Formal Specification and Verification First-Order Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at Chalmers University, Göteborg

Formalisation

Approaches to Formal Software Verification

Formal Verification: Deduction

Syntax, Semantics, Calculus

Syntax, Semantics, Calculus

Syntax, Semantics, Calculus

Limitations of Propositional Logic

Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

Can express: finite function/relation table with indexed variables p_{ij} Cannot express: properties of function/relation on all arguments, e.g., "+" is associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc. Propositional formulas look at one single interpretation at a time

Propositional Logic

First-Order Logic

Syntax of First-Order Logic: Signature

Definition (First-Order Signature)First-order signature $\Sigma = (PSym, FSym, \alpha)$ Predicate or Relation Symbols $PSym = \{p_i \mid i \in \mathbb{N}\}$ Function Symbols $FSym = \{f_i \mid i \in \mathbb{N}\}$ Typing function α , set of types \mathcal{T} $\alpha(p) \in \mathcal{T}^*$ for all $p \in PSym$

•
$$\alpha(f) \in \mathcal{T}^* imes \mathcal{T}$$
 for all $f \in \mathsf{FSym}$

Definition (Variables)

 $VSym = \{x_i \mid i \in \mathbb{N}\}$ set of typed variables

- In contrast to "standard" FOL, our symbols are typed Necessary to model a typed programming language such as JAVA!
- Allow any non-reserved name for symbols, not merely p_3, f_{17}, \ldots

Syntax of First-Order Logic: Signature Cont'd

Declaration of signature symbols

- Write T x; to declare variable x of type T
- Write $p(T_1, ..., T_r)$; for $\alpha(p) = (T_1, ..., T_r)$
- Write T $f(T_1, \ldots, T_r)$; for $\alpha(f) = ((T_1, \ldots, T_r), T)$

Similar convention as in JAVA, no overloading of symbols Case r = 0 is allowed, then write p instead of p(), etc.

Syntax of First-Order Logic: Signature Cont'd

Declaration of signature symbols

- Write T x; to declare variable x of type T
- Write $p(T_1, ..., T_r)$; for $\alpha(p) = (T_1, ..., T_r)$
- Write $T f(T_1, ..., T_r)$; for $\alpha(f) = ((T_1, ..., T_r), T)$

Similar convention as in JAVA, no overloading of symbols Case r = 0 is allowed, then write p instead of p(), etc.

Example

Variables integerArray a; int i;

Predicates isEmpty(List); alertOn;

Functions int arrayLookup(int); java.lang.Object o;

OO Type Hierarchy

We want to model the behaviour of $J{\rm AVA}$ programs Admissible types ${\cal T}$ form object-oriented type hierarchy

OO Type Hierarchy

We want to model the behaviour of JAVA programs Admissible types ${\cal T}$ form object-oriented type hierarchy

Definition (OO Type Hierarchy)

- T is finite set of types (not parameterized)
- ▶ Given subtype relation \sqsubseteq , assume $T \sqcap$ -closed
- Dynamic types $\mathcal{T}_d \subseteq \mathcal{T}$, where $\top \in \mathcal{T}_d$
- Abstract types $T_a \subseteq T$, where $\bot \in T_a$
- $\blacktriangleright \ \mathcal{T}_d \cap \mathcal{T}_a = \emptyset$
- $\blacktriangleright \ \mathcal{T}_d \cup \mathcal{T}_a = \mathcal{T}$
- $\blacktriangleright \perp \sqsubseteq T \sqsubseteq \top \text{ for all } T \in \mathcal{T}$

OO Type Hierarchy Cont'd

Example

Using UML notation

OO Type Hierarchy Cont'd

- Dynamic types are those with direct elements
- Abstract types for abstract classes and interfaces
- ► In JAVA primitive (value) and object types incomparable
- ► ⊥ is abstract and hence no object ever can have this type ⊥ cannot occur in declaration of signature symbols
- \blacktriangleright Each abstract type except \bot has a non-empty dynamic subtype
- In $JAVA \top$ is chosen to have no direct elements
- ► JAVA has infinitely many types: int[], int[][],... Restrict T to the finitely many types that occur in a given program

OO Type Hierarchy Cont'd

- Dynamic types are those with direct elements
- Abstract types for abstract classes and interfaces
- ► In JAVA primitive (value) and object types incomparable
- ► ⊥ is abstract and hence no object ever can have this type ⊥ cannot occur in declaration of signature symbols
- \blacktriangleright Each abstract type except \perp has a non-empty dynamic subtype
- In $JAVA \top$ is chosen to have no direct elements
- ► JAVA has infinitely many types: int[], int[][],... Restrict T to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

 $\mathcal{T} = \{\bot, \top\}$ All signature symbols have same type \top : drop type, untyped logic

Reserved Signature Symbols

Reserved signature symbols

• Equality symbol $\doteq \in \mathsf{PSym}$ declared as $\doteq (\top, \top)$

Written infix: $x \doteq 0$

• Type predicate symbol $\equiv T \in \mathsf{PSym}$ for each $T \in T$

```
Declared as \equiv T(\top)
```

Written postfix: iEint — read "instance of"

```
Type cast symbol (T) ∈ FSym for each T ∈ T
Declared as T (T)(T)
```

Reserved Signature Symbols

Reserved signature symbols

• Equality symbol $\doteq \in \mathsf{PSym}$ declared as $\doteq (\top, \top)$

Written infix: $x \doteq 0$

• Type predicate symbol $\equiv T \in \mathsf{PSym}$ for each $T \in T$

```
Declared as \equiv T(\top)
```

Written postfix: i∈int — read "instance of"

```
Type cast symbol (T) ∈ FSym for each T ∈ T
Declared as T (T)(T)
```

So far, we have a type system and a signature — where is the logic?

Terms

First-order terms, informally

- Think of first-order terms as expressions in a programming language Built up from variables, constants, function symbols
- ▶ First-order terms have no side effects (like PROMELA, unlike JAVA)
- First-order terms have a type and must respect type hierarchy
 - type of f(g(x)) is result type in declaration of function f
 - in f(g(x)) the result type of g is subtype of argument type of f, etc.

Terms

First-order terms, informally

- Think of first-order terms as expressions in a programming language Built up from variables, constants, function symbols
- ▶ First-order terms have no side effects (like PROMELA, unlike JAVA)
- First-order terms have a type and must respect type hierarchy
 - type of f(g(x)) is result type in declaration of function f
 - in f(g(x)) the result type of g is subtype of argument type of f, etc.

Definition (First-Order Terms ${Term_T}_{T \in T}$ with type $T \in T$)

- x is term of type T for variable declared as T x;
- $f(t_1, \ldots, t_r)$ is term of type T for
 - function symbol declared as $T f(T_1, \ldots, T_r)$; and
 - ► terms t_i of type $T'_i \sqsubseteq T_i$ for $1 \le i \le r$
- There are no other terms (inductive definition)

Terms, Cont'd

Example

Signature: int i; short j; List l; int f(int);

- f(i) has result type int and is contained in Termint
- f(j) has result type int (when short \sqsubseteq int)
- f(1) is ill-typed (when int, List incomparable)
- f(i,i) is not a term (doesn't match declaration)
- (int) j is term of type int
- even (int)1 is term of type int (type cast always well-formed)

Terms, Cont'd

Example

Signature: int i; short j; List l; int f(int);

- f(i) has result type int and is contained in Termint
- f(j) has result type int (when short \sqsubseteq int)
- ▶ f(1) is ill-typed (when int, List incomparable)
- f(i,i) is not a term (doesn't match declaration)
- (int) j is term of type int
- even (int)l is term of type int (type cast always well-formed)
- If f is constant (r = 0) write f instead of f()
- Use infix notation liberally, where appropriate: declare int +(int, int); then write i+j, etc.
- Use brackets to disambiguiate parsing: (i+j)*i

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

 $p(t_1,\ldots,t_r)$ is atomic first-order formula for

- predicate symbol declared as $p(T_1, \ldots, T_r)$; and
- ▶ terms t_i of type $T'_i \sqsubseteq T_i$ for $1 \le i \le r$

First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

 $p(t_1,\ldots,t_r)$ is atomic first-order formula for

- predicate symbol declared as $p(T_1, \ldots, T_r)$; and
- ▶ terms t_i of type $T'_i \sqsubseteq T_i$ for $1 \le i \le r$

Example

Signature: int i; short j; List l; <(int, int);</pre>

- i < i is an atomic first-order formula</p>
- ▶ i < j is an atomic first-order formula (when short⊑int)</p>
- i < 1 is ill-typed (when int, List incomparable)</pre>
- ▶ $i \doteq j$ and even $i \doteq 1$ are atomic first-order formulas
- ▶ i∈short is an atomic first-order formula

First-Order Formulas

Definition (Set of First-Order Formulas For)

- Truth constants true, false and all first-order atomic formulas are first-order formulas
- \blacktriangleright If ϕ and ψ are first-order formulas then

 $! \phi$, $(\phi \And \psi)$, $(\phi \mid \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$

are also first-order formulas

If T x is a variable declaration, φ a first-order formula, then ∀ T x; φ and ∃ T x; φ are first-order formulas Any occurrence of x in φ must be well-typed

- ► $\forall T x; \phi$ called universally quantified formula
- ▶ $\exists T x; \phi$ called existentially quantified formula

First-Order Formulas Cont'd

- ▶ In $\forall T x$; ϕ and $\exists T x$; ϕ call ϕ the scope of x bound by \forall/\exists
- Analogy between variables bound in quantified formulas and program locations declared as local variables/formal parameters

We require that all variables occur bound \Rightarrow All variable declarations are quantifier-local

Example

- ▶ \forall int *i*; \exists int *j*; *i* < *j* is a first-order formula
- ▶ \forall int *i*; \exists List *I*; *i* < *I* is ill-typed
- ▶ ∀ int i; i < j is a first-order formula if j is a constant compatible with int

Remark on Concrete Syntax

	Text book	Spin	KeY	JAVA
Negation	–	!	!	!
Conjunction	\wedge	&&	&	&&
Disjunction	\vee			
Implication	ightarrow, ightarrow	->	->	n/a
Equivalence	\leftrightarrow	<->	<->	n/a
Universal Quantifier	$\forall x; \phi$	n/a	\forall T x; ϕ	n/a
Existential Quantifier	$\exists x; \phi$	n/a	\exists T x; ϕ	n/a
Value equality	÷	==	=	==

Remark on Concrete Syntax

	Text book	Spin	KeY	JAVA
Negation	–	!	!	!
Conjunction	\wedge	&&	&	&&
Disjunction	\vee			
Implication	ightarrow, ightarrow	->	->	n/a
Equivalence	\leftrightarrow	<->	<->	n/a
Universal Quantifier	$\forall x; \phi$	n/a	\forall T x; ϕ	n/a
Existential Quantifier	$\exists x; \phi$	n/a	\exists T x; ϕ	n/a
Value equality	÷	==	=	==

For quantifiers we normally use textbook syntax and suppress type information to ease readability

For propositional connectives we use KeY syntax

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- In first-order logic we must assign meaning to:
 - variables bound in quantifiers
 - constant and function symbols
 - predicate symbols
- Each variable or function value may denote a different object
- Respect typing: int i, List 1 must denote different objects

What we need (to interpret a first-order formula)

- 1. A collection of typed universes of objects (akin to heap objects)
- 2. A mapping from variables to objects
- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

First-Order Domains/Universes

1. A collection of typed universes of objects

Definition (Universe/Domain)

A non-empty set \mathcal{D} of objects is a <u>universe</u> or <u>domain</u> Each element of \mathcal{D} has a fixed type given by $\delta : \mathcal{D} \to \mathcal{T}_d$

- Like heap objects and values in JAVA
- ▶ Notation for the domain elements type-compatible with $T \in T$: $D^T = \{d \in D \mid \delta(d) \sqsubseteq T\}$
- For each dynamic type T ∈ T_d there must be at least one domain element type-compatible with it: D^T ≠ Ø

First-Order Universes Cont'd

Example

- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

Definition (First-Order Model)

Let \mathcal{D} be a domain with typing function δ Let f be declared as T $f(T_1, \ldots, T_r)$; Let p be declared as $p(T_1, \ldots, T_r)$; Let $\mathcal{I}(f) : \mathcal{D}^{T_1} \times \cdots \times \mathcal{D}^{T_r} \to \mathcal{D}^T$ Let $\mathcal{I}(p) \subseteq \mathcal{D}^{T_1} \times \cdots \times \mathcal{D}^{T_r}$

Then $\mathcal{M} = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order model

First-Order Models Cont'd

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$\mathcal{I}(i)$	= 17		
$\mathcal{I}(j)$	= 17	$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
I(obj) = 0	(2,2)	F
	$\tau(c)$	(2,17)	Т
Dine	$\mathcal{L}(t)$	(17,2)	F
2	2	(17, 17)	F
17	2		LJ

One of uncountably many possible first-order models!

Semantics of Reserved Signature Symbols

Definition

• Equality symbol \doteq declared as \doteq (\top , \top)

Model is fixed as $\mathcal{I}(\doteq) = \{(d, d) \mid d \in \mathcal{D}\}$ "Referential Equality" (holds if arguments refer to identical object) Exercise: write down the predicate table for example domain

▶ Type predicate symbol $\equiv T$ for any T, declared as $\equiv T(\top)$

 $\mathcal{I}(\in T) = \mathcal{D}^T$

Exercise: what is $\mathcal{I}(\equiv Object)$?

▶ Type cast symbol (*T*) for each *T*, declared as $T(T)(\top)$

Casts that succeed $(\delta(x) \sqsubseteq T)$: $\mathcal{I}((T))(x) = x$ identity Casts that do not succeed: $\mathcal{I}((T))(x) = d$ arb. fixed $d \in \mathcal{D}^T$ Exercise: what is $\mathcal{I}((int))(17)$? Signature Symbols vs. Domain Elements

- Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain
- ▶ As in JAVA: identity and memory layout of values/objects hidden
- Think of a first-order model as a "heap" of first-order logic

Example

```
Signature: Object obj1, obj2;
Domain: \mathcal{D} = \{o\}
```

In this model, necessarily $\mathcal{I}(obj1) = \mathcal{I}(obj2) = o$

Effect similar to aliasing in JAVA with reference types

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type T then $\beta(x) \in D^T$

Definition (Modified Variable Assignment)

Let y be variable of type T, β variable assignment, $d \in \mathcal{D}^T$:

$$\beta_y^d(x) := \begin{cases} \beta(x) & x \neq y \\ d & x = y \end{cases}$$

Semantic Evaluation of Terms

Given a first-order model \mathcal{M} and a variable assignment β it is possible to evaluate first-order terms under \mathcal{M} and β

Analogy

Evaluating an expression in a programming language with respect to a given heap (\mathcal{M}) and binding of local variables (β)

Definition (Valuation of Terms)

 $val_{\mathcal{M},\beta}$: Term $\rightarrow \mathcal{D}$ such that $val_{\mathcal{M},\beta}(t) \in \mathcal{D}^{\mathcal{T}}$ for $t \in \text{Term}_{\mathcal{T}}$:

►
$$val_{\mathcal{M},\beta}(x) = \beta(x)$$
 (recall that β respects typing)

$$\blacktriangleright val_{\mathcal{M},\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{\mathcal{M},\beta}(t_1),\ldots,val_{\mathcal{M},\beta}(t_r))$$

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; short j; int f(int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short Variables: Object obj; int x;

$\mathcal{T}(\mathfrak{i}) = 17$	$\mathcal{D}^{\mathbf{int}}$	$\mathcal{I}(\mathtt{f})$	Var	β
$\mathcal{I}(1) = 17$ $\mathcal{I}(1) = 17$	2	17	obj	0
$\mathcal{I}(J) = II$	17	2	x	17

- ► $val_{\mathcal{M},\beta}(f(f(i)))$?
- $val_{\mathcal{M},\beta}(x)$?
- ▶ val_{M,β}((int)obj) ?

Semantic Evaluation of Formulas

Formulas are true or false A validity relation is more convenient than a function

Definition (Validity Relation for Formulas) $\mathcal{M}, \beta \models \phi$ for $\phi \in For \ ``\mathcal{M}, \beta$ models ϕ '' • $\mathcal{M}, \beta \models p(t_1, \dots, t_r)$ iff $(val_{\mathcal{M},\beta}(t_1), \dots, val_{\mathcal{M},\beta}(t_r)) \in \mathcal{I}(p)$ • $\mathcal{M}, \beta \models \phi \& \psi$ iff $\mathcal{M}, \beta \models \phi$ and $\mathcal{M}, \beta \models \psi$ • \dots as in propositional logic • $\mathcal{M}, \beta \models \forall T x; \phi$ iff $\mathcal{M}, \beta_x^d \models \phi$ for all $d \in \mathcal{D}^T$ • $\mathcal{M}, \beta \models \exists T x; \phi$ iff $\mathcal{M}, \beta_x^d \models \phi$ for at least one $d \in \mathcal{D}^T$ Semantic Evaluation of Formulas Cont'd

Example

Signature: short j; int f(int); Object obj; <(int,int); $D = \{17, 2, o\}$ where all numbers are short

$\mathcal{I}(j)$	= 17	$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
⊥(obj) = 0	(2,2)	F
\mathcal{D}^{int}	$\mathcal{I}(f)$	(2,17)	Т
2	2	(17,2)	F
17	2	(17, 17)	F

2

Semantic Notions

Definition (Satisfiability, Truth, Validity)

 $\begin{array}{lll} \mathcal{M}, \beta \models \phi & (\phi \text{ is satisfiable}) \\ \mathcal{M} \models \phi & \text{iff for all } \beta : & \mathcal{M}, \beta \models \phi & (\phi \text{ is true in } \mathcal{M}) \\ \models \phi & \text{iff for all } \mathcal{M} : & \mathcal{M} \models \phi & (\phi \text{ is valid}) \end{array}$

Closed formulas that are satisfiable are also true: one top-level notion

Semantic Notions

Definition (Satisfiability, Truth, Validity)

 $\begin{array}{lll} \mathcal{M}, \beta \models \phi & (\phi \text{ is satisfiable}) \\ \mathcal{M} \models \phi & \text{iff for all } \beta : & \mathcal{M}, \beta \models \phi & (\phi \text{ is true in } \mathcal{M}) \\ \models \phi & \text{iff for all } \mathcal{M} : & \mathcal{M} \models \phi & (\phi \text{ is valid}) \end{array}$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- f(j) < j is true in \mathcal{M}
- ▶ $\exists int x; i \doteq x is valid$
- ▶ $\exists int x; !(x \doteq x) is not satisfiable$

Untyped First-Order Logic

Most logic textbooks introduce untyped logic

How to obtain untyped logic as a special case

- Minimal Type Hierarchy: $\mathcal{T} = \{\perp, \top\}$
- $\mathcal{D} = \mathcal{D}^{\top} \neq \emptyset$: only one populated type \top , drop all typing info
- Signature merely specifies arity of functions and predicates: Write f/1, < /2, i/0, etc.
- Untyped logic is suitable whenever we model a uniform domain
- Typical applications: pure mathematics such as algebra

Untyped First-Order Logic Cont'd

Example (Axiomatization of a group in first-order logic)

Signature Σ_G : FSym = { $\circ/2$, $\mathbf{e}/0$ }, PSym = { $\doteq/2$ } Let *G* be the following formulas:

Left identity
$$\forall x; \mathbf{e} \circ x \doteq x$$
Left inverse $\forall x; \exists y; y \circ x \doteq \mathbf{e}$ Associativity $\forall x; \forall y; \forall z; (x \circ y) \circ z \doteq x \circ (y \circ z)$

Let ϕ be Σ_G -formula. Whenever $\models G \rightarrow \phi$, then ϕ is a theorem of group theory

Example (Strict partial order)

 $PSym = \{ < /2 \}$

Irreflexivity $\forall x$; !(x < x)Asymmetry $\forall x; \forall y; (x < y \rightarrow !(y < x))$ Transitivity $\forall x; \forall y; \forall z;$ $(x < y \& y < z \rightarrow x < z)$

Summary and Outlook

Summary

- First-order formulas defined over a signature of typed symbols
- Hierarchical OO type system with abstract and dynamic types
- Quantification over variables, no "free" variables in formulas
- Semantic domain like objects in a JAVA heap
- First-order model assigns semantic value to terms and formulas
- Semantic notions satisfiability and validity

Summary and Outlook

Summary

- First-order formulas defined over a signature of typed symbols
- Hierarchical OO type system with abstract and dynamic types
- Quantification over variables, no "free" variables in formulas
- Semantic domain like objects in a JAVA heap
- First-order model assigns semantic value to terms and formulas
- Semantic notions satisfiability and validity

Semantic evaluation is not feasible in practice

- \blacktriangleright There is an ∞ (even: uncountable) number of first-order models
- \blacktriangleright Evaluation of quantified formula may involve ∞ number of cases
- Next goal: a syntactic calculus allowing mechanical validity checking

KeY Book Verification of Object-Oriented Software (see course web page), Chapter 2: First-Order Logic

Fitting First-Order Logic and Automated Theorem Proving, 2nd edn., Springer 1996

Huth & Ryan Logic in Computer Science, 2nd edn., Cambridge University Press, 2004