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Beyond Propositional Logic
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Syntax, Semantics, Calculus
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Syntax, Semantics, Calculus

Syntax

Formula/Program

Semantics
“valid”

Completenes¢ ‘rSoundness

Calculus
“Derivable”

Formal Specification and Verification: FOL B. Beckert 6 /45



Limitations of Propositional Logic

Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

Can express: finite function/relation table with indexed variables p;;
Cannot express:
properties of function/relation on all arguments, e.g., "4 is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time
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Syntax of First-Order Logic: Signature

Definition (First-Order Signature)
First-order signature X = (PSym, FSym, «)
Predicate or Relation Symbols PSym = {p; | i € IN}
Function Symbols FSym = {f; | i € N}
Typing function «, set of types 7

» a(p) € T* for all p € PSym

> of) € T* x T for all f € FSym

Definition (Variables)
VSym = {x; | i € IN} set of typed variables

» In contrast to “standard” FOL, our symbols are typed
Necessary to model a typed programming language such as JAVA!

» Allow any non-reserved name for symbols, not merely ps, fi7,...

Formal Specification and Verification: FOL B. Beckert 9 /45



Syntax of First-Order Logic: Signature Cont’d

Declaration of signature symbols
» Write T x; to declare variable x of type T
» Write p(Ty,..., T,); for a(p) = (T1,..., T;)
» Write T f(Ty,...,T,); for a(f) = ((T1,...,T,), T)

Similar convention as in JAVA, no overloading of symbols
Case r = 0 is allowed, then write p instead of p(), etc.
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Syntax of First-Order Logic: Signature Cont’d

Declaration of signature symbols
» Write T x; to declare variable x of type T
» Write p(Ty,..., T,); for a(p) = (T1,..., T;)
» Write T f(Ty,...,T,); for a(f) = ((T1,...,T,), T)

Similar convention as in JAVA, no overloading of symbols
Case r = 0 is allowed, then write p instead of p(), etc.

Example
Variables integerArray a; int i;
Predicates isEmpty(List); alertOn;

Functions int arrayLookup(int); java.lang.Object o;
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OO Type Hierarchy

We want to model the behaviour of JAVA programs
Admissible types 7 form object-oriented type hierarchy
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OO Type Hierarchy

We want to model the behaviour of JAVA programs
Admissible types 7 form object-oriented type hierarchy

Definition (OO Type Hierarchy)

» T is finite set of types (not parameterized)
Given subtype relation c, assume 7 [l-closed
Dynamic types 74 C 7, where T € 74
Abstract types 7, C 7, where L € 7,
TaNT =10
TaUT, =T
1lcTcTforall TEeT

vV vV vV V. VY
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OO Type Hierarchy Cont'd

Example
Using UML notation J
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OO Type Hierarchy Cont'd

» Dynamic types are those with direct elements
» Abstract types for abstract classes and interfaces
» In JAVA primitive (value) and object types incomparable

» | is abstract and hence no object ever can have this type
L cannot occur in declaration of signature symbols

v

Each abstract type except L has a non-empty dynamic subtype

v

In JAVA T is chosen to have no direct elements

v

JAVA has infinitely many types: int[1, int[1[],...
Restrict 7 to the finitely many types that occur in a given program
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OO Type Hierarchy Cont'd

» Dynamic types are those with direct elements

» Abstract types for abstract classes and interfaces

» In JAVA primitive (value) and object types incomparable
» | is abstract and hence no object ever can have this type
L cannot occur in declaration of signature symbols

v

Each abstract type except L has a non-empty dynamic subtype

In JAVA T is chosen to have no direct elements

v

v

JAVA has infinitely many types: int[1, int[1[],...
Restrict 7 to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

T={L,T}
All signature symbols have same type T: drop type, untyped logic
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Reserved Signature Symbols
Reserved signature symbols
» Equality symbol = € PSym declared as = (T, T)
Written infix: x =0
» Type predicate symbol ET € PSym for each T € T
Declared as ET(T)
Written postfix: iEint — read “instance of”
» Type cast symbol (T) € FSym for each T € T

Declared as T (T)(T)
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Reserved Signature Symbols
Reserved signature symbols
» Equality symbol = € PSym declared as = (T, T)
Written infix: x =0
» Type predicate symbol ET € PSym for each T € T
Declared as ET(T)
Written postfix: iEint — read “instance of”
» Type cast symbol (T) € FSym for each T € T

Declared as T (T)(T)

So far, we have a type system and a signature — where is the logic? J
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Terms

First-order terms, informally

» Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols

» First-order terms have no side effects (like PROMELA, unlike JAVA)

» First-order terms have a type and must respect type hierarchy

> type of f(g(x)) is result type in declaration of function f
> in f(g(x)) the result type of g is subtype of argument type of f, etc.

Formal Specification and Verification: FOL B. Beckert 16 / 45



Terms

First-order terms, informally

» Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols

» First-order terms have no side effects (like PROMELA, unlike JAVA)

» First-order terms have a type and must respect type hierarchy

> type of f(g(x)) is result type in declaration of function f
> in f(g(x)) the result type of g is subtype of argument type of f, etc.

Definition (First-Order Terms {Termt} <7 with type T € 7)
> x is term of type T for variable declared as T x;

» f(t1,...,t) is term of type T for

» function symbol declared as T f(Ti,..., T,); and
> terms t; of type T/CT; for 1 <i<r

» There are no other terms (inductive definition)
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Terms, Cont’d

Example

Signature: int i; short j; List 1; int f(int);

|

vV v v v Y

£(i) has result type int and is contained in Term;,¢
£(j) has result type int (when short C int)

£(1) is ill-typed (when int, List incomparable)
£(i,1) is not a term (doesn't match declaration)

(int) j is term of type int

even (int)1 is term of type int (type cast always well-formed)
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Terms, Cont’d

Example

Signature: int i; short j; List 1; int f(int);

|

vV v v v Y

£(i) has result type int and is contained in Term;,¢
£(j) has result type int (when short C int)

£(1) is ill-typed (when int, List incomparable)
£(i,1) is not a term (doesn't match declaration)
(int) j is term of type int

even (int)1 is term of type int (type cast always well-formed)

v

If f is constant (r = 0) write f instead of f()

> Use infix notation liberally, where appropriate:

declare int +(int, int); then write i+j, etc.
Use brackets to disambiguiate parsing:
(i+j)*i
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First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

p(ti, ..., t;) is atomic first-order formula for
» predicate symbol declared as p(Ti,..., T,); and
> terms t; of type T/CT; for 1 < <r
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First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

p(ti, ..., t;) is atomic first-order formula for
» predicate symbol declared as p(Ti,..., T,); and
> terms t; of type T/CT; for 1 < <r

Example
Signature: int i; short j; List 1; <(int, int);
> i < iis an atomic first-order formula
» i < jis an atomic first-order formula (when shortCint)
» i < 1isill-typed (when int, List incomparable)
» i=j and even i=1 are atomic first-order formulas

» iEshort is an atomic first-order formula
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First-Order Formulas

Definition (Set of First-Order Formulas For)
» Truth constants true, false and all first-order atomic formulas are
first-order formulas
> If ¢ and v are first-order formulas then
Lo, (¢ &¥), (¢]¢) (¢ =>19) (¢ <> )
are also first-order formulas
» If T x is a variable declaration, ¢ a first-order formula,

then VT x; ¢ and 3 T x; ¢ are first-order formulas
Any occurrence of x in ¢ must be well-typed

> V T x; ¢ called universally quantified formula

» 3T x; ¢ called existentially quantified formula

Formal Specification and Verification: FOL B. Beckert 20 /45



First-Order Formulas Cont’'d

» InV T x; ¢and 3T x; ¢ call ¢ the scope of x bound by V/3

> Analogy between variables bound in quantified formulas and
program locations declared as local variables/formal parameters

We require that all variables occur bound
= All variable declarations are quantifier-local

Example
» Vint /; dint j; i < j is a first-order formula
» Vint /; dList [; 7 < [ is ill-typed
> Yint /; i < J is a first-order formula
if j is a constant compatible with int
> (Vint i; Vint j; i <j) | (Vint i; Vint j; i > j)
is a first-order formula

Formal Specification and Verification: FOL B. Beckert 21 /45



Remark on Concrete Syntax

Text book SPIN KeY JAva
Negation - ! ! !
Conjunction A && & &&
Disjunction v I ] I
Implication —, D —> - n/a
Equivalence - <> <> n/a
Universal Quantifier Vx; ¢ n/a \forallT x; ¢ n/a
Existential Quantifier dx; ¢

Value equality

n/a

\exists T x; ¢ n/a

Formal Specification and Verification: FOL
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Remark on Concrete Syntax

Text book SPIN KeY Java
Negation - ! ! !
Conjunction A && & &&
Disjunction v I ] I
Implication —, D —> - n/a
Equivalence - <> <> n/a

Universal Quantifier Vx; ¢ n/a \forallT x; ¢ n/a
Existential Quantifier Ix; ¢ n/a \existsT x; ¢ n/a
Value equality = == = ==

For quantifiers we normally use textbook syntax and
suppress type information to ease readability

For propositional connectives we use KeY syntax
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First-Order Semantics

From propositional to first-order semantics

» In prop. logic, an interpretation of variables with { T, F} sufficed
» In first-order logic we must assign meaning to:

» variables bound in quantifiers
» constant and function symbols
> predicate symbols

» Each variable or function value may denote a different object

> Respect typing: int i, List 1 must denote different objects

What we need (to interpret a first-order formula)
1. A collection of typed universes of objects (akin to heap objects)
2. A mapping from variables to objects
3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

Formal Specification and Verification: FOL B. Beckert
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First-Order Domains/Universes

1. A collection of typed universes of objects

Definition (Universe/Domain)

A non-empty set D of objects is a universe or domain
Each element of D has a fixed type given by 6 : D — Ty

> Like heap objects and values in JAVA

> Notation for the domain elements type-compatible with T € 7
DT ={deD|dd)cT}

» For each dynamic type T € 74 there must be at least one domain
element type-compatible with it: DT # ()

Formal Specification and Verification: FOL B. Beckert 26 /45



First-Order Universes Cont’d

Example

» D ={17, o}
» §(17) = short, §(o) = Object

» Then fDShOI‘t — Dint — {17}’ DObject _ {O},

D' =D = {17,0}, and D+ = {}

Formal Specification and Verification: FOL
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First-Order Models

3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

Definition (First-Order Model)

Let D be a domain with typing function ¢
Let f be declared as T f(T1,..., T,);

Let p be declared as p(T1,..., T,);

Let Z(f): DT x ... x DTr — DT

Let Z(p) C DTt x --- x DTr

Then M = (D, 4,Z) is a first-order model

Formal Specification and Verification: FOL B. Beckert
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First-Order Models Cont’d

Example

Signature: int i; short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

() =17 -
1(j) =17 pt  pt | in 7(<)?
Z(obj) =0 (2,2) F
o 77 217)| T
17,2)| F
15 ; (17,17)| F

One of uncountably many possible first-order models!
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Semantics of Reserved Signature Symbols
Definition
» Equality symbol = declared as = (T, T)
Model is fixed as Z(=) = {(d,d) | d € D}
“Referential Equality” (holds if arguments refer to identical object)
Exercise: write down the predicate table for example domain
» Type predicate symbol ET for any T, declared as ET(T)
I(eT)=DT
Exercise: what is Z(EObject)?
» Type cast symbol (T) for each T, declared as T (T)(T)
Casts that succeed (0(x)cT): Z((T))(x) = x identity
Casts that do not succeed: Z((T))(x) =d arb. fixed d € DT
Exercise: what is Z((int))(17)?

Formal Specification and Verification: FOL B. Beckert 32 /45



Signature Symbols vs. Domain Elements

» Domain elements different from the terms representing them
» First-order formulas and terms have no access to domain
» As in JAVA: identity and memory layout of values/objects hidden

» Think of a first-order model as a “heap” of first-order logic

Example

Signature: Object objl, obj2;
Domain: D = {o}

In this model, necessarily Z(obj1) = Z(obj2) = o

Effect similar to aliasing in JAVA with reference types

Formal Specification and Verification: FOL B. Beckert 33 /45



Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment 8 maps variables to domain elements
It respects the variable type, i.e., if x has type T then 3(x) € DT

Definition (Modified Variable Assignment)
Let y be variable of type T, 3 variable assignment, d € D

R A

Formal Specification and Verification: FOL B. Beckert
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Semantic Evaluation of Terms

Given a first-order model M and a variable assignment
it is possible to evaluate first-order terms under M and

Analogy

Evaluating an expression in a programming language
with respect to a given heap (M) and binding of local variables (/3)

Definition (Valuation of Terms)
valpg g : Term — D such that valy s(t) € DT for t € Termr:

> valpp(x) = B(x)  (recall that 3 respects typing)
> valug(F(t1, - 8)) = T(F)(valuap(tr), - values(t)
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Semantic Evaluation of Terms Cont'd

Example

Signature: int i; short j; int f(int);
D = {17, 2, o} where all numbers are short

Variables: Object obj; int x;

> valp g(£(£(1))) ?
> valMﬂ(x) 7
> va/M’ﬁ((int)obj) ?

Dint [ 7(£) Var | 3
2| 17 obj | o
17| 2 x| 17

Formal Specification and Verification: FOL
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Semantic Evaluation of Formulas

Formulas are true or false
A validity relation is more convenient than a function

Definition (Validity Relation for Formulas)
M, B ¢ for ¢ € For “M, 3 models ¢"

» M,BE p(ty,....t) iff (valpp(ti),. .., valvmg(tr)) € Z(p)
» M,bE ¢ &y iff M,k ¢and M, E ¢

> ...as in propositional logic

» M,BEVYTx; ¢ iff M,89=¢foralldec D’

» M, 3T x; ¢ iff M,BS = ¢ foratleast oned € DT
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Semantic Evaluation of Formulas Cont’d
Example

Signature: short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

I(_j) =17 Dint « Dint in 1’(<)?
pint | 7(f) (2,17) T
2] 2 (17,2) F
17| 2 (17,17) F
> M, B f()<j?
» M, = Jint x; f(x) =x7?
» M, = V0Object ol; VObject 02; ol = 02 7?
Formal Specification and Verification: FOL B. Beckert 38 /45




Semantic Notions
Definition (Satisfiability, Truth, Validity)

M,BE9¢ (¢ is satisfiable)
M ¢ iff forall: M,BE¢ (¢is true in M)
Eo¢ iff foral M:  ME¢ (¢isvalid)

Closed formulas that are satisfiable are also true: one top-level notion J
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Semantic Notions
Definition (Satisfiability, Truth, Validity)

M,BE9¢ (¢ is satisfiable)
M ¢ iff forall: M,BE¢ (¢is true in M)
Eo¢ iff foral M:  ME¢ (¢isvalid)

Closed formulas that are satisfiable are also true: one top-level notion J

Example
> f(j) <Jjis true in M
» dint x; i = x is valid

» Jint x; !(x = x) is not satisfiable
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Untyped First-Order Logic
Most logic textbooks introduce untyped logic J

How to obtain untyped logic as a special case
» Minimal Type Hierarchy: 7 = {1, T}
» D ="D' +(): only one populated type T, drop all typing info

> Signature merely specifies arity of functions and predicates:
Write f/1, < /2, i/0, etc.

Untyped logic is suitable whenever we model a uniform domain

v

v

Typical applications: pure mathematics such as algebra
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Untyped First-Order Logic Cont'd

Example (Axiomatization of a group in first-order logic)

Signature £s: FSym = {0/2, e/0}, PSym = {= /2}
Let G be the following formulas:

Left identity Vx; eox = x
Left inverse Vx; dy, yox=e
Associativity Vx; Vy;Vz, (xoy)oz=xo0(yoz)

Let ¢ be ¥ s-formula.
Whenever = G — ¢, then ¢ is a theorem of group theory
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Modeling with First-Order Logic

First-Order

Formulas
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First-Order
Models
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Modeling with First-Order Logic

First-Order

Formulas

Example (At least two elements)
Which ? Ix; ﬂy; |(x = y)
How to do this without built-in equality?

First-Order
Models
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Modeling with First-Order Logic

First-Order

Formulas

Example (Strict partial order)

PSym = {< /2}

Which ? Irreflexivity  Vx; I(x < x)

Asymmetry Vx; Vy; (x <y = l(y < x))

Transitivity Vx; Vy; Vz
x<y&y<z—>x<z)

First-Order
Models

4
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Modeling with First-Order Logic

First-Order

Formulas

Which ?

<&

First-Order
Models

Example (All models have infinite domain)
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Modeling with First-Order Logic

First-Order

Formulas

Example (All models have infinite domain)

Which ? Signature and axioms of irreflexive order plus

Existence Successor Vx; dy; x < y

First-Order
Models
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Modeling with First-Order Logic

First-Order

Formulas

Example (Abstract data types)
FSym = { Stack push(int, Stack);
_ int pop(Stack);

Which ? Stack nil; }

Vint i; VStack s; pop(push(i,s)) =s

First-Order
Models
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Summary and Outlook

Summary
First-order formulas defined over a signature of typed symbols
Hierarchical OO type system with abstract and dynamic types

Quantification over variables, no “free” variables in formulas

First-order model assigns semantic value to terms and formulas

>
>
>
» Semantic domain like objects in a JAVA heap
>
>

Semantic notions satisfiability and validity
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Summary and Outlook

Summary

First-order formulas defined over a signature of typed symbols
Hierarchical OO type system with abstract and dynamic types
Quantification over variables, no “free” variables in formulas
Semantic domain like objects in a JAVA heap

First-order model assigns semantic value to terms and formulas

>
>
>
>
>
>

Semantic notions satisfiability and validity

Semantic evaluation is not feasible in practice
» There is an oo (even: uncountable) number of first-order models

» Evaluation of quantified formula may involve co number of cases

» Next goal: a syntactic calculus allowing mechanical validity checking
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Literature for this Lecture

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 2: First-Order Logic

Fitting First-Order Logic and Automated Theorem Proving, 2nd
edn., Springer 1996

Huth & Ryan Logic in Computer Science, 2nd edn., Cambridge
University Press, 2004
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