
Formal Specification and Verification
First-Order Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at
Chalmers University, Göteborg

Formal Specification and Verification: FOL B. Beckert 1 / 45

Formalisation

Real

World

Formal

Model

Formalisation

Formal Specification and Verification: FOL B. Beckert 2 / 45

Formalisation: Syntax, Semantics

Real

World

Formal

Language

Formal

Semantics

Syn
tax

Semantics

Formal Specification and Verification: FOL B. Beckert 2 / 45

Formalisation: Syntax, Semantics

Real

World

Formal

Language

Formal

Semantics

Syn
tax

Semantics

Interpretation

Formal Specification and Verification: FOL B. Beckert 2 / 45

Formalisation: Syntax, Semantics

Real

World
Interpretation

Propositional

Logic

Valuation

Syn
tax

Semantics

Formal Specification and Verification: FOL B. Beckert 2 / 45

Formalisation: Syntax, Semantics

Real

World
Interpretation

First-Order

Logic

Valuation

Syn
tax

Semantics

Formal Specification and Verification: FOL B. Beckert 2 / 45

Approaches to Formal Software Verification

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY
2nd part
of course

Spin
1st part
of course

Formal Specification and Verification: FOL B. Beckert 3 / 45

Formal Verification: Deduction

Real

World

Java+

JML
Sy

nt
ax

Dynamic

Logic

Translation

Semantics

Sequent

Calculus

Kripke

Semantics

Formal Specification and Verification: FOL B. Beckert 4 / 45

Beyond Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY

Today’s lecture

Formal Specification and Verification: FOL B. Beckert 5 / 45

Beyond Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY

Today’s lecture

Formal Specification and Verification: FOL B. Beckert 5 / 45

Beyond Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY

Today’s lecture

Formal Specification and Verification: FOL B. Beckert 5 / 45

Beyond Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY

Today’s lecture

Formal Specification and Verification: FOL B. Beckert 5 / 45

Syntax, Semantics, Calculus

x

Syntax

Formula/Program

Calculus
“Derivable”

Semantics
“valid”

Formal Specification and Verification: FOL B. Beckert 6 / 45

Syntax, Semantics, Calculus

x

Syntax

Formula/Program

Calculus
“Derivable”

Semantics
“valid”

Completeness

Formal Specification and Verification: FOL B. Beckert 6 / 45

Syntax, Semantics, Calculus

x

Syntax

Formula/Program

Calculus
“Derivable”

Semantics
“valid”

Completeness Soundness

Formal Specification and Verification: FOL B. Beckert 6 / 45

Limitations of Propositional Logic

Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

Can express: finite function/relation table with indexed variables pij

Cannot express:
properties of function/relation on all arguments, e.g., “+” is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time

Formal Specification and Verification: FOL B. Beckert 7 / 45

Propositional Logic

x

Propositional

Formulas

|=

`

Sequent
Calculus

Mapping
Var → {T , F}

Formal Specification and Verification: FOL B. Beckert 8 / 45

First-Order Logic

x

First-Order

Formulas

|=

`

Sequent
Calculus

First-Order
Model

Formal Specification and Verification: FOL B. Beckert 8 / 45

Syntax of First-Order Logic: Signature

Definition (First-Order Signature)

First-order signature Σ = (PSym, FSym, α)

Predicate or Relation Symbols PSym = {pi | i ∈ IIN}
Function Symbols FSym = {fi | i ∈ IIN}
Typing function α, set of types T

I α(p) ∈ T ∗ for all p ∈ PSym

I α(f) ∈ T ∗ × T for all f ∈ FSym

Definition (Variables)

VSym = {xi | i ∈ IIN} set of typed variables

I In contrast to “standard” FOL, our symbols are typed
Necessary to model a typed programming language such as Java!

I Allow any non-reserved name for symbols, not merely p3, f17, . . .

Formal Specification and Verification: FOL B. Beckert 9 / 45

Syntax of First-Order Logic: Signature Cont’d

Declaration of signature symbols

I Write T x ; to declare variable x of type T

I Write p(T1, . . . ,Tr); for α(p) = (T1, . . . ,Tr)

I Write T f (T1, . . . ,Tr); for α(f) = ((T1, . . . ,Tr), T)

Similar convention as in Java, no overloading of symbols
Case r = 0 is allowed, then write p instead of p(), etc.

Example

Variables integerArray a; int i;

Predicates isEmpty(List); alertOn;

Functions int arrayLookup(int); java.lang.Object o;

Formal Specification and Verification: FOL B. Beckert 11 / 45

Syntax of First-Order Logic: Signature Cont’d

Declaration of signature symbols

I Write T x ; to declare variable x of type T

I Write p(T1, . . . ,Tr); for α(p) = (T1, . . . ,Tr)

I Write T f (T1, . . . ,Tr); for α(f) = ((T1, . . . ,Tr), T)

Similar convention as in Java, no overloading of symbols
Case r = 0 is allowed, then write p instead of p(), etc.

Example

Variables integerArray a; int i;

Predicates isEmpty(List); alertOn;

Functions int arrayLookup(int); java.lang.Object o;

Formal Specification and Verification: FOL B. Beckert 11 / 45

OO Type Hierarchy

We want to model the behaviour of Java programs
Admissible types T form object-oriented type hierarchy

Definition (OO Type Hierarchy)

I T is finite set of types (not parameterized)

I Given subtype relation v, assume T u-closed

I Dynamic types Td ⊆ T , where > ∈ Td

I Abstract types Ta ⊆ T , where ⊥ ∈ Ta

I Td ∩ Ta = ∅
I Td ∪ Ta = T
I ⊥ v T v > for all T ∈ T

Formal Specification and Verification: FOL B. Beckert 12 / 45

OO Type Hierarchy

We want to model the behaviour of Java programs
Admissible types T form object-oriented type hierarchy

Definition (OO Type Hierarchy)

I T is finite set of types (not parameterized)

I Given subtype relation v, assume T u-closed

I Dynamic types Td ⊆ T , where > ∈ Td

I Abstract types Ta ⊆ T , where ⊥ ∈ Ta

I Td ∩ Ta = ∅
I Td ∪ Ta = T
I ⊥ v T v > for all T ∈ T

Formal Specification and Verification: FOL B. Beckert 12 / 45

OO Type Hierarchy Cont’d

Example

Using UML notation

⊤

int

Object

AbstractCollection List

AbstractList

ArrayList

Null

⊥

Formal Specification and Verification: FOL B. Beckert 13 / 45

OO Type Hierarchy Cont’d

I Dynamic types are those with direct elements

I Abstract types for abstract classes and interfaces

I In Java primitive (value) and object types incomparable

I ⊥ is abstract and hence no object ever can have this type
⊥ cannot occur in declaration of signature symbols

I Each abstract type except ⊥ has a non-empty dynamic subtype

I In Java > is chosen to have no direct elements

I Java has infinitely many types: int[], int[][],. . .
Restrict T to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

T = {⊥, >}
All signature symbols have same type >: drop type, untyped logic

Formal Specification and Verification: FOL B. Beckert 14 / 45

OO Type Hierarchy Cont’d

I Dynamic types are those with direct elements

I Abstract types for abstract classes and interfaces

I In Java primitive (value) and object types incomparable

I ⊥ is abstract and hence no object ever can have this type
⊥ cannot occur in declaration of signature symbols

I Each abstract type except ⊥ has a non-empty dynamic subtype

I In Java > is chosen to have no direct elements

I Java has infinitely many types: int[], int[][],. . .
Restrict T to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

T = {⊥, >}
All signature symbols have same type >: drop type, untyped logic

Formal Specification and Verification: FOL B. Beckert 14 / 45

Reserved Signature Symbols

Reserved signature symbols

I Equality symbol
.
= ∈ PSym declared as

.
= (>, >)

Written infix: x
.
= 0

I Type predicate symbol @−T ∈ PSym for each T ∈ T
Declared as @−T (>)

Written postfix: i@−int — read “instance of”

I Type cast symbol (T) ∈ FSym for each T ∈ T
Declared as T (T)(>)

So far, we have a type system and a signature — where is the logic?

Formal Specification and Verification: FOL B. Beckert 15 / 45

Reserved Signature Symbols

Reserved signature symbols

I Equality symbol
.
= ∈ PSym declared as

.
= (>, >)

Written infix: x
.
= 0

I Type predicate symbol @−T ∈ PSym for each T ∈ T
Declared as @−T (>)

Written postfix: i@−int — read “instance of”

I Type cast symbol (T) ∈ FSym for each T ∈ T
Declared as T (T)(>)

So far, we have a type system and a signature — where is the logic?

Formal Specification and Verification: FOL B. Beckert 15 / 45

Terms

First-order terms, informally

I Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols

I First-order terms have no side effects (like Promela, unlike Java)
I First-order terms have a type and must respect type hierarchy

I type of f (g(x)) is result type in declaration of function f
I in f (g(x)) the result type of g is subtype of argument type of f , etc.

Definition (First-Order Terms {TermT}T∈T with type T ∈ T)

I x is term of type T for variable declared as T x ;
I f (t1, . . . , tr) is term of type T for

I function symbol declared as T f (T1, . . . ,Tr); and
I terms ti of type T ′

i vTi for 1 ≤ i ≤ r

I There are no other terms (inductive definition)

Formal Specification and Verification: FOL B. Beckert 16 / 45

Terms

First-order terms, informally

I Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols

I First-order terms have no side effects (like Promela, unlike Java)
I First-order terms have a type and must respect type hierarchy

I type of f (g(x)) is result type in declaration of function f
I in f (g(x)) the result type of g is subtype of argument type of f , etc.

Definition (First-Order Terms {TermT}T∈T with type T ∈ T)

I x is term of type T for variable declared as T x ;
I f (t1, . . . , tr) is term of type T for

I function symbol declared as T f (T1, . . . ,Tr); and
I terms ti of type T ′

i vTi for 1 ≤ i ≤ r

I There are no other terms (inductive definition)

Formal Specification and Verification: FOL B. Beckert 16 / 45

Terms, Cont’d

Example

Signature: int i; short j; List l; int f(int);

I f(i) has result type int and is contained in Termint
I f(j) has result type int (when short v int)

I f(l) is ill-typed (when int, List incomparable)

I f(i,i) is not a term (doesn’t match declaration)

I (int)j is term of type int

I even (int)l is term of type int (type cast always well-formed)

I If f is constant (r = 0) write f instead of f ()
I Use infix notation liberally, where appropriate:

declare int +(int, int); then write i+j, etc.
I Use brackets to disambiguiate parsing:

(i+j)*i

Formal Specification and Verification: FOL B. Beckert 18 / 45

Terms, Cont’d

Example

Signature: int i; short j; List l; int f(int);

I f(i) has result type int and is contained in Termint
I f(j) has result type int (when short v int)

I f(l) is ill-typed (when int, List incomparable)

I f(i,i) is not a term (doesn’t match declaration)

I (int)j is term of type int

I even (int)l is term of type int (type cast always well-formed)

I If f is constant (r = 0) write f instead of f ()
I Use infix notation liberally, where appropriate:

declare int +(int, int); then write i+j, etc.
I Use brackets to disambiguiate parsing:

(i+j)*i

Formal Specification and Verification: FOL B. Beckert 18 / 45

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

p(t1, . . . , tr) is atomic first-order formula for

I predicate symbol declared as p(T1, . . . ,Tr); and

I terms ti of type T ′
i vTi for 1 ≤ i ≤ r

Example

Signature: int i; short j; List l; <(int, int);

I i < i is an atomic first-order formula

I i < j is an atomic first-order formula (when shortvint)

I i < l is ill-typed (when int, List incomparable)

I i
.
=j and even i

.
=l are atomic first-order formulas

I i@−short is an atomic first-order formula

Formal Specification and Verification: FOL B. Beckert 19 / 45

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

p(t1, . . . , tr) is atomic first-order formula for

I predicate symbol declared as p(T1, . . . ,Tr); and

I terms ti of type T ′
i vTi for 1 ≤ i ≤ r

Example

Signature: int i; short j; List l; <(int, int);

I i < i is an atomic first-order formula

I i < j is an atomic first-order formula (when shortvint)

I i < l is ill-typed (when int, List incomparable)

I i
.
=j and even i

.
=l are atomic first-order formulas

I i@−short is an atomic first-order formula

Formal Specification and Verification: FOL B. Beckert 19 / 45

First-Order Formulas

Definition (Set of First-Order Formulas For)

I Truth constants true, false and all first-order atomic formulas are
first-order formulas

I If φ and ψ are first-order formulas then

!φ, (φ & ψ), (φ | ψ), (φ −> ψ), (φ <−> ψ)

are also first-order formulas

I If T x is a variable declaration, φ a first-order formula,
then ∀T x ; φ and ∃T x ; φ are first-order formulas
Any occurrence of x in φ must be well-typed

I ∀T x ; φ called universally quantified formula

I ∃T x ; φ called existentially quantified formula

Formal Specification and Verification: FOL B. Beckert 20 / 45

First-Order Formulas Cont’d

I In ∀T x ; φ and ∃T x ; φ call φ the scope of x bound by ∀/∃
I Analogy between variables bound in quantified formulas and

program locations declared as local variables/formal parameters

We require that all variables occur bound
⇒ All variable declarations are quantifier-local

Example

I ∀ int i ; ∃ int j ; i < j is a first-order formula

I ∀ int i ; ∃ List l ; i < l is ill-typed

I ∀ int i ; i < j is a first-order formula
if j is a constant compatible with int

I (∀ int i ; ∀ int j ; i < j) | (∀ int i ; ∀ int j ; i > j)
is a first-order formula

Formal Specification and Verification: FOL B. Beckert 21 / 45

Remark on Concrete Syntax

Text book Spin KeY Java

Negation ¬ ! ! !
Conjunction ∧ && & &&
Disjunction ∨ || | ||
Implication →, ⊃ −> −> n/a
Equivalence ↔ <−> <−> n/a
Universal Quantifier ∀ x ; φ n/a \forallT x ; φ n/a
Existential Quantifier ∃ x ; φ n/a \existsT x ; φ n/a
Value equality

.
= == = ==

For quantifiers we normally use textbook syntax and
suppress type information to ease readability

For propositional connectives we use KeY syntax

Formal Specification and Verification: FOL B. Beckert 23 / 45

Remark on Concrete Syntax

Text book Spin KeY Java

Negation ¬ ! ! !
Conjunction ∧ && & &&
Disjunction ∨ || | ||
Implication →, ⊃ −> −> n/a
Equivalence ↔ <−> <−> n/a
Universal Quantifier ∀ x ; φ n/a \forallT x ; φ n/a
Existential Quantifier ∃ x ; φ n/a \existsT x ; φ n/a
Value equality

.
= == = ==

For quantifiers we normally use textbook syntax and
suppress type information to ease readability

For propositional connectives we use KeY syntax

Formal Specification and Verification: FOL B. Beckert 23 / 45

First-Order Semantics

x

First-Order

Formulas

|=

`

Sequent
Calculus

First-Order
Model

Formal Specification and Verification: FOL B. Beckert 24 / 45

First-Order Semantics

From propositional to first-order semantics

I In prop. logic, an interpretation of variables with {T ,F} sufficed
I In first-order logic we must assign meaning to:

I variables bound in quantifiers
I constant and function symbols
I predicate symbols

I Each variable or function value may denote a different object

I Respect typing: int i, List l must denote different objects

What we need (to interpret a first-order formula)

1. A collection of typed universes of objects (akin to heap objects)

2. A mapping from variables to objects

3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

Formal Specification and Verification: FOL B. Beckert 25 / 45

First-Order Domains/Universes

1. A collection of typed universes of objects

Definition (Universe/Domain)

A non-empty set D of objects is a universe or domain
Each element of D has a fixed type given by δ : D → Td

I Like heap objects and values in Java

I Notation for the domain elements type-compatible with T ∈ T :
DT = {d ∈ D | δ(d)vT}

I For each dynamic type T ∈ Td there must be at least one domain
element type-compatible with it: DT 6= ∅

Formal Specification and Verification: FOL B. Beckert 26 / 45

First-Order Universes Cont’d

Example

>

⊥

int

short

Object

I D = {17, o}
I δ(17) = short, δ(o) = Object

I Then Dshort = Dint = {17}, DObject = {o},
D> = D = {17, o}, and D⊥ = {}

Formal Specification and Verification: FOL B. Beckert 28 / 45

First-Order Models

3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

Definition (First-Order Model)

Let D be a domain with typing function δ

Let f be declared as T f (T1, . . . ,Tr);

Let p be declared as p(T1, . . . ,Tr);

Let I(f) : DT1 × · · · × DTr → DT

Let I(p) ⊆ DT1 × · · · × DTr

Then M = (D, δ, I) is a first-order model

Formal Specification and Verification: FOL B. Beckert 29 / 45

First-Order Models Cont’d

Example

Signature: int i; short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

I(i) = 17
I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

One of uncountably many possible first-order models!

Formal Specification and Verification: FOL B. Beckert 31 / 45

Semantics of Reserved Signature Symbols

Definition

I Equality symbol
.
= declared as

.
= (>, >)

Model is fixed as I(
.
=) = {(d , d) | d ∈ D}

“Referential Equality” (holds if arguments refer to identical object)

Exercise: write down the predicate table for example domain

I Type predicate symbol @−T for any T , declared as @−T (>)

I(@−T) = DT

Exercise: what is I(@−Object)?

I Type cast symbol (T) for each T , declared as T (T)(>)

Casts that succeed (δ(x)vT): I((T))(x) = x identity
Casts that do not succeed: I((T))(x) = d arb. fixed d ∈ DT

Exercise: what is I((int))(17)?

Formal Specification and Verification: FOL B. Beckert 32 / 45

Signature Symbols vs. Domain Elements

I Domain elements different from the terms representing them

I First-order formulas and terms have no access to domain

I As in Java: identity and memory layout of values/objects hidden

I Think of a first-order model as a “heap” of first-order logic

Example

Signature: Object obj1, obj2;

Domain: D = {o}

In this model, necessarily I(obj1) = I(obj2) = o

Effect similar to aliasing in Java with reference types

Formal Specification and Verification: FOL B. Beckert 33 / 45

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements
It respects the variable type, i.e., if x has type T then β(x) ∈ DT

Definition (Modified Variable Assignment)

Let y be variable of type T , β variable assignment, d ∈ DT :

βd
y (x) :=

{
β(x) x 6= y
d x = y

Formal Specification and Verification: FOL B. Beckert 34 / 45

Semantic Evaluation of Terms

Given a first-order model M and a variable assignment β
it is possible to evaluate first-order terms under M and β

Analogy

Evaluating an expression in a programming language
with respect to a given heap (M) and binding of local variables (β)

Definition (Valuation of Terms)

valM,β : Term → D such that valM,β(t) ∈ DT for t ∈ TermT :

I valM,β(x) = β(x) (recall that β respects typing)

I valM,β(f (t1, . . . , tr)) = I(f)(valM,β(t1), . . . , valM,β(tr))

Formal Specification and Verification: FOL B. Beckert 35 / 45

Semantic Evaluation of Terms Cont’d

Example

Signature: int i; short j; int f(int);
D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

I(i) = 17
I(j) = 17

Dint I(f)
2 17

17 2

Var β

obj o
x 17

I valM,β(f(f(i))) ?

I valM,β(x) ?

I valM,β((int)obj) ?

Formal Specification and Verification: FOL B. Beckert 36 / 45

Semantic Evaluation of Formulas

Formulas are true or false
A validity relation is more convenient than a function

Definition (Validity Relation for Formulas)

M, β |= φ for φ ∈ For “M, β models φ”

I M, β |= p(t1, . . . , tr) iff (valM,β(t1), . . . , valM,β(tr)) ∈ I(p)

I M, β |= φ & ψ iff M, β |= φ and M, β |= ψ

I . . . as in propositional logic

I M, β |= ∀T x ; φ iff M, βd
x |= φ for all d ∈ DT

I M, β |= ∃T x ; φ iff M, βd
x |= φ for at least one d ∈ DT

Formal Specification and Verification: FOL B. Beckert 37 / 45

Semantic Evaluation of Formulas Cont’d

Example

Signature: short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

I M, β |= f (j) < j ?

I M, β |= ∃ int x ; f (x)
.
= x ?

I M, β |= ∀ Object o1; ∀ Object o2; o1
.
= o2 ?

Formal Specification and Verification: FOL B. Beckert 38 / 45

Semantic Notions

Definition (Satisfiability, Truth, Validity)

M, β |= φ (φ is satisfiable)
M |= φ iff for all β : M, β |= φ (φ is true in M)

|= φ iff for all M : M |= φ (φ is valid)

Closed formulas that are satisfiable are also true: one top-level notion

Example

I f (j) < j is true in M
I ∃ int x ; i

.
= x is valid

I ∃ int x ; !(x
.
= x) is not satisfiable

Formal Specification and Verification: FOL B. Beckert 39 / 45

Semantic Notions

Definition (Satisfiability, Truth, Validity)

M, β |= φ (φ is satisfiable)
M |= φ iff for all β : M, β |= φ (φ is true in M)

|= φ iff for all M : M |= φ (φ is valid)

Closed formulas that are satisfiable are also true: one top-level notion

Example

I f (j) < j is true in M
I ∃ int x ; i

.
= x is valid

I ∃ int x ; !(x
.
= x) is not satisfiable

Formal Specification and Verification: FOL B. Beckert 39 / 45

Untyped First-Order Logic

Most logic textbooks introduce untyped logic

How to obtain untyped logic as a special case

I Minimal Type Hierarchy: T = {⊥, >}
I D = D> 6= ∅: only one populated type >, drop all typing info

I Signature merely specifies arity of functions and predicates:
Write f /1, < /2, i/0, etc.

I Untyped logic is suitable whenever we model a uniform domain

I Typical applications: pure mathematics such as algebra

Formal Specification and Verification: FOL B. Beckert 40 / 45

Untyped First-Order Logic Cont’d

Example (Axiomatization of a group in first-order logic)

Signature ΣG : FSym = {◦/2, e/0}, PSym = { .= /2}
Let G be the following formulas:

Left identity ∀ x ; e ◦ x
.
= x

Left inverse ∀ x ; ∃ y ; y ◦ x
.
= e

Associativity ∀ x ; ∀ y ; ∀ z ; (x ◦ y) ◦ z
.
= x ◦ (y ◦ z)

Let φ be ΣG -formula.
Whenever |= G −> φ, then φ is a theorem of group theory

Formal Specification and Verification: FOL B. Beckert 41 / 45

Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Formal Specification and Verification: FOL B. Beckert 43 / 45

Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (At least two elements)

∃ x ; ∃ y ; !(x
.
= y)

How to do this without built-in equality?

Formal Specification and Verification: FOL B. Beckert 43 / 45

Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (Strict partial order)

PSym = {< /2}
Irreflexivity ∀ x ; !(x < x)
Asymmetry ∀ x ; ∀ y ; (x < y −> !(y < x))
Transitivity ∀ x ; ∀ y ; ∀ z ;

(x < y & y < z −> x < z)

Formal Specification and Verification: FOL B. Beckert 43 / 45

Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (All models have infinite domain)

Signature and axioms of irreflexive order plus

Existence Successor ∀ x ; ∃ y ; x < y

Formal Specification and Verification: FOL B. Beckert 43 / 45

Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (All models have infinite domain)

Signature and axioms of irreflexive order plus

Existence Successor ∀ x ; ∃ y ; x < y

Formal Specification and Verification: FOL B. Beckert 43 / 45

Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (Abstract data types)

FSym = { Stack push(int,Stack);
int pop(Stack);
Stack nil; }

∀ int i ; ∀Stack s; pop(push(i , s))
.
= s

· · ·

Formal Specification and Verification: FOL B. Beckert 43 / 45

Summary and Outlook

Summary

I First-order formulas defined over a signature of typed symbols

I Hierarchical OO type system with abstract and dynamic types

I Quantification over variables, no “free” variables in formulas

I Semantic domain like objects in a Java heap

I First-order model assigns semantic value to terms and formulas

I Semantic notions satisfiability and validity

Semantic evaluation is not feasible in practice

I There is an ∞ (even: uncountable) number of first-order models

I Evaluation of quantified formula may involve ∞ number of cases

I Next goal: a syntactic calculus allowing mechanical validity checking

Formal Specification and Verification: FOL B. Beckert 44 / 45

Summary and Outlook

Summary

I First-order formulas defined over a signature of typed symbols

I Hierarchical OO type system with abstract and dynamic types

I Quantification over variables, no “free” variables in formulas

I Semantic domain like objects in a Java heap

I First-order model assigns semantic value to terms and formulas

I Semantic notions satisfiability and validity

Semantic evaluation is not feasible in practice

I There is an ∞ (even: uncountable) number of first-order models

I Evaluation of quantified formula may involve ∞ number of cases

I Next goal: a syntactic calculus allowing mechanical validity checking

Formal Specification and Verification: FOL B. Beckert 44 / 45

Literature for this Lecture

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 2: First-Order Logic

Fitting First-Order Logic and Automated Theorem Proving, 2nd
edn., Springer 1996

Huth & Ryan Logic in Computer Science, 2nd edn., Cambridge
University Press, 2004

Formal Specification and Verification: FOL B. Beckert 45 / 45

	Titlepage
	Formal Modeling
	First-Order Logic
	Signature
	Terms
	Formulas
	Semantics
	Domain
	Model
	Variable Assignment
	Term Valuation
	Formula Valuation
	Semantic Notions
	Untyped Logic
	Modeling with FOL
	Summary
	Literature

