Formal Specification and Verification

First-Order Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at Chalmers University, Göteborg

Formalisation

Formalisation: Syntax, Semantics

Formalisation: Syntax, Semantics

Formalisation: Syntax, Semantics

Formalisation: Syntax, Semantics

Approaches to Formal Software Verification

Formal Verification: Deduction

Beyond Propositional Logic

Beyond Propositional Logic

Beyond Propositional Logic

Beyond Propositional Logic

Syntax, Semantics, Calculus

Syntax, Semantics, Calculus

Syntax, Semantics, Calculus

Limitations of Propositional Logic

Fixed, finite number of objects
Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments
Can express: finite function/relation table with indexed variables $p_{i j}$ Cannot express:
properties of function/relation on all arguments, e.g., " + " is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc. Propositional formulas look at one single interpretation at a time

Propositional Logic

First-Order Logic

Syntax of First-Order Logic: Signature

Definition (First-Order Signature)
First-order signature $\Sigma=($ PSym, FSym, $\alpha)$
Predicate or Relation Symbols PSym $=\left\{p_{i} \mid i \in \mathbb{N}\right\}$
Function Symbols \quad FSym $=\left\{f_{i} \mid i \in \mathbb{N}\right\}$
Typing function α, set of types \mathcal{T}

- $\alpha(p) \in \mathcal{T}^{*}$ for all $p \in$ PSym
- $\alpha(f) \in \mathcal{T}^{*} \times \mathcal{T}$ for all $f \in \mathrm{FSym}$

Definition (Variables)

VSym $=\left\{x_{i} \mid i \in \mathbb{N}\right\}$ set of typed variables

- In contrast to "standard" FOL, our symbols are typed Necessary to model a typed programming language such as Java!
- Allow any non-reserved name for symbols, not merely p_{3}, f_{17}, \ldots

Syntax of First-Order Logic: Signature Cont'd

Declaration of signature symbols

- Write $T x$; to declare variable x of type T
- Write $p\left(T_{1}, \ldots, T_{r}\right)$; for $\alpha(p)=\left(T_{1}, \ldots, T_{r}\right)$
- Write $T f\left(T_{1}, \ldots, T_{r}\right)$; for $\alpha(f)=\left(\left(T_{1}, \ldots, T_{r}\right), T\right)$

Similar convention as in JAVA, no overloading of symbols Case $r=0$ is allowed, then write p instead of $p()$, etc.

Syntax of First-Order Logic: Signature Cont'd

Declaration of signature symbols

- Write $T x$; to declare variable x of type T
- Write $p\left(T_{1}, \ldots, T_{r}\right)$; for $\alpha(p)=\left(T_{1}, \ldots, T_{r}\right)$
- Write $T f\left(T_{1}, \ldots, T_{r}\right)$; for $\alpha(f)=\left(\left(T_{1}, \ldots, T_{r}\right), T\right)$

Similar convention as in JAVA, no overloading of symbols Case $r=0$ is allowed, then write p instead of $p()$, etc.

Example

Variables integerArray a; int i;
Predicates isEmpty(List); alertOn;
Functions int arrayLookup(int); java.lang.Object o;

OO Type Hierarchy

We want to model the behaviour of Java programs Admissible types \mathcal{T} form object-oriented type hierarchy

OO Type Hierarchy
We want to model the behaviour of Java programs Admissible types \mathcal{T} form object-oriented type hierarchy

Definition (00 Type Hierarchy)

- \mathcal{T} is finite set of types (not parameterized)
- Given subtype relation \sqsubseteq, assume $\mathcal{T} \sqcap$-closed
- Dynamic types $\mathcal{T}_{d} \subseteq \mathcal{T}$, where $T \in \mathcal{T}_{d}$
- Abstract types $\mathcal{T}_{a} \subseteq \mathcal{T}$, where $\perp \in \mathcal{T}_{a}$
- $\mathcal{T}_{d} \cap \mathcal{T}_{a}=\emptyset$
- $\mathcal{T}_{d} \cup \mathcal{T}_{a}=\mathcal{T}$
- $\perp \sqsubseteq T \sqsubseteq T$ for all $T \in \mathcal{T}$

OO Type Hierarchy Cont'd

Example

Using UML notation

OO Type Hierarchy Cont'd

- Dynamic types are those with direct elements
- Abstract types for abstract classes and interfaces
- In Java primitive (value) and object types incomparable
- \perp is abstract and hence no object ever can have this type
\perp cannot occur in declaration of signature symbols
- Each abstract type except \perp has a non-empty dynamic subtype
- In Java T is chosen to have no direct elements
- Java has infinitely many types: int[], int [] [],...

Restrict \mathcal{T} to the finitely many types that occur in a given program

OO Type Hierarchy Cont'd

- Dynamic types are those with direct elements
- Abstract types for abstract classes and interfaces
- In Java primitive (value) and object types incomparable
- \perp is abstract and hence no object ever can have this type
\perp cannot occur in declaration of signature symbols
- Each abstract type except \perp has a non-empty dynamic subtype
- In Java T is chosen to have no direct elements
- Java has infinitely many types: int [], int [] [],...

Restrict \mathcal{T} to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

$\mathcal{T}=\{\perp, \top\}$
All signature symbols have same type T : drop type, untyped logic

Reserved Signature Symbols

Reserved signature symbols

- Equality symbol $\doteq \in$ PSym declared as $\doteq(T, T)$

Written infix: $x \doteq 0$

- Type predicate symbol $\in T \in \operatorname{PSym}$ for each $T \in \mathcal{T}$

Declared as $\in T(T)$
Written postfix: iEint - read "instance of"

- Type cast symbol $(T) \in$ FSym for each $T \in \mathcal{T}$

Declared as $T(T)(T)$

Reserved Signature Symbols

Reserved signature symbols

- Equality symbol $\doteq \in$ PSym declared as $\doteq(T, T)$

Written infix: $x \doteq 0$

- Type predicate symbol $\in T \in$ PSym for each $T \in \mathcal{T}$

Declared as $\in T(T)$
Written postfix: iEint - read "instance of"

- Type cast symbol $(T) \in$ FSym for each $T \in \mathcal{T}$

Declared as $T(T)(T)$

So far, we have a type system and a signature - where is the logic?

Terms

First-order terms, informally

- Think of first-order terms as expressions in a programming language Built up from variables, constants, function symbols
- First-order terms have no side effects (like Promela, unlike Java)
- First-order terms have a type and must respect type hierarchy
- type of $f(g(x))$ is result type in declaration of function f
- in $f(g(x))$ the result type of g is subtype of argument type of f, etc.

Terms

First-order terms, informally

- Think of first-order terms as expressions in a programming language Built up from variables, constants, function symbols
- First-order terms have no side effects (like Promela, unlike Java)
- First-order terms have a type and must respect type hierarchy
- type of $f(g(x))$ is result type in declaration of function f
- in $f(g(x))$ the result type of g is subtype of argument type of f, etc.

Definition (First-Order Terms $\left\{\operatorname{Term}_{T}\right\}_{T \in \mathcal{T}}$ with type $T \in \mathcal{T}$)

- x is term of type T for variable declared as $T x$;
- $f\left(t_{1}, \ldots, t_{r}\right)$ is term of type T for
- function symbol declared as $T f\left(T_{1}, \ldots, T_{r}\right)$; and
- terms t_{i} of type $T_{i}^{\prime} \sqsubseteq T_{i}$ for $1 \leq i \leq r$
- There are no other terms (inductive definition)

Terms, Cont'd

Example

Signature: int i; short j; List l; int f(int);

- $f(i)$ has result type int and is contained in Term int
- $f(\mathrm{j})$ has result type int (when short \sqsubseteq int)
- $f(1)$ is ill-typed (when int, List incomparable)
- $f(i, i)$ is not a term (doesn't match declaration)
- (int) j is term of type int
- even (int)l is term of type int (type cast always well-formed)

Terms, Cont'd

Example

Signature: int i; short j; List l; int f (int);

- $f(i)$ has result type int and is contained in Term ${ }_{\text {int }}$
- $f(\mathrm{j})$ has result type int (when short \sqsubseteq int)
- $f(1)$ is ill-typed (when int, List incomparable)
- $f(i, i)$ is not a term (doesn't match declaration)
- (int) j is term of type int
- even (int)l is term of type int (type cast always well-formed)
- If f is constant $(r=0)$ write f instead of $f()$
- Use infix notation liberally, where appropriate: declare int +(int, int) ; then write $i+j$, etc.
- Use brackets to disambiguiate parsing:

$$
(i+j) * i
$$

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

$p\left(t_{1}, \ldots, t_{r}\right)$ is atomic first-order formula for

- predicate symbol declared as $p\left(T_{1}, \ldots, T_{r}\right)$; and
- terms t_{i} of type $T_{i}^{\prime} \sqsubseteq T_{i}$ for $1 \leq i \leq r$

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

$p\left(t_{1}, \ldots, t_{r}\right)$ is atomic first-order formula for

- predicate symbol declared as $p\left(T_{1}, \ldots, T_{r}\right)$; and
- terms t_{i} of type $T_{i}^{\prime} \sqsubseteq T_{i}$ for $1 \leq i \leq r$

Example

Signature: int i; short j; List l; <(int, int);

- $i<i$ is an atomic first-order formula
- $\mathrm{i}<\mathrm{j}$ is an atomic first-order formula (when short \sqsubseteq int)
- $\mathrm{i}<1$ is ill-typed (when int, List incomparable)
- $i \doteq j$ and even $i \doteq 1$ are atomic first-order formulas
- i E short is an atomic first-order formula

First-Order Formulas

Definition (Set of First-Order Formulas For)

- Truth constants true, false and all first-order atomic formulas are first-order formulas
- If ϕ and ψ are first-order formulas then

$$
!\phi, \quad(\phi \& \psi), \quad(\phi \mid \psi), \quad(\phi \rightarrow \psi), \quad(\phi \leftrightarrow \psi)
$$

are also first-order formulas

- If $T \times$ is a variable declaration, ϕ a first-order formula, then $\forall T x ; \phi$ and $\exists T x ; \phi$ are first-order formulas Any occurrence of x in ϕ must be well-typed
- $\forall T x ; \phi$ called universally quantified formula
- $\exists T x ; \phi$ called existentially quantified formula

First-Order Formulas Cont'd

- In $\forall T x ; \phi$ and $\exists T x ; \phi$ call ϕ the scope of x bound by \forall / \exists
- Analogy between variables bound in quantified formulas and program locations declared as local variables/formal parameters

We require that all variables occur bound
\Rightarrow All variable declarations are quantifier-local

Example

- \forall int $i ; \exists$ int $j ; i<j$ is a first-order formula
- \forall int $i ; \exists$ List $l ; i<l$ is ill-typed
- \forall int $i ; i<j$ is a first-order formula if j is a constant compatible with int
- (\forall int $i ; \forall$ int $j ; i<j) \mid(\forall$ int $i ; \forall$ int $j ; i>j)$ is a first-order formula

Remark on Concrete Syntax

	Text book	Spin	KeY	JaVA		
Negation	\neg	$!$	$!$	$!$		
Conjunction	\wedge	$\& \&$	$\&$	$\& \&$		
Disjunction	\vee	$\\|$	\mid	$\\|$		
Implication	\rightarrow, \supset	\rightarrow	\rightarrow	n / a		
Equivalence	\leftrightarrow	\rightarrow	\rightarrow	n / a		
Universal Quantifier	$\forall x ; \phi$	n / a	\backslash forall $T x ; \phi$	n / a		
Existential Quantifier	$\exists x ; \phi$	n / a	\backslash exists $T x ; \phi$	n / a		
Value equality	\doteq	$==$	$=$	$==$		

Remark on Concrete Syntax

	Text book	Spin	KeY	JaVA		
Negation	\neg	$!$	$!$	$!$		
Conjunction	\wedge	$\& \&$	$\&$	$\& \&$		
Disjunction	\vee	$\\|$	\mid	$\\|$		
Implication	\rightarrow, \supset	\rightarrow	\rightarrow	n / a		
Equivalence	\leftrightarrow	$->$	$->$	n / a		
Universal Quantifier	$\forall x ; \phi$	n / a	\backslash forall $T x ; \phi$	n / a		
Existential Quantifier	$\exists x ; \phi$	n / a	\backslash exists $T x ; \phi$	n / a		
Value equality	\doteq	$==$	$=$	$==$		

For quantifiers we normally use textbook syntax and suppress type information to ease readability

For propositional connectives we use KeY syntax

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- In first-order logic we must assign meaning to:
- variables bound in quantifiers
- constant and function symbols
- predicate symbols
- Each variable or function value may denote a different object
- Respect typing: int i, List 1 must denote different objects

What we need (to interpret a first-order formula)

1. A collection of typed universes of objects (akin to heap objects)
2. A mapping from variables to objects
3. A mapping from function arguments to function values
4. The set of argument tuples where a predicate is true

First-Order Domains/Universes

1. A collection of typed universes of objects

Definition (Universe/Domain)

A non-empty set \mathcal{D} of objects is a universe or domain
Each element of \mathcal{D} has a fixed type given by $\delta: \mathcal{D} \rightarrow \mathcal{T}_{d}$

- Like heap objects and values in Java
- Notation for the domain elements type-compatible with $T \in \mathcal{T}$: $\mathcal{D}^{T}=\{d \in \mathcal{D} \mid \delta(d) \sqsubseteq T\}$
- For each dynamic type $T \in \mathcal{T}_{d}$ there must be at least one domain element type-compatible with it: $\mathcal{D}^{T} \neq \emptyset$

First-Order Universes Cont'd

Example

- $\mathcal{D}=\{17, o\}$
- $\delta(17)=$ short, $\delta(o)=$ Object
- Then $\mathcal{D}^{\text {short }}=\mathcal{D}^{\text {int }}=\{17\}, \mathcal{D}^{\text {Object }}=\{o\}$,

$$
\mathcal{D}^{\top}=\mathcal{D}=\{17, o\}, \text { and } \mathcal{D}^{\perp}=\{ \}
$$

First-Order Models

3. A mapping from function arguments to function values
4. The set of argument tuples where a predicate is true

Definition (First-Order Model)

Let \mathcal{D} be a domain with typing function δ
Let f be declared as $T f\left(T_{1}, \ldots, T_{r}\right)$;
Let p be declared as $p\left(T_{1}, \ldots, T_{r}\right)$;
Let $\mathcal{I}(f): \mathcal{D}^{T_{1}} \times \cdots \times \mathcal{D}^{T_{r}} \rightarrow \mathcal{D}^{T}$
Let $\mathcal{I}(p) \subseteq \mathcal{D}^{T_{1}} \times \cdots \times \mathcal{D}^{T_{r}}$
Then $\mathcal{M}=(\mathcal{D}, \delta, \mathcal{I})$ is a first-order model

First-Order Models Cont'd

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D}=\{17,2, o\}$ where all numbers are short
$\mathcal{I}(i)=17$
$\mathcal{I}(j)=17$
$\mathcal{I}(\mathrm{obj})=0$

$\mathcal{D}^{\text {int }}$	$\mathcal{I}(f)$
2	2
17	2

$\mathcal{D}^{\text {int }} \times \mathcal{D}^{\text {int }}$	in $\mathcal{I}(<) ?$
$(2,2)$	F
$(2,17)$	T
$(17,2)$	F
$(17,17)$	F

One of uncountably many possible first-order models!

Semantics of Reserved Signature Symbols

Definition

- Equality symbol \doteq declared as $\doteq(T, T)$

Model is fixed as $\mathcal{I}(\doteq)=\{(d, d) \mid d \in \mathcal{D}\}$
"Referential Equality" (holds if arguments refer to identical object)
Exercise: write down the predicate table for example domain

- Type predicate symbol $\in T$ for any T, declared as $\in T(T)$
$\mathcal{I}(E T)=\mathcal{D}^{T}$
Exercise: what is \mathcal{I} ($(E$ Object)?
- Type cast symbol (T) for each T, declared as $T(T)(T)$

Casts that succeed $(\delta(x) \sqsubseteq T): \quad \mathcal{I}((T))(x)=x$ identity
Casts that do not succeed: $\mathcal{I}((T))(x)=d \quad$ arb. fixed $d \in \mathcal{D}^{T}$
Exercise: what is $\mathcal{I}(($ int $))(17)$?

Signature Symbols vs. Domain Elements

- Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain
- As in JAVA: identity and memory layout of values/objects hidden
- Think of a first-order model as a "heap" of first-order logic

Example

Signature: Object obj1, obj2;
Domain: $\mathcal{D}=\{0\}$
In this model, necessarily $\mathcal{I}(o b j 1)=\mathcal{I}(o b j 2)=o$
Effect similar to aliasing in Java with reference types

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type T then $\beta(x) \in \mathcal{D}^{T}$

Definition (Modified Variable Assignment)

Let y be variable of type T, β variable assignment, $d \in \mathcal{D}^{T}$:

$$
\beta_{y}^{d}(x):= \begin{cases}\beta(x) & x \neq y \\ d & x=y\end{cases}
$$

Semantic Evaluation of Terms
Given a first-order model \mathcal{M} and a variable assignment β it is possible to evaluate first-order terms under \mathcal{M} and β

Analogy

Evaluating an expression in a programming language with respect to a given heap (\mathcal{M}) and binding of local variables (β)

Definition (Valuation of Terms)

 val $_{\mathcal{M}, \beta}: \operatorname{Term} \rightarrow \mathcal{D}$ such that $\operatorname{val}_{\mathcal{M}, \beta}(t) \in \mathcal{D}^{T}$ for $t \in \operatorname{Term}_{T}$:- $\operatorname{val}_{\mathcal{M}, \beta}(x)=\beta(x) \quad$ (recall that β respects typing)
- $\operatorname{val}_{\mathcal{M}, \beta}\left(f\left(t_{1}, \ldots, t_{r}\right)\right)=\mathcal{I}(f)\left(\operatorname{val}_{\mathcal{M}, \beta}\left(t_{1}\right), \ldots\right.$, val $\left._{\mathcal{M}, \beta}\left(t_{r}\right)\right)$

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; short j; int f(int);
$\mathcal{D}=\{17,2, o\}$ where all numbers are short
Variables: Object obj; int x;

$$
\begin{aligned}
& \mathcal{I}(i)=17 \\
& \mathcal{I}(j)=17
\end{aligned}
$$

$\mathcal{D}^{\text {int }}$	$\mathcal{I}(\mathrm{f})$
2	17
17	2

Var	β
obj	o
x	17

- $\operatorname{val}_{\mathcal{M}, \beta}(\mathrm{f}(\mathrm{f}(\mathrm{i})))$?
- val ${ }_{\mathcal{M}, \beta}(x)$?
- val ${ }_{\mathcal{M}, \beta}(($ int $) \mathrm{obj})$?

Semantic Evaluation of Formulas

Formulas are true or false
A validity relation is more convenient than a function

Definition (Validity Relation for Formulas)

$\mathcal{M}, \beta \models \phi$ for $\phi \in$ For " \mathcal{M}, β models ϕ "
$-\mathcal{M}, \beta \equiv p\left(t_{1}, \ldots, t_{r}\right) \quad$ iff $\quad\left(v a l_{\mathcal{M}, \beta}\left(t_{1}\right), \ldots\right.$, val $\left._{\mathcal{M}, \beta}\left(t_{r}\right)\right) \in \mathcal{I}(p)$

- $\mathcal{M}, \beta \models \phi \& \psi \quad$ iff $\quad \mathcal{M}, \beta \models \phi$ and $\mathcal{M}, \beta \models \psi$
- as in propositional logic
- $\mathcal{M}, \beta \models \forall T x ; \phi \quad$ iff $\quad \mathcal{M}, \beta_{x}^{d} \models \phi$ for all $d \in \mathcal{D}^{T}$
- $\mathcal{M}, \beta \models \exists T x ; \phi \quad$ iff $\quad \mathcal{M}, \beta_{x}^{d} \models \phi$ for at least one $d \in \mathcal{D}^{T}$

Semantic Evaluation of Formulas Cont'd

Example

Signature: short j; int f(int); Object obj; <(int,int); $\mathcal{D}=\{17,2, o\}$ where all numbers are short
$\mathcal{I}(j)=17$
$\mathcal{I}(o \mathrm{obj})=0$

$\mathcal{D}^{\text {int }}$	$\mathcal{I}(f)$
2	2
17	2

$\mathcal{D}^{\text {int }} \times \mathcal{D}^{\text {int }}$	in $\mathcal{I}(<) ?$
$(2,2)$	F
$(2,17)$	T
$(17,2)$	F
$(17,17)$	F

- $\mathcal{M}, \beta=f(j)<j$?
- $\mathcal{M}, \beta \vDash \exists \operatorname{int} x ; f(x) \doteq x$?
$-\mathcal{M}, \beta \models \forall$ Object o1; \forall Object o2; o1 $\doteq \mathrm{o} 2$?

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$
\begin{array}{lllll}
\mathcal{M}, \beta & =\phi & & & (\phi \text { is satisfiable }) \\
\mathcal{M} & \models \phi \text { iff for all } \beta: \quad \mathcal{M}, \beta \models \phi & (\phi \text { is true in } \mathcal{M}) \\
& \models \phi \quad \text { iff } \text { for all } \mathcal{M}: & \mathcal{M} \models \phi & (\phi \text { is valid })
\end{array}
$$

Closed formulas that are satisfiable are also true: one top-level notion

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$
\begin{array}{lllll}
\mathcal{M}, \beta & =\phi & & & (\phi \text { is satisfiable }) \\
\mathcal{M} & \models \phi \text { iff for all } \beta: \quad \mathcal{M}, \beta \models \phi & (\phi \text { is true in } \mathcal{M}) \\
& \models \phi \text { iff for all } \mathcal{M}: \quad \mathcal{M} \equiv \phi & (\phi \text { is valid })
\end{array}
$$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- $f(j)<j$ is true in \mathcal{M}
- \exists int $x ; i \doteq x$ is valid
- \exists int $x ;!(x \doteq x)$ is not satisfiable

Untyped First-Order Logic

Most logic textbooks introduce untyped logic

How to obtain untyped logic as a special case

- Minimal Type Hierarchy: $\mathcal{T}=\{\perp, \top\}$
- $\mathcal{D}=\mathcal{D}^{\top} \neq \emptyset$: only one populated type \top, drop all typing info
- Signature merely specifies arity of functions and predicates: Write $f / 1,</ 2, i / 0$, etc.
- Untyped logic is suitable whenever we model a uniform domain
- Typical applications: pure mathematics such as algebra

Untyped First-Order Logic Cont'd

Example (Axiomatization of a group in first-order logic)
Signature $\Sigma_{G}: F S y m=\{\circ / 2, \mathbf{e} / 0\}, \operatorname{PSym}=\{\doteq / 2\}$
Let G be the following formulas:
Left identity $\forall x ; \mathbf{e} \circ x \doteq x$
Left inverse $\forall x ; \exists y ; y \circ x \doteq \mathbf{e}$
Associativity $\forall x ; \forall y ; \forall z ;(x \circ y) \circ z \doteq x \circ(y \circ z)$
Let ϕ be Σ_{G}-formula.
Whenever $\models G \rightarrow \phi$, then ϕ is a theorem of group theory

Modeling with First-Order Logic

Modeling with First-Order Logic

Example (At least two elements)
Which ? $\quad \exists x ; \exists y ;!(x \doteq y)$
How to do this without built-in equality?

Modeling with First-Order Logic

Example (Strict partial order)
PSym $=\{</ 2\}$
Which? Irreflexivity $\forall x ;!(x<x)$
Asymmetry $\forall x ; \forall y ;(x<y \rightarrow!(y<x))$
Transitivity $\forall x ; \forall y ; \forall z$;

$$
(x<y \& y<z \rightarrow x<z)
$$

Modeling with First-Order Logic

Modeling with First-Order Logic

Example (All models have infinite domain)
Which ?
Signature and axioms of irreflexive order plus
Existence Successor $\forall x ; \exists y ; x<y$

Modeling with First-Order Logic

Summary and Outlook

Summary

- First-order formulas defined over a signature of typed symbols
- Hierarchical OO type system with abstract and dynamic types
- Quantification over variables, no "free" variables in formulas
- Semantic domain like objects in a Java heap
- First-order model assigns semantic value to terms and formulas
- Semantic notions satisfiability and validity

Summary and Outlook

Summary

- First-order formulas defined over a signature of typed symbols
- Hierarchical OO type system with abstract and dynamic types
- Quantification over variables, no "free" variables in formulas
- Semantic domain like objects in a Java heap
- First-order model assigns semantic value to terms and formulas
- Semantic notions satisfiability and validity

Semantic evaluation is not feasible in practice

- There is an ∞ (even: uncountable) number of first-order models
- Evaluation of quantified formula may involve ∞ number of cases
- Next goal: a syntactic calculus allowing mechanical validity checking

Literature for this Lecture

KeY Book Verification of Object-Oriented Software (see course web page), Chapter 2: First-Order Logic
Fitting First-Order Logic and Automated Theorem Proving, 2nd edn., Springer 1996
Huth \& Ryan Logic in Computer Science, 2nd edn., Cambridge University Press, 2004

