Formal Specification and Verification

Formal Modeling with Propositional Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hahnle at
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Formalisation: Syntax, Semantics, Proving
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Syntax, Semantics, Calculus
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Syntax, Semantics, Calculus
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Propositional Logic— Syntax
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Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,...) J
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Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,..

)

v

Propositional Connectives
true false & | ! — <>
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Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,...)

Propositional Connectives

true false & | | 9 — <>

Set of Propositional Formulas For
» Truth constants true, false and variables P are formulas
» If ¢ and 1 are formulas then

Lo, (¢ &), (]4), (¢ =>19) (6 <>1)

are also formulas

» There are no other formulas (inductive definition)
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Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,...)

Propositional Connectives (KeY notation)

true false & | | — <>

Set of Propositional Formulas For
» Truth constants true, false and variables P are formulas
» If ¢ and 1) are formulas then

Lo, (0 &) (0]9) (0 =>79) (& <>79)

are also formulas

» There are no other formulas (inductive definition)
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Remark on Concrete Syntax

Text book SpPIN  KeY
Negation - ! !
Conjunction A && &
Disjunction Y I |
Implication —, D — -
Equivalence - <> <>
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Remark on Concrete Syntax

Text book SpPIN  KeY
Negation - ! !
Conjunction A && &
Disjunction Y I |
Implication —, D — -
Equivalence — <> <>

Today, we use KeY notation.
Be flexible during the course!
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Propositional Logic— Semantics

Propositional
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Semantics of Propositional Logic

Interpretation 7
Assigns a truth value to each propositional variable

I:P—{T,F}
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Semantics of Propositional Logic

Interpretation 7

Assigns a truth value to each propositional variable

I:P—{T,F}

Valuation function

valz: Continuation of Z on Forg
valr : Forp — {T,F}
valz(pi) = Z(pi)

valz(true) = T
valz(false) = F

(cont'd next page)
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Semantics of Propositional Logic (Cont’d)

Valuation function (Cont’d)

valz(! ¢) = { T if valz(¢) = F

F otherwise

T if valz(¢) =T and valz(yp) =T
F otherwise

T if valz(¢) = T or valz(¢)) =T
F  otherwise

valr(¢ & ) = {

vair(o | 4) = {

T if valz(¢) = F or valz(¢)) = T
F otherwise

vai(6 =) = {

F otherwise

valp(d <> ) = { T if valz(¢) = valz()
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Examples

Formula

p—=> (g = p)
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Examples

Formula

p—=> (g = p)
Interpretation
One of four different ones on P = {p, g} that are possible:
I(p)=T
I(q) = F

B. Beckert 10 /24
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Examples

Formula
p = (@ = p) }

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation
valz(g — p) =
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Examples

Formula

p—=> (g = p)

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation
valz(g —> p) = T

Formal Specification and Verification: Formal Modeling with PL

B. Beckert 10 /24



Examples

Formula

p—=> (g = p)

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation

valz(g —> p) = T
valz(p — (¢ = p))
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Examples

Formula

p—=> (g = p)

Interpretation

One of four different ones on P = {p, g} that are possible:
I(p)=T

I(q) = F

Valuation

valz(g —> p) = T
)

valz(p —> (¢ > p)) = T
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Semantic Notions of Propositional Logic

Let ¢ € Fory, I C Forg

Definition (Model and Consequence Relation, overloading =)
¢ is true in Z and Z is a model of ¢ (write: Z |= ¢) iff valz(¢p) = T

¢ follows from I (write: T = ¢) iff for all interpretations Z:

If Z =1 for all ¢ €T then also Z |= ¢
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Semantic Notions of Propositional Logic

Let ¢ € Fory, I C Forg

Definition (Model and Consequence Relation, overloading =)
¢ is true in Z and Z is a model of ¢ (write: Z |= ¢) iff valz(¢p) = T

¢ follows from I (write: T = ¢) iff for all interpretations Z:

If Z =1 for all ¢ €T then also Z |= ¢

Definition (Satisfiability, Validity)
A formula is satisfiable if it is true in some interpretation.
If ¢ is true in every interpretation, i.e.

DE¢ (short: = ¢)
then ¢ is called (logically) valid.
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Examples

Formula (same as before)

p— (g = p)
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Examples

Formula (same as before)

p— (g = p)

Is this formula valid?

Fp = (g = p)?
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Examples

p& (('p) | 9) )

Satisfiable?
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Examples

p& (('p) | 9) )

Satisfiable? v
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Examples

p & (('p) | q)

Satisfiable? v
Satisfying Interpretation?
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Examples

p & (('p) | q) )

Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T
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Examples

p & (('p) | q) ]

Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations?
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Examples

p & (('p) | q) ]

Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X
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Examples

p & (('p) | q) ]

Satisfiable? v

Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X

Therefore, also not valid!

Formal Specification and Verification: Formal Modeling with PL B. Beckert 13 /24



Examples

p & (('p) | q) ]

Satisfiable? v

Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X

Therefore, also not valid!

p& (('p) la)Eqlr )

Does it hold?
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Examples

p & (('p) | q) ]

Satisfiable? v

Satisfying Interpretation? I(p)=T,Z(q) =T
Other Satisfying Interpretations? X

Therefore, also not valid!

p& (('p) la)Eqlr )

Does it hold? Yes. Why?
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Propositional Logic— Calculus

Propositional

Formulas

l_

Magping
Var - {T, F}

+ 4F1

Sequent
Calculus
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Reasoning by Syntactic Transformation

Establish |= ¢ by finite, syntactic transformation of ¢ J
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Reasoning by Syntactic Transformation

Establish |= ¢ by finite, syntactic transformation of ¢ J

(Logic) Calculus

A set of syntactic transformation rules R defining a
relation = C Forg such that - ¢ implies = ¢.

» I ¢ implies |= ¢: Soundness (required)
» = ¢ implies - ¢: Completeness (desirable)
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Reasoning by Syntactic Transformation

Establish |= ¢ by finite, syntactic transformation of ¢

(Logic) Calculus
A set of syntactic transformation rules R defining a
relation = C Forg such that - ¢ implies = ¢.

» I ¢ implies |= ¢: Soundness (required)

» = ¢ implies - ¢: Completeness (desirable)

Sequent Calculus based on notion of sequent

wl,...,wm == ¢17~--7¢n
—_———— —_——
Antecedent Succedent

has same semantics as

(Y1 & &) —> (o1 ]| én)
{wlv"'awm} ): ¢1”¢n
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Notation for Sequents

¢17---’1/1m = ¢1""7¢n J

Consider antecedent/succedent as sets of formulas, may be empty
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Notation for Sequents

¢17---,¢m = ¢1)"'7¢n J

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

¢, 1, ... match formulas, ', A, ... match sets of formulas
Characterize infinitely many sequents with a single schematic sequent

N = Ao¢o&y

Matches any sequent with occurrence of conjunction in succedent

Call ¢ & 1 main formula and ', A side formulas of sequent

Any sequent of the form ;¢ = A, ¢ is logically valid: axiom
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Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses

Mh=4A - I,=A,

=AY
——

Conclusion

RuleName
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Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses
Mh=4 - I,=A
RuleName ! ! ! !
=AY
——
Conclusion
Example
[ = ¢, A M=y, A
andRight ¢, i

N=0¢ & ¢, A
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Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses
Mh=4A - I,=A,
=AY
~——

Conclusion

RuleName

Example
= ¢, A =y, A

andRight
N=o¢ & ¢y, A

Sound rule (essential): E (M =A1&--- &I, = A,) = (= A4)
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Sequent Calculus Rules of Propositional Logic

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses

Mh=4A - I,=A,

=AY
——

Conclusion

RuleName

Example
= ¢, A =y, A
N=o¢ & ¢y, A

andRight

Sound rule (essential): E (M =A1&--- &I, = A,) = (= A4)

Complete rule (desirable):= (T = A) > (M1 = A1 & - & T, = A))

Admissible to have no premisses (iff conclusion is valid, eg axiom)
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Rules of Propositional Sequent Calculus

main ‘ left side (antecedent) ‘ right side (succedent)
. = ¢,A Moo= A
"l Te=n =14
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. = 0¢,A o= A
no —_——— e
N'e= A N=1¢,A
d o v=A = 9¢,A N=4¢y,A
an
Mo &¢v=A N=¢ & ¥, A
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. = 0¢,A o= A
no —_——— e
N'e= A N=1¢,A
d o v=A = 9¢,A N=4¢y,A
an
Mo &¢v=A N=¢ & ¥, A
Moo= A Ny = A =9, 9,A
or
Nold=A Fr=o¢1l4,A
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. = ¢,A Moo= A
"l TTie=a = 16,4
d o, v= A = ¢, A =y, A
an
Mo & = A N=9¢ & ¢y, A
Moo= A My = A = ¢, ¥, A
or
Noly=A Fr=29¢|4,A
. = ¢,A Ny = A o= v, A
im
P Mé—v—A [=¢—> A
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
. [=¢,A Moo= A
" 'e= A r=1¢A
d o, v= A = ¢, A =y, A
an
o &¢=A Fr= ¢ & 9,A
Moo= A My = A = ¢, ¥, A
or
. = ¢,A Ny = A o= v, A
im
P Mo —d—A [=¢—> A
close ——— - false —
o= 9¢A [ = true, A I false = A
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Justification of Rules

Compute rules by applying semantic definitions J
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Justification of Rules

Compute rules by applying semantic definitions

=¢,9,A
F=o¢|¢,A

Follows directly from semantics of sequents

orRight
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Justification of Rules

Compute rules by applying semantic definitions

=¢,9,A
F=o¢|¢,A

Follows directly from semantics of sequents

orRight

= ¢, A M=y, A
N=0¢ & Y, A

Fr—=( &) | A iff T—=>¢|A and T =19 | A
Distributivity of & over | and —

andRight
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Sequent Calculus Proofs

Goal to prove: G = Y1,...,%0m = d1,...,0,

» find rule R whose conclusion matches G
» instantiate R such that conclusion identical to G
» recursively find proofs for resulting premisses Gy, ..., G,
> tree structure with goal as root
> close proof branch when rule without premiss encountered
Proof
(B8 Froof Tree
equiv_right
© [ Case 1
@ (B8 Case 2
imp_right
replace_known _left
o concrete_not_1
Goal-directed proof search concrete impl3
close_goal_antec
In KeY tool proof displayed as JAVA Swing tree &
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A Simple Proof

= (P& (p—=>4q)—>q
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A Simple Proof

p& (p—=>q)=gq
=P &(p—>4q)—>q
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A Simple Proof

p,(p—=>q)=gq
p& (p—=>q)=gq
=P &(p—>4q)—>q
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A Simple Proof

P=4q, P pP,9=4

p,(p—=>q)=gq

p&(p—=>q)=gq

=P &(p—>4q)—>q
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A Simple Proof

CLOSE * * CLOSE
p=—4q,p p,q—=—4q

p,(p—=>q)=gq

p&(p—=>q)=gq

=P &(p—>q)—>q
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A Simple Proof

CLOSE * * CLOSE
p=—4q,p p,q—=—4q

p,(p—=>q)=gq
p& (p—>q)=gq
=P &(p—>q)—>q

A proof is closed iff all its branches are closed

Demo
Examples/prop.key
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How Expressive is Propositional Logic?

Finite set of elements N = {1,...,n}

Let p; denote p(i) =j. pis a permutation on N ...
Groups, Latin squares, Sudoku, ...
Even finite numbers (e.g., bitwise encoding)

We will see that Promela data structures are carefully designed such that
computation states can be encoded in propositional logic
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Limitations of Propositional Logic

Fixed, finite number of objects
Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

Can express: finite function/relation table pj;
Cannot express: properties of function/relation on all arguments, e.g., +
is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time
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Beyond the Limitations of Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
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Beyond the Limitations of Propositional Logic
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Beyond the Limitations of Propositional Logic
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