24

Propositional Logic— Calculus

Propositional

Formulas

l_

Magping
Var - {T, F}

+ 4F1

Sequent
Calculus

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

14 /24

Reasoning by Syntactic Transformation

Establish |= ¢ by finite, syntactic transformation of ¢ J

Formal Specification and Verification: Formal Modeling with PL B. Beckert 15 /24

Reasoning by Syntactic Transformation

Establish |= ¢ by finite, syntactic transformation of ¢ J

(Logic) Calculus

A set of syntactic transformation rules R defining a
relation = C Forg such that - ¢ implies = ¢.

» I ¢ implies |= ¢: Soundness (required)
» = ¢ implies - ¢: Completeness (desirable)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 15 /24

Reasoning by Syntactic Transformation

Establish |= ¢ by finite, syntactic transformation of ¢

(Logic) Calculus
A set of syntactic transformation rules R defining a
relation = C Forg such that - ¢ implies = ¢.

» I ¢ implies |= ¢: Soundness (required)

» = ¢ implies - ¢: Completeness (desirable)

Sequent Calculus based on notion of sequent

wl,...,wm == ¢17~--7¢n
—_———— —_——
Antecedent Succedent

has same semantics as

(Y1 & &) —> (o1]| én)
{wlv"'awm}): ¢1”¢n

Formal Specification and Verification: Formal Modeling with PL B. Beckert

15/ 24

Notation for Sequents

¢17---’1/1m = ¢1""7¢n J

Consider antecedent/succedent as sets of formulas, may be empty

Formal Specification and Verification: Formal Modeling with PL B. Beckert 16 /24

Notation for Sequents

¢17---,¢m = ¢1)"'7¢n J

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

¢, 1, ... match formulas, ', A, ... match sets of formulas
Characterize infinitely many sequents with a single schematic sequent

N = Ao¢o&y

Matches any sequent with occurrence of conjunction in succedent

Call ¢ & 1 main formula and ', A side formulas of sequent

Any sequent of the form ;¢ = A, ¢ is logically valid: axiom

Formal Specification and Verification: Formal Modeling with PL B. Beckert 16 /24

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses

Mh=4A - I,=A,

=AY
——

Conclusion

RuleName

Formal Specification and Verification: Formal Modeling with PL B. Beckert 17 /24

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses
Mh=4 - I,=A
RuleName ! ! ! !
=AY
——
Conclusion
Example
[= ¢, A M=y, A
andRight ¢, i

N=0¢ & ¢, A

Formal Specification and Verification: Formal Modeling with PL B. Beckert 17 /24

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses
Mh=4A - I,=A,
=AY
~——

Conclusion

RuleName

Example
= ¢, A =y, A

andRight
N=o¢ & ¢y, A

Sound rule (essential): E (M =A1&--- &I, = A,) = (= A4)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 17 /24

Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses

Mh=4A - I,=A,

=AY
——

Conclusion

RuleName

Example
= ¢, A =y, A
N=o¢ & ¢y, A

andRight

Sound rule (essential): E (M =A1&--- &I, = A,) = (= A4)

Complete rule (desirable):= (T = A) > (M1 = A1 & - & T, = A))

Admissible to have no premisses (iff conclusion is valid, eg axiom)
Formal Specification and Verification: Formal Modeling with PL B. Beckert 17 /24

Rules of Propositional Sequent Calculus

main ‘ left side (antecedent) ‘ right side (succedent)
. = ¢,A Moo= A
"l Te=n =14

Formal Specification and Verification: Formal Modeling with PL B. Beckert 18 /24

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. = 0¢,A o= A
no —_——— e
N'e= A N=1¢,A
d o v=A = 9¢,A N=4¢y,A
an
Mo &¢v=A N=¢ & ¥, A
Formal Specification and Verification: Formal Modeling with PL B. Beckert 18 /24

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. = 0¢,A o= A
no —_——— e
N'e= A N=1¢,A
d o v=A = 9¢,A N=4¢y,A
an
Mo &¢v=A N=¢ & ¥, A
Moo= A Ny = A =9, 9,A
or
Nold=A Fr=o¢1l4,A
Formal Specification and Verification: Formal Modeling with PL B. Beckert 18 /24

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. = ¢,A Moo= A
"l TTie=a = 16,4
d o, v= A = ¢, A =y, A
an
Mo & = A N=9¢ & ¢y, A
Moo= A My = A = ¢, ¥, A
or
Noly=A Fr=29¢|4,A
. = ¢,A Ny = A o= v, A
im
P Mé—v—A [=¢—> A

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

18/ 24

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. [=¢,A Moo= A
" 'e= A r=1¢A
d o, v= A = ¢, A =y, A
an
o &¢=A Fr= ¢ & 9,A
Moo= A My = A = ¢, ¥, A
or
. = ¢,A Ny = A o= v, A
im
P Mo —d—A [=¢—> A
close ——— - false —
o= 9¢A [= true, A I false = A

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

Justification of Rules

Compute rules by applying semantic definitions J

Formal Specification and Verification: Formal Modeling with PL B. Beckert 19 /24

Justification of Rules

Compute rules by applying semantic definitions

=¢,9,A
F=o¢|¢,A

Follows directly from semantics of sequents

orRight

Formal Specification and Verification: Formal Modeling with PL B. Beckert

19/ 24

Justification of Rules

Compute rules by applying semantic definitions

=¢,9,A
F=o¢|¢,A

Follows directly from semantics of sequents

orRight

= ¢, A M=y, A
N=0¢ & Y, A

Fr—=(&) | A iff T—=>¢|A and T =19 | A
Distributivity of & over | and —

andRight

Formal Specification and Verification: Formal Modeling with PL B. Beckert

19/ 24

Sequent Calculus Proofs

Goal to prove: G = Y1,...,%0m = d1,...,0,

» find rule R whose conclusion matches G
» instantiate R such that conclusion identical to G
» recursively find proofs for resulting premisses Gy, ..., G,
> tree structure with goal as root
> close proof branch when rule without premiss encountered
Proof
(B8 Froof Tree
equiv_right
© [Case 1
@ (B8 Case 2
imp_right
replace_known _left
o concrete_not_1
Goal-directed proof search concrete impl3
close_goal_antec
In KeY tool proof displayed as JAVA Swing tree &

Formal Specification and Verification: Formal Modeling with PL B. Beckert 20 /24

A Simple Proof

= (P& (p—=>4q)—>q

Formal Specification and Verification: Formal Modeling with PL B. Beckert 21 /24

A Simple Proof

p& (p—=>q)=gq
=P &(p—>4q)—>q

Formal Specification and Verification: Formal Modeling with PL B. Beckert 21 /24

A Simple Proof

p,(p—=>q)=gq
p& (p—=>q)=gq
=P &(p—>4q)—>q

Formal Specification and Verification: Formal Modeling with PL B. Beckert 21 /24

A Simple Proof

P=4q, P pP,9=4

p,(p—=>q)=gq

p&(p—=>q)=gq

=P &(p—>4q)—>q

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

21 /24

A Simple Proof

CLOSE * * CLOSE
p=—4q,p p,q—=—4q

p,(p—=>q)=gq

p&(p—=>q)=gq

=P &(p—>q)—>q

Formal Specification and Verification: Formal Modeling with PL

B. Beckert

21 /24

A Simple Proof

CLOSE * * CLOSE
p=—4q,p p,q—=—4q

p,(p—=>q)=gq
p& (p—>q)=gq
=P &(p—>q)—>q

A proof is closed iff all its branches are closed

Demo
Examples/prop.key

Formal Specification and Verification: Formal Modeling with PL B. Beckert

21 /24

How Expressive is Propositional Logic?

Finite set of elements N = {1,...,n}

Let p; denote p(i) =j. pis a permutation on N ...
Groups, Latin squares, Sudoku, ...
Even finite numbers (e.g., bitwise encoding)

We will see that Promela data structures are carefully designed such that
computation states can be encoded in propositional logic

Formal Specification and Verification: Formal Modeling with PL B. Beckert 22 /24

Limitations of Propositional Logic

Fixed, finite number of objects
Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

Can express: finite function/relation table pj;
Cannot express: properties of function/relation on all arguments, e.g., +
is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time

Formal Specification and Verification: Formal Modeling with PL B. Beckert 23 /24

Beyond the Limitations of Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

Beyond the Limitations of Propositional Logic

es " ia,
o ~,‘SPIN

0. *
L] .
[] .
= | Temporal .
n . :
. Logic s
. L
P L4
(R o
— . .
Prop05|‘t|ona| M P Dynarmc
Logic Logic
First-order

Logic

Beyond the Limitations of Propositional Logic

suENy
3 *+, SPIN
* *

-
Taguns?®

¢ *
. K
= | Temporal .
. H auE N
ta{\0“= Logic . RAMER
opY . ol * *
M o N K
* . .
Propositional +computations fﬁ%f’&'ons = | Dynamic
Logic = | Logic
.
N /?‘ .
Negy . - *
/Ong Flrit—o.rder KeY *enn.nns®’
ogic

Formal Specification and Verification: Formal Modeling with PL B. Beckert 24 /24

	Formal Modeling
	Propositional Logic
	Sequent Calculus
	Expressiveness

