Formal Specification and Verification Formal Modeling with Propositional Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at Chalmers University, Göteborg

Formalisation

Formalisation: Syntax, Semantics, Proving

Formal Verification: Model Checking

Formal Verification: Model Checking

Formal Verification: Model Checking

Syntax, Semantics, Calculus

Syntax, Semantics, Calculus

Syntax, Semantics, Calculus

Propositional Logic

Propositional Logic— Syntax

Signature

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, ...)

Signature	
A set of Propositional Variables ${\cal P}$	(with typical elements p, q, r, \ldots)
Propositional Connectives	

Propositional Connectives

true false & | ! \rightarrow $<\rightarrow$

Signature					
A set of Propositional Variabl	es \mathcal{P} (with typical elements p, q, r, \ldots)				
Propositional Connectives					
true false & ! \rightarrow	<->				

Set of Propositional Formulas For₀

- \blacktriangleright Truth constants true, false and variables ${\cal P}$ are formulas
- \blacktriangleright If ϕ and ψ are formulas then

$$! \phi$$
, $(\phi \And \psi)$, $(\phi \mid \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$

are also formulas

There are no other formulas (inductive definition)

Signature	
A set of Propositional Variables ${\cal P}$	(with typical elements p, q, r, \ldots)

Propositional Connect	ctives (KeY	notation)
------------------------------	-------------	-----------

true false & | ! \rightarrow \ll

Set of Propositional Formulas For₀

- Truth constants true, false and variables \mathcal{P} are formulas
- If ϕ and ψ are formulas then

$$!\phi$$
, $(\phi \& \psi)$, $(\phi \mid \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$

are also formulas

There are no other formulas (inductive definition)

Remark on Concrete Syntax

	Text book	Spin	KeY
Negation	-	ļ	!
Conjunction	\wedge	&&	&
Disjunction	\vee		
Implication	ightarrow, $ ightarrow$	->	->
Equivalence	\leftrightarrow	<->	<->

Remark on Concrete Syntax

	Text book	Spin	KeY
Negation	-	ļ	!
Conjunction	\wedge	&&	&
Disjunction	\vee		
Implication	ightarrow, $ ightarrow$	->	->
Equivalence	\leftrightarrow	<->	<->

Today, we use KeY notation. Be flexible during the course!

Propositional Logic— Semantics

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

 $\mathcal{I}: \mathcal{P} \to \{T, F\}$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$\mathcal{I}:\mathcal{P}\to\{T,F\}$$

Valuation function

 $\textit{val}_\mathcal{I}$: Continuation of \mathcal{I} on \textit{For}_0

$$val_{\mathcal{I}}: For_0 \rightarrow \{T, F\}$$

 $val_{\mathcal{I}}(p_i) = \mathcal{I}(p_i)$ $val_{\mathcal{I}}(true) = T$ $val_{\mathcal{I}}(false) = F$

(cont'd next page)

Semantics of Propositional Logic (Cont'd)

Valuation function (Cont'd) $val_{\mathcal{I}}(!\phi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \\ F & otherwise \end{cases}$ $val_{\mathcal{I}}(\phi \& \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ and } val_{\mathcal{I}}(\psi) = T \\ F & otherwise \end{cases}$ $val_{\mathcal{I}}(\phi \mid \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & otherwise \end{cases}$ $val_{\mathcal{I}}(\phi \rightarrow \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & otherwise \end{cases}$ $\mathsf{val}_{\mathcal{I}}(\phi \ll \psi) = \begin{cases} T & \text{if } \mathsf{val}_{\mathcal{I}}(\phi) = \mathsf{val}_{\mathcal{I}}(\psi) \\ F & \text{otherwise} \end{cases}$

Formula

$$p \rightarrow (q \rightarrow p)$$

Formula

$$p \rightarrow (q \rightarrow p)$$

Interpretation

One of four different ones on $\mathcal{P} = \{p, q\}$ that are possible: $\mathcal{I}(p) = T$ $\mathcal{I}(q) = F$

Formula

$$p \rightarrow (q \rightarrow p)$$

Interpretation

One of four different ones on $\mathcal{P} = \{p, q\}$ that are possible: $\mathcal{I}(p) = T$ $\mathcal{I}(q) = F$

$$val_{\mathcal{I}}(q \rightarrow p) =$$

Formula

$$p \rightarrow (q \rightarrow p)$$

Interpretation

One of four different ones on $\mathcal{P} = \{p, q\}$ that are possible: $\mathcal{I}(p) = T$ $\mathcal{I}(q) = F$

$$val_{\mathcal{I}}(q \rightarrow p) = T$$

Formula

$$p \rightarrow (q \rightarrow p)$$

Interpretation

One of four different ones on $\mathcal{P} = \{p, q\}$ that are possible: $\mathcal{I}(p) = T$ $\mathcal{I}(q) = F$

$$extsf{val}_{\mathcal{I}}(\ q \ extsf{->} \ p \) \ = \ T \ extsf{val}_{\mathcal{I}}(\ p \ extsf{->} \ (q \ extsf{->} \ p) \) \ = \$$

Formula

$$p \rightarrow (q \rightarrow p)$$

Interpretation

One of four different ones on $\mathcal{P} = \{p, q\}$ that are possible: $\mathcal{I}(p) = T$ $\mathcal{I}(q) = F$

$$val_{\mathcal{I}}(q \rightarrow p) = T$$

 $val_{\mathcal{I}}(p \rightarrow (q \rightarrow p)) = T$

Semantic Notions of Propositional Logic

Let $\phi \in For_0$, $\Gamma \subset For_0$

Definition (Model and Consequence Relation, overloading \models) ϕ is true in \mathcal{I} and \mathcal{I} is a model of ϕ (write: $\mathcal{I} \models \phi$) iff $val_{\mathcal{I}}(\phi) = T$ ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} : If $\mathcal{I} \models \psi$ for all $\psi \in \Gamma$ then also $\mathcal{I} \models \phi$

Semantic Notions of Propositional Logic

Let $\phi \in For_0$, $\Gamma \subset For_0$

Definition (Model and Consequence Relation, overloading \models) ϕ is true in \mathcal{I} and \mathcal{I} is a model of ϕ (write: $\mathcal{I} \models \phi$) iff $val_{\mathcal{I}}(\phi) = T$ ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} : If $\mathcal{I} \models \psi$ for all $\psi \in \Gamma$ then also $\mathcal{I} \models \phi$

Definition (Satisfiability, Validity)

A formula is satisfiable if it is true in some interpretation. If ϕ is true in *every* interpretation, i.e.

 $\emptyset \models \phi$ (short: $\models \phi$)

then ϕ is called (logically) valid.

Formula (same as before)

$$p \rightarrow (q \rightarrow p)$$

Formula (same as before)

$$p \rightarrow (q \rightarrow p)$$

Is this formula valid?

$$\models p \rightarrow (q \rightarrow p)$$
?

p & ((! p) | q)

Satisfiable?

Satisfiable?

V

p & ((! p) | q)

~

Satisfiable? Satisfying Interpretation?

Satisfiable? Satisfying Interpretation? \checkmark $\mathcal{I}(p) = T, \mathcal{I}(q) = T$

p & ((! p) | q)

Satisfiable? Satisfying Interpretation? Other Satisfying Interpretations?

$$\mathcal{I}(p) = T, \mathcal{I}(q) = T$$

Satisfiable? Satisfying Interpretation? Other Satisfying Interpretations? X

$$\mathcal{I}(p) = T, \mathcal{I}(q) = T$$

p & ((! p) | q)

Satisfiable? Satisfying Interpretation? Other Satisfying Interpretations? Therefore, also not valid!

Formal Specification and Verification: Formal Modeling with PL

p & ((! p) | q)

Satisfiable? Satisfying Interpretation? Other Satisfying Interpretations? Therefore, also not valid!

$$\mathcal{I}(p) = T, \mathcal{I}(q) = T$$

$p \& ((! p) | q) \models q | r$

Does it hold?

Formal Specification and Verification: Formal Modeling with PL

p & ((! p) | q)

Satisfiable? \checkmark Satisfying Interpretation? $\mathcal{I}(p)$ Other Satisfying Interpretations? \checkmark Therefore, also not valid!

$$\mathcal{I}(p) = T, \mathcal{I}(q) = T$$

$$p \& ((! p) | q) \models q | r$$

Does it hold? Yes. Why?

Formal Specification and Verification: Formal Modeling with PL

Propositional Logic— Calculus

Reasoning by Syntactic Transformation

Establish $\models \phi$ by finite, syntactic transformation of ϕ

Reasoning by Syntactic Transformation

Establish $\models \phi$ by finite, syntactic transformation of ϕ

(Logic) Calculus

A set of syntactic transformation rules \mathcal{R} defining a relation $\vdash \subseteq For_0$ such that $\vdash \phi$ implies $\models \phi$.

- ▶ $\vdash \phi$ implies $\models \phi$: Soundness (required)
- $\blacktriangleright \models \phi \text{ implies} \vdash \phi \text{: Completeness (desirable)}$

Reasoning by Syntactic Transformation

Establish $\models \phi$ by finite, syntactic transformation of ϕ

(Logic) Calculus

A set of syntactic transformation rules \mathcal{R} defining a relation $\vdash \subseteq$ For₀ such that $\vdash \phi$ implies $\models \phi$.

- $\blacktriangleright \vdash \phi$ implies $\models \phi$: Soundness (required)
- $\blacktriangleright \models \phi \text{ implies } \vdash \phi \text{: Completeness (desirable)}$

Sequent Calculus based on notion of sequent

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \quad \Longrightarrow \quad \underbrace{\phi_1, \dots, \phi}_{\text{Succedent}}$$

has same semantics as

$$\begin{array}{cccc} (\psi_1 \And \cdots \And \psi_m) & \longrightarrow & (\phi_1 \mid \cdots \mid \phi_n) \\ \{\psi_1, \dots, \psi_m\} & \models & \phi_1 \mid \cdots \mid \phi_n \end{array}$$

Formal Specification and Verification: Formal Modeling with PL

 $, \phi_n$

Notation for Sequents

$$\psi_1,\ldots,\psi_m \implies \phi_1,\ldots,\phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Notation for Sequents

$$\psi_1,\ldots,\psi_m \implies \phi_1,\ldots,\phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

 ϕ, ψ, \dots match formulas, Γ, Δ, \dots match sets of formulas Characterize infinitely many sequents with a single schematic sequent

$$\Rightarrow \Delta, \phi \& \psi$$

Matches any sequent with occurrence of conjunction in succedent

Call $\phi \& \psi$ main formula and Γ, Δ side formulas of sequent Any sequent of the form $\Gamma, \phi \implies \Delta, \phi$ is logically valid: axiom

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\frac{\overbrace{\Gamma_1 \Longrightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Longrightarrow \Delta_r}^{\text{Premisses}}}{\underbrace{\overbrace{\Gamma \Longrightarrow \Delta}_{\text{Conclusion}}}$$

Example

$$\mathsf{andRight} \ \ \frac{ \Gamma \Longrightarrow \phi, \Delta \quad \Gamma \Longrightarrow \psi, \Delta }{ \Gamma \Longrightarrow \phi \ \& \ \psi, \Delta }$$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\frac{\overbrace{\Gamma_1 \Longrightarrow \Delta_1 \cdots \Gamma_r \Longrightarrow \Delta_r}^{\text{Premisses}}}{\underbrace{\Gamma_2 \Longrightarrow \Delta}_{\text{Conclusion}}}$$

Example

$$\mathsf{andRight} \ \ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \ \& \ \psi, \Delta}$$

Sound rule (essential): $\models (\Gamma_1 \Longrightarrow \Delta_1 \& \cdots \& \Gamma_r \Longrightarrow \Delta_r) \rightarrow (\Gamma \Longrightarrow \Delta)$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\frac{\overbrace{\Gamma_1 \Longrightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Longrightarrow \Delta_r}^{\text{Premisses}}}{\underbrace{\Gamma_2 \Longrightarrow \Delta_r}$$

Example

$$\label{eq:relation} \text{andRight} \; \frac{ \mbox{ } \Gamma \Longrightarrow \phi, \Delta \quad \mbox{ } \Gamma \Longrightarrow \psi, \Delta }{ \mbox{ } \Gamma \Longrightarrow \phi \ \& \ \psi, \Delta }$$

Sound rule (essential): $\models (\Gamma_1 \Longrightarrow \Delta_1 \& \cdots \& \Gamma_r \Longrightarrow \Delta_r) \rightarrow (\Gamma \Longrightarrow \Delta)$

 $\begin{array}{l} \mbox{Complete rule (desirable):} \models (\Gamma \Longrightarrow \Delta) \longrightarrow (\Gamma_1 \Longrightarrow \Delta_1 \And \cdots \And \Gamma_r \Longrightarrow \Delta_r) \\ \mbox{Admissible to have no premisses (iff conclusion is valid, eg axiom)} \\ \mbox{Formal Specification and Verification: Formal Modeling with PL} \end{array}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow ! \phi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow ! \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \& \psi \Longrightarrow \Delta}$	$ \begin{array}{c c} \Gamma \Longrightarrow \phi, \Delta & \Gamma \Longrightarrow \psi, \Delta \\ \hline \Gamma \Longrightarrow \phi \And \psi, \Delta \end{array} $

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow ! \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \& \psi \Longrightarrow \Delta}$	$\label{eq:rescaled_response} \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \And \psi, \Delta}$
or	$ \begin{array}{c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \ \ \psi \Longrightarrow \Delta \end{array} $	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow ! \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \& \psi \Longrightarrow \Delta}$	$\begin{tabular}{ccc} \hline \Gamma \Longrightarrow \phi, \Delta & \Gamma \Longrightarrow \psi, \Delta \\ \hline \hline \Gamma \Longrightarrow \phi & \psi, \Delta \end{tabular} \end{tabular}$
or	$\label{eq:Gamma-constraint} \begin{array}{c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi ~ ~ \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta}$
imp	eq:Gamma-state-	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \longrightarrow \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow ! \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \& \psi \Longrightarrow \Delta}$	$\label{eq:rescaled_states} \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi ~\&~ \psi, \Delta}$
or	$ \begin{array}{c} \Gamma, \phi \Longrightarrow \Delta \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \ \ \psi \Longrightarrow \Delta \end{array} $	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta}$
imp	$ \begin{array}{c} \Gamma \Longrightarrow \phi, \Delta \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \longrightarrow \psi \Longrightarrow \Delta \end{array} $	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \longrightarrow \psi, \Delta}$
$ close \ \ \overline{\Gamma, \phi \Longrightarrow \phi, \Delta} true \ \ \overline{\Gamma \Longrightarrow \mathrm{true}, \Delta} false \ \ \overline{\Gamma, \mathrm{false} \Longrightarrow \Delta} $		

Justification of Rules

Compute rules by applying semantic definitions

Justification of Rules

Compute rules by applying semantic definitions

orRight
$$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta}$$

Follows directly from semantics of sequents

Justification of Rules

Compute rules by applying semantic definitions

$$\label{eq:response} \operatorname{orRight} \frac{\Gamma \Longrightarrow \phi, \, \psi, \Delta}{\Gamma \Longrightarrow \phi \, \mid \, \psi, \Delta}$$

Follows directly from semantics of sequents

$$\begin{array}{c|c} \text{andRight} & \frac{\Gamma \Longrightarrow \phi, \Delta & \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \& \psi, \Delta} \\ \hline \Gamma \longrightarrow (\phi \& \psi) \mid \Delta & \text{iff} & \Gamma \longrightarrow \phi \mid \Delta & \text{and} & \Gamma \longrightarrow \psi \mid \Delta \\ \hline \text{Distributivity of & over } \mid \text{and} & \longrightarrow \end{array}$$

Sequent Calculus Proofs

Goal to prove: $\mathcal{G} = \psi_1, \ldots, \psi_m \implies \phi_1, \ldots, \phi_n$

- find rule \mathcal{R} whose conclusion matches \mathcal{G}
- instantiate $\mathcal R$ such that conclusion identical to $\mathcal G$
- ▶ recursively find proofs for resulting premisses G_1 , ..., G_r
- tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as JAVA Swing tree

$$\Longrightarrow (p \And (p \rightarrow q)) \rightarrow q$$

$$egin{aligned} \hline p \& (p
ightarrow q) & \Rightarrow \ (p \& (p
ightarrow q))
ightarrow q \ \hline \Rightarrow \ (p \& (p
ightarrow q))
ightarrow q \ \end{aligned}$$

A proof is closed iff all its branches are closed

Demo

Examples/prop.key

Finite set of elements $N = \{1, ..., n\}$ Let p_{ij} denote p(i) = j. p is a permutation on N ... Groups, Latin squares, Sudoku, ... Even finite numbers (e.g., bitwise encoding)

We will see that Promela data structures are carefully designed such that computation states can be encoded in propositional logic

Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

Can express: finite function/relation table p_{ij} Cannot express: properties of function/relation on all arguments, e.g., + is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc. Propositional formulas look at one single interpretation at a time

Beyond the Limitations of Propositional Logic

Beyond the Limitations of Propositional Logic

Beyond the Limitations of Propositional Logic

