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Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q, r , . . .)

Propositional Connectives

true false & | ! −> <−>

Set of Propositional Formulas For0
I Truth constants true, false and variables P are formulas

I If φ and ψ are formulas then

!φ, (φ & ψ), (φ | ψ), (φ −> ψ), (φ <−> ψ)

are also formulas

I There are no other formulas (inductive definition)
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Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q, r , . . .)

Propositional Connectives (KeY notation)

true false & | ! −> <−>

Set of Propositional Formulas For0
I Truth constants true, false and variables P are formulas

I If φ and ψ are formulas then

!φ, (φ & ψ), (φ | ψ), (φ −> ψ), (φ <−> ψ)

are also formulas

I There are no other formulas (inductive definition)
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Remark on Concrete Syntax

Text book Spin KeY

Negation ¬ ! !
Conjunction ∧ && &
Disjunction ∨ || |
Implication →, ⊃ −> −>
Equivalence ↔ <−> <−>

Today, we use KeY notation.
Be flexible during the course!

Formal Specification and Verification: Formal Modeling with PL B. Beckert 6 / 24



Remark on Concrete Syntax

Text book Spin KeY

Negation ¬ ! !
Conjunction ∧ && &
Disjunction ∨ || |
Implication →, ⊃ −> −>
Equivalence ↔ <−> <−>

Today, we use KeY notation.
Be flexible during the course!

Formal Specification and Verification: Formal Modeling with PL B. Beckert 6 / 24



Propositional Logic— Semantics

x

Propositional

Formulas

`

Sequent Calculus

SAT Solver

Mapping
Var → {T , F}

|=

Formal Specification and Verification: Formal Modeling with PL B. Beckert 7 / 24



Semantics of Propositional Logic

Interpretation I
Assigns a truth value to each propositional variable

I : P → {T ,F}

Valuation function

valI : Continuation of I on For0

valI : For0 → {T ,F}

valI(pi ) = I(pi )
valI(true) = T
valI(false) = F

(cont’d next page)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 8 / 24



Semantics of Propositional Logic

Interpretation I
Assigns a truth value to each propositional variable

I : P → {T ,F}

Valuation function

valI : Continuation of I on For0

valI : For0 → {T ,F}

valI(pi ) = I(pi )
valI(true) = T
valI(false) = F

(cont’d next page)

Formal Specification and Verification: Formal Modeling with PL B. Beckert 8 / 24



Semantics of Propositional Logic (Cont’d)

Valuation function (Cont’d)

valI(!φ) =

{
T if valI(φ) = F
F otherwise

valI(φ & ψ) =

{
T if valI(φ) = T and valI(ψ) = T
F otherwise

valI(φ | ψ) =

{
T if valI(φ) = T or valI(ψ) = T
F otherwise

valI(φ −> ψ) =

{
T if valI(φ) = F or valI(ψ) = T
F otherwise

valI(φ <−> ψ) =

{
T if valI(φ) = valI(ψ)
F otherwise
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Examples

Formula

p −> (q −> p)

Interpretation

One of four different ones on P = {p, q} that are possible:
I(p) = T
I(q) = F

Valuation

valI( q −> p ) = T
valI( p −> (q −> p) ) = T
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Semantic Notions of Propositional Logic

Let φ ∈ For0, Γ ⊂ For0

Definition (Model and Consequence Relation, overloading |=)

φ is true in I and I is a model of φ (write: I |= φ) iff valI(φ) = T

φ follows from Γ (write: Γ |= φ) iff for all interpretations I:

If I |= ψ for all ψ ∈ Γ then also I |= φ

Definition (Satisfiability, Validity)

A formula is satisfiable if it is true in some interpretation.
If φ is true in every interpretation, i.e.

∅ |= φ (short: |= φ)

then φ is called (logically) valid.

Formal Specification and Verification: Formal Modeling with PL B. Beckert 11 / 24



Semantic Notions of Propositional Logic

Let φ ∈ For0, Γ ⊂ For0

Definition (Model and Consequence Relation, overloading |=)

φ is true in I and I is a model of φ (write: I |= φ) iff valI(φ) = T

φ follows from Γ (write: Γ |= φ) iff for all interpretations I:

If I |= ψ for all ψ ∈ Γ then also I |= φ

Definition (Satisfiability, Validity)

A formula is satisfiable if it is true in some interpretation.
If φ is true in every interpretation, i.e.

∅ |= φ (short: |= φ)

then φ is called (logically) valid.

Formal Specification and Verification: Formal Modeling with PL B. Beckert 11 / 24



Examples

Formula (same as before)

p −> (q −> p)

Is this formula valid?

|= p −> (q −> p) ?
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Examples

p & ((! p) | q)

Satisfiable?

4

Satisfying Interpretation? I(p) = T , I(q) = T
Other Satisfying Interpretations? 8

Therefore, also not valid!

p & ((! p) | q) |= q | r

Does it hold? Yes. Why?
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Reasoning by Syntactic Transformation

Establish |= φ by finite, syntactic transformation of φ

(Logic) Calculus

A set of syntactic transformation rules R defining a
relation ` ⊆ For0 such that ` φ implies |= φ.

I ` φ implies |= φ: Soundness (required)

I |= φ implies ` φ: Completeness (desirable)

Sequent Calculus based on notion of sequent

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

has same semantics as

(ψ1 & · · · & ψm) −> (φ1 | · · · | φn)
{ψ1, . . . , ψm} |= φ1 | · · · | φn
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Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

φ, ψ, . . . match formulas, Γ,∆, . . . match sets of formulas
Characterize infinitely many sequents with a single schematic sequent

Γ =⇒ ∆, φ & ψ

Matches any sequent with occurrence of conjunction in succedent

Call φ & ψ main formula and Γ,∆ side formulas of sequent

Any sequent of the form Γ, φ =⇒ ∆, φ is logically valid: axiom
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Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

RuleName

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

Sound rule (essential): |= (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r ) −> (Γ =⇒ ∆)

Complete rule (desirable):|= (Γ =⇒ ∆) −> (Γ1 =⇒ ∆1 & · · · & Γr =⇒ ∆r )
Admissible to have no premisses (iff conclusion is valid, eg axiom)
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Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ, !φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ !φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ | ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆
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Justification of Rules

Compute rules by applying semantic definitions

orRight
Γ =⇒ φ, ψ,∆

Γ =⇒ φ | ψ,∆

Follows directly from semantics of sequents

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

Γ −> (φ & ψ) | ∆ iff Γ −> φ | ∆ and Γ −> ψ | ∆
Distributivity of & over | and −>
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Sequent Calculus Proofs

Goal to prove: G = ψ1, . . . , ψm =⇒ φ1, . . . , φn

I find rule R whose conclusion matches G
I instantiate R such that conclusion identical to G
I recursively find proofs for resulting premisses G1, . . . , Gr

I tree structure with goal as root

I close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as Java Swing tree
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A Simple Proof

=⇒ (p & (p −> q)) −> q

A proof is closed iff all its branches are closed

Demo
Examples/prop.key
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How Expressive is Propositional Logic?

Finite set of elements N = {1, . . . , n}
Let pij denote p(i) = j . p is a permutation on N . . .
Groups, Latin squares, Sudoku, . . .
Even finite numbers (e.g., bitwise encoding)

We will see that Promela data structures are carefully designed such that
computation states can be encoded in propositional logic
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Limitations of Propositional Logic

Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

Can express: finite function/relation table pij

Cannot express: properties of function/relation on all arguments, e.g., +
is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time
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Beyond the Limitations of Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY
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