
Formal Specification and Verification
Java Modeling Language

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at
Chalmers University, Göteborg

Formal Specification and Verification: Java Modeling Language B. Beckert 1 / 1

Road-map

Deductive Verification of Java source code

1. foundations: proving in first-order logic (done)

2. specifying Java programs (comes now)

3. proving Java programs correct (later)

Formal Specification and Verification: Java Modeling Language B. Beckert 2 / 1

Road-map

Deductive Verification of Java source code

1. foundations: proving in first-order logic (done)

2. specifying Java programs (comes now)

3. proving Java programs correct (later)

Formal Specification and Verification: Java Modeling Language B. Beckert 2 / 1

Road-map

Deductive Verification of Java source code

1. foundations: proving in first-order logic (done)

2. specifying Java programs (comes now)

3. proving Java programs correct (later)

Formal Specification and Verification: Java Modeling Language B. Beckert 2 / 1

Road-map

Deductive Verification of Java source code

1. foundations: proving in first-order logic (done)

2. specifying Java programs (comes now)

3. proving Java programs correct (later)

Formal Specification and Verification: Java Modeling Language B. Beckert 2 / 1

What kind of Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification—contracts among implementers on various levels:

I application level ↔ application level

I application level ↔ library level

I library level ↔ library level

Formal Specification and Verification: Java Modeling Language B. Beckert 3 / 1

What kind of Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification—contracts among implementers on various levels:

I application level ↔ application level

I application level ↔ library level

I library level ↔ library level

Formal Specification and Verification: Java Modeling Language B. Beckert 3 / 1

What kind of Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification—contracts among implementers on various levels:

I application level ↔ application level

I application level ↔ library level

I library level ↔ library level

Formal Specification and Verification: Java Modeling Language B. Beckert 3 / 1

Unit Specifications

in the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

Formal Specification and Verification: Java Modeling Language B. Beckert 4 / 1

Unit Specifications

in the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

Formal Specification and Verification: Java Modeling Language B. Beckert 4 / 1

Unit Specifications

in the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

Formal Specification and Verification: Java Modeling Language B. Beckert 4 / 1

Unit Specifications

in the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I pre-state and post-state

accessible part of pre/post-state

Formal Specification and Verification: Java Modeling Language B. Beckert 4 / 1

Unit Specifications

in the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

Formal Specification and Verification: Java Modeling Language B. Beckert 4 / 1

Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology

contract between caller and callee of method

callee guarantees certain outcome provided caller guarantees prerequisites

Formal Specification and Verification: Java Modeling Language B. Beckert 5 / 1

Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology

contract between caller and callee of method

callee guarantees certain outcome provided caller guarantees prerequisites

Formal Specification and Verification: Java Modeling Language B. Beckert 5 / 1

Running Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;
private int wrongPINCounter = 0;
private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }
public void enterPIN (int pin) { ... }
public int accountBalance () { ... }
public int withdraw (int amount) { ... }
public void ejectCard () { ... }

}

Formal Specification and Verification: Java Modeling Language B. Beckert 7 / 1

Informal Specification

very informal Specification of ‘enterPIN (int pin)’:

Enter the PIN that belongs to the currently inserted bank card
into the ATM. If a wrong PIN is entered three times in a row,
the card is confiscated. After having entered the correct PIN,
the customer is regarded is authenticated.

Formal Specification and Verification: Java Modeling Language B. Beckert 8 / 1

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Formal Specification and Verification: Java Modeling Language B. Beckert 9 / 1

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Formal Specification and Verification: Java Modeling Language B. Beckert 9 / 1

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Formal Specification and Verification: Java Modeling Language B. Beckert 9 / 1

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Formal Specification and Verification: Java Modeling Language B. Beckert 9 / 1

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Formal Specification and Verification: Java Modeling Language B. Beckert 9 / 1

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Formal Specification and Verification: Java Modeling Language B. Beckert 9 / 1

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Formal Specification and Verification: Java Modeling Language B. Beckert 9 / 1

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. Terminating state may be reached by normal or by abrupt
termination (cf. exceptions).

non-termination and abrupt termination ⇒ next lecture

Formal Specification and Verification: Java Modeling Language B. Beckert 10 / 1

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. Terminating state may be reached by normal or by abrupt
termination (cf. exceptions).

non-termination and abrupt termination ⇒ next lecture

Formal Specification and Verification: Java Modeling Language B. Beckert 10 / 1

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. Terminating state may be reached by normal or by abrupt
termination (cf. exceptions).

non-termination and abrupt termination ⇒ next lecture

Formal Specification and Verification: Java Modeling Language B. Beckert 10 / 1

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision.
I eventually: automation of program analysis of various kinds:

I static checking
I program verification

Formal Specification and Verification: Java Modeling Language B. Beckert 11 / 1

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision.
I eventually: automation of program analysis of various kinds:

I static checking
I program verification

Formal Specification and Verification: Java Modeling Language B. Beckert 11 / 1

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision.

I eventually: automation of program analysis of various kinds:
I static checking
I program verification

Formal Specification and Verification: Java Modeling Language B. Beckert 11 / 1

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision.
I eventually: automation of program analysis of various kinds:

I static checking
I program verification

Formal Specification and Verification: Java Modeling Language B. Beckert 11 / 1

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to Java

JML
is

Formal Specification and Verification: Java Modeling Language B. Beckert 12 / 1

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java

Formal Specification and Verification: Java Modeling Language B. Beckert 12 / 1

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java + FO Logic

+ pre/post-conditions, invariants + more ...

Formal Specification and Verification: Java Modeling Language B. Beckert 12 / 1

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java + FO Logic + pre/post-conditions, invariants

+ more ...

Formal Specification and Verification: Java Modeling Language B. Beckert 12 / 1

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java + FO Logic + pre/post-conditions, invariants + more ...

Formal Specification and Verification: Java Modeling Language B. Beckert 12 / 1

JML Annotations

JML extends Java by annotations.

JML annotations include:

4 preconditions

4 postconditions

4 class invariants

4 additional modifiers

8 ‘specification-only’ fields

8 ‘specification-only’ methods

4 loop invariants

4 ...

8 ...

4: in this course, 8: not in this course

Formal Specification and Verification: Java Modeling Language B. Beckert 13 / 1

JML/Java integration

JML annotations are attached to Java programs
by

writing them directly into the Java source code files!

to not confuse Java compiler:

JML annotations live in in special comments,
ignored by Java, recognized by JML.

Formal Specification and Verification: Java Modeling Language B. Beckert 14 / 1

JML/Java integration

JML annotations are attached to Java programs
by

writing them directly into the Java source code files!

to not confuse Java compiler:

JML annotations live in in special comments,
ignored by Java, recognized by JML.

Formal Specification and Verification: Java Modeling Language B. Beckert 14 / 1

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

...

Formal Specification and Verification: Java Modeling Language B. Beckert 16 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

Everything between /* and */ is invisible for Java.

Formal Specification and Verification: Java Modeling Language B. Beckert 18 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Java Modeling Language B. Beckert 20 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Java Modeling Language B. Beckert 20 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Java Modeling Language B. Beckert 20 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Java Modeling Language B. Beckert 20 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

public void enterPIN (int pin) {
if (....

Formal Specification and Verification: Java Modeling Language B. Beckert 22 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/
public void enterPIN (int pin) {

if (....

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Formal Specification and Verification: Java Modeling Language B. Beckert 24 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/
public void enterPIN (int pin) {

if (....

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Formal Specification and Verification: Java Modeling Language B. Beckert 24 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/
public void enterPIN (int pin) {

if (....

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Formal Specification and Verification: Java Modeling Language B. Beckert 24 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

In this course: mostly public specifications.

Formal Specification and Verification: Java Modeling Language B. Beckert 26 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

In this course: mostly public specifications.

Formal Specification and Verification: Java Modeling Language B. Beckert 26 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

In this course: mostly public specifications.

Formal Specification and Verification: Java Modeling Language B. Beckert 26 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

Each keyword ending on behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception,

if the caller guarantees all preconditions of this specification case.

Formal Specification and Verification: Java Modeling Language B. Beckert 28 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

Each keyword ending on behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception,
if the caller guarantees all preconditions of this specification case.

Formal Specification and Verification: Java Modeling Language B. Beckert 28 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean Java expressions

in general:
preconditions are boolean JML expressions (see below)

Formal Specification and Verification: Java Modeling Language B. Beckert 30 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean Java expressions

in general:
preconditions are boolean JML expressions (see below)

Formal Specification and Verification: Java Modeling Language B. Beckert 30 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean Java expressions

in general:
preconditions are boolean JML expressions (see below)

Formal Specification and Verification: Java Modeling Language B. Beckert 30 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

specifies only the case where both preconditions are true in pre-state

the above is equivalent to:

/*@ public normal_behavior

@ requires (!customerAuthenticated
@ && pin == insertedCard.correctPIN);
@ ensures customerAuthenticated;
@*/

Formal Specification and Verification: Java Modeling Language B. Beckert 32 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean Java expressions

in general:
postconditions are boolean JML expressions (see below)

Formal Specification and Verification: Java Modeling Language B. Beckert 34 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean Java expressions

in general:
postconditions are boolean JML expressions (see below)

Formal Specification and Verification: Java Modeling Language B. Beckert 34 / 1

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean Java expressions

in general:
postconditions are boolean JML expressions (see below)

Formal Specification and Verification: Java Modeling Language B. Beckert 34 / 1

JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@
@ also

@
@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter < 2;
@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;
@*/

public void enterPIN (int pin) {
if (....

Formal Specification and Verification: Java Modeling Language B. Beckert 36 / 1

JML by Example

/*@ <spec-case1> also

@
@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter < 2;
@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;
@*/

public void enterPIN (int pin) { ...

for the first time, JML expression not a Java expression

\old(E) means: E evaluated in the pre-state of enterPIN.

E can be any (arbitrarily complex) Java/JML expression.

Formal Specification and Verification: Java Modeling Language B. Beckert 38 / 1

JML by Example

/*@ <spec-case1> also <spec-case2> also

@
@ public normal_behavior

@ requires insertedCard != null;
@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter >= 2;
@ ensures insertedCard == null;
@ ensures \old(insertedCard).invalid;
@*/

public void enterPIN (int pin) { ...

two postconditions state that:

‘Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid’

Formal Specification and Verification: Java Modeling Language B. Beckert 40 / 1

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard
customerAuthenticated
wrongPINCounter

what happens with insertCard and wrongPINCounter?

Formal Specification and Verification: Java Modeling Language B. Beckert 42 / 1

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard
customerAuthenticated
wrongPINCounter

what happens with insertCard and wrongPINCounter?

Formal Specification and Verification: Java Modeling Language B. Beckert 42 / 1

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard
customerAuthenticated
wrongPINCounter

what happens with insertCard and wrongPINCounter?

Formal Specification and Verification: Java Modeling Language B. Beckert 42 / 1

Completing Specification Cases

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@ ensures insertedCard == \old(insertedCard);
@ ensures wrongPINCounter == \old(wrongPINCounter);

Formal Specification and Verification: Java Modeling Language B. Beckert 44 / 1

Completing Specification Cases

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter < 2;
@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;
@ ensures insertedCard == \old(insertedCard);
@ ensures customerAuthenticated
@ == \old(customerAuthenticated);

Formal Specification and Verification: Java Modeling Language B. Beckert 46 / 1

Completing Specification Cases

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;
@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter >= 2;
@ ensures insertedCard == null;
@ ensures \old(insertedCard).invalid;
@ ensures customerAuthenticated
@ == \old(customerAuthenticated);
@ ensures wrongPINCounter == \old(wrongPINCounter);

Formal Specification and Verification: Java Modeling Language B. Beckert 48 / 1

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Formal Specification and Verification: Java Modeling Language B. Beckert 50 / 1

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Formal Specification and Verification: Java Modeling Language B. Beckert 50 / 1

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Formal Specification and Verification: Java Modeling Language B. Beckert 50 / 1

Specification Cases with Assignable

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@ assignable customerAuthenticated;

Formal Specification and Verification: Java Modeling Language B. Beckert 52 / 1

Specification Cases with Assignable

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter < 2;
@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;
@ assignable wrongPINCounter;

Formal Specification and Verification: Java Modeling Language B. Beckert 54 / 1

Specification Cases with Assignable

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;
@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter >= 2;
@ ensures insertedCard == null;
@ ensures \old(insertedCard).invalid;
@ assignable wrongPINCounter,
@ insertedCard,
@ insertedCard.invalid;

Formal Specification and Verification: Java Modeling Language B. Beckert 56 / 1

JML Modifiers

JML extends the Java modifiers by additional modifiers.

The most important ones are:

I spec_public

I pure

Aim: admitting more class elements to be used in JML expressions.

Formal Specification and Verification: Java Modeling Language B. Beckert 57 / 1

JML Modifiers: spec_public

in (enterPIN) example, pre/post-conditions made heavy use of class
fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/ int wrongPINCounter = 0;
private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Bug note:
in KeY 1.4, spec_public fields are only visible within their class)

Formal Specification and Verification: Java Modeling Language B. Beckert 59 / 1

JML Modifiers: spec_public

in (enterPIN) example, pre/post-conditions made heavy use of class
fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/ int wrongPINCounter = 0;
private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Bug note:
in KeY 1.4, spec_public fields are only visible within their class)

Formal Specification and Verification: Java Modeling Language B. Beckert 59 / 1

JML Modifiers: spec_public

in (enterPIN) example, pre/post-conditions made heavy use of class
fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/ int wrongPINCounter = 0;
private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Bug note:
in KeY 1.4, spec_public fields are only visible within their class)

Formal Specification and Verification: Java Modeling Language B. Beckert 59 / 1

JML Modifiers: spec_public

in (enterPIN) example, pre/post-conditions made heavy use of class
fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/ int wrongPINCounter = 0;
private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(different solution: use specification-only fields)

(Bug note:
in KeY 1.4, spec_public fields are only visible within their class)

Formal Specification and Verification: Java Modeling Language B. Beckert 59 / 1

JML Modifiers: spec_public

in (enterPIN) example, pre/post-conditions made heavy use of class
fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/ int wrongPINCounter = 0;
private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Bug note:
in KeY 1.4, spec_public fields are only visible within their class)

Formal Specification and Verification: Java Modeling Language B. Beckert 59 / 1

JML Modifiers: pure

It can be handy to use method calls in JML annotations.
Examples:

I o1.equals(o2)

I li.contains(elem)

I li1.max() < li2.min()

allowed if, and only if method is guaranteed to have no side effects

In JML, you can specify methods to be ‘pure’:

public /*@ pure @*/ int max() { ...

The ‘pure’ modifier puts an additional obligation on the implementer
(not to cause side effects), but allows to use the method in annotations.

Formal Specification and Verification: Java Modeling Language B. Beckert 61 / 1

JML Expressions 6= Java Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean Java expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)

I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

Formal Specification and Verification: Java Modeling Language B. Beckert 63 / 1

JML Expressions 6= Java Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean Java expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

Formal Specification and Verification: Java Modeling Language B. Beckert 63 / 1

Beyond boolean Java expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

Formal Specification and Verification: Java Modeling Language B. Beckert 64 / 1

Beyond boolean Java expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

Formal Specification and Verification: Java Modeling Language B. Beckert 64 / 1

Beyond boolean Java expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

Formal Specification and Verification: Java Modeling Language B. Beckert 64 / 1

Beyond boolean Java expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

Formal Specification and Verification: Java Modeling Language B. Beckert 64 / 1

First-order Logic in JML Expressions

JML boolean expressions extend Java boolean expressions by:

I implication

I equivalence

I quantification

Formal Specification and Verification: Java Modeling Language B. Beckert 65 / 1

First-order Logic in JML Expressions

JML boolean expressions extend Java boolean expressions by:

I implication

I equivalence

I quantification

Formal Specification and Verification: Java Modeling Language B. Beckert 65 / 1

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean Java expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a is true”)
I (\exists t x; a) (“there exists x of type t such that a”)

I (\forall t x; a; b) (“for all x of type t fulfilling a, b is true”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

Formal Specification and Verification: Java Modeling Language B. Beckert 67 / 1

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean Java expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a is true”)
I (\exists t x; a) (“there exists x of type t such that a”)
I (\forall t x; a; b) (“for all x of type t fulfilling a, b is true”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

Formal Specification and Verification: Java Modeling Language B. Beckert 67 / 1

JML Quantifiers

in

(\forall t x; a; b)

(\exists t x; a; b)

a called “range predicate”

those forms are redundant:

(\forall t x; a; b)
equivalent to

(\forall t x; a ==> b)

(\exists t x; a; b)
equivalent to

(\exists t x; a && b)

Formal Specification and Verification: Java Modeling Language B. Beckert 69 / 1

JML Quantifiers

in

(\forall t x; a; b)

(\exists t x; a; b)

a called “range predicate”

those forms are redundant:

(\forall t x; a; b)
equivalent to

(\forall t x; a ==> b)

(\exists t x; a; b)
equivalent to

(\exists t x; a && b)

Formal Specification and Verification: Java Modeling Language B. Beckert 69 / 1

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

Formal Specification and Verification: Java Modeling Language B. Beckert 71 / 1

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

Formal Specification and Verification: Java Modeling Language B. Beckert 71 / 1

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j;

0<=i && i<j && j<10; arr[i] <= arr[j])

Formal Specification and Verification: Java Modeling Language B. Beckert 71 / 1

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10;

arr[i] <= arr[j])

Formal Specification and Verification: Java Modeling Language B. Beckert 71 / 1

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

Formal Specification and Verification: Java Modeling Language B. Beckert 71 / 1

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0<=i && i<arr.length; arr[i] <= 2)

Formal Specification and Verification: Java Modeling Language B. Beckert 73 / 1

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i;

0<=i && i<arr.length; arr[i] <= 2)

Formal Specification and Verification: Java Modeling Language B. Beckert 73 / 1

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0<=i && i<arr.length;

arr[i] <= 2)

Formal Specification and Verification: Java Modeling Language B. Beckert 73 / 1

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0<=i && i<arr.length; arr[i] <= 2)

Formal Specification and Verification: Java Modeling Language B. Beckert 73 / 1

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0<=i && i<arr.length; m >= arr[i])

is this enough?
arr.length>0 ==>

(\exists int i; 0<=i && i<arr.length; m == arr[i])

Formal Specification and Verification: Java Modeling Language B. Beckert 75 / 1

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0<=i && i<arr.length; m >= arr[i])

is this enough?

arr.length>0 ==>

(\exists int i; 0<=i && i<arr.length; m == arr[i])

Formal Specification and Verification: Java Modeling Language B. Beckert 75 / 1

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0<=i && i<arr.length; m >= arr[i])

is this enough?

arr.length>0 ==>

(\exists int i; 0<=i && i<arr.length; m == arr[i])

Formal Specification and Verification: Java Modeling Language B. Beckert 75 / 1

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0<=i && i<arr.length; m >= arr[i])

is this enough?
arr.length>0 ==>

(\exists int i; 0<=i && i<arr.length; m == arr[i])

Formal Specification and Verification: Java Modeling Language B. Beckert 75 / 1

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0<=i && i<arr.length; m >= arr[i])

is this enough?

arr.length>0 ==>

(\exists int i; 0<=i && i<arr.length; m == arr[i])

Formal Specification and Verification: Java Modeling Language B. Beckert 75 / 1

Using Quantified JML expressions

How to express:

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0<=i && i<maxAccountNumber;
accountProxies[i].accountNumber == i)

Formal Specification and Verification: Java Modeling Language B. Beckert 77 / 1

Using Quantified JML expressions

How to express:

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0<=i && i<maxAccountNumber;
accountProxies[i].accountNumber == i)

Formal Specification and Verification: Java Modeling Language B. Beckert 77 / 1

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;
\created(p1) && \created(p2);
p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

Formal Specification and Verification: Java Modeling Language B. Beckert 79 / 1

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;
\created(p1) && \created(p2);
p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

Formal Specification and Verification: Java Modeling Language B. Beckert 79 / 1

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;
\created(p1) && \created(p2);
p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

Formal Specification and Verification: Java Modeling Language B. Beckert 79 / 1

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;
\created(p1) && \created(p2);
p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

Formal Specification and Verification: Java Modeling Language B. Beckert 79 / 1

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;
\created(p1) && \created(p2);
p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

Formal Specification and Verification: Java Modeling Language B. Beckert 79 / 1

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;
\created(p1) && \created(p2);
p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY?

(⇒ coming lecture)

Formal Specification and Verification: Java Modeling Language B. Beckert 79 / 1

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;
\created(p1) && \created(p2);
p1 != p2 ==> p1.cardNumber != p2.cardNumber)

note:

I JML quantifiers range also over non-created objects

I same for quantifiers in KeY!

I in JML, restrict to created objects with \created

I in KeY? (⇒ coming lecture)

Formal Specification and Verification: Java Modeling Language B. Beckert 79 / 1

Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {
public final int limit;
private int arr[];
private int size = 0;

public LimitedIntegerSet(int limit) {
this.limit = limit;
this.arr = new int[limit];

}
public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
Formal Specification and Verification: Java Modeling Language B. Beckert 81 / 1

Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {
public final int limit;
private /*@ spec_public @*/ int arr[];
private /*@ spec_public @*/ int size = 0;

public LimitedIntegerSet(int limit) {
this.limit = limit;
this.arr = new int[limit];

}
public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

// other methods

}
Formal Specification and Verification: Java Modeling Language B. Beckert 83 / 1

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on state

how to specify result value?

Formal Specification and Verification: Java Modeling Language B. Beckert 85 / 1

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on state

how to specify result value?

Formal Specification and Verification: Java Modeling Language B. Beckert 85 / 1

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on state

how to specify result value?

Formal Specification and Verification: Java Modeling Language B. Beckert 85 / 1

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result ==

(\exists int i;
@ 0 <= i && i < size;
@ arr[i] == elem);
@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 87 / 1

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;
@

0 <= i && i < size;
@ arr[i] == elem);
@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 87 / 1

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;
@ 0 <= i && i < size;
@

arr[i] == elem);
@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 87 / 1

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;
@ 0 <= i && i < size;
@ arr[i] == elem);
@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 87 / 1

Specifying add() (spec-case1)

/*@ public normal_behavior

@ requires size < limit && !contains(elem);
@ ensures \result == true;
@ ensures contains(elem);
@ ensures (\forall int e;
@ e != elem;
@ contains(e) <==> \old(contains(e)));
@ ensures size == \old(size) + 1;
@
@ also

@
@ <spec-case2>

@*/
public boolean add(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 89 / 1

Specifying add() (spec-case2)

/*@ public normal_behavior

@
@ <spec-case1>

@
@ also

@
@ public normal_behavior

@ requires (size == limit) || contains(elem);
@ ensures \result == false;
@ ensures (\forall int e;
@ contains(e) <==> \old(contains(e)));
@ ensures size == \old(size);
@*/

public boolean add(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 91 / 1

Specifying remove()

/*@ public normal_behavior

@ ensures !contains(elem);
@ ensures (\forall int e;
@ e != elem;
@ contains(e) <==> \old(contains(e)));
@ ensures \old(contains(elem))
@ ==> size == \old(size) - 1;
@ ensures !\old(contains(elem))
@ ==> size == \old(size);
@*/

public void remove(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 93 / 1

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

Formal Specification and Verification: Java Modeling Language B. Beckert 94 / 1

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data?

, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

Formal Specification and Verification: Java Modeling Language B. Beckert 94 / 1

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

Formal Specification and Verification: Java Modeling Language B. Beckert 94 / 1

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:

I consistency of redundant data representations (like indexing)

I restrictions for efficiency (like sortedness)

data constraints are global:
all methods must preserve them

Formal Specification and Verification: Java Modeling Language B. Beckert 94 / 1

Consider LimitedSortedIntegerSet

public class LimitedSortedIntegerSet {
public final int limit;
private int arr[];
private int size = 0;

public LimitedSortedIntegerSet(int limit) {
this.limit = limit;
this.arr = new int[limit];

}
public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
Formal Specification and Verification: Java Modeling Language B. Beckert 96 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Consequence of Sortedness for Implementations

method contains

I can employ binary search (logarithmic complexity)

I why is that sufficient?

I it assumes sortedness in pre-state

method add

I searches first index with bigger element, inserts just before that

I thereby tries to establish sortedness in post-state

I why is that sufficient?

I it assumes sortedness in pre-state

method remove

I (accordingly)

Formal Specification and Verification: Java Modeling Language B. Beckert 97 / 1

Specifying Sortedness with JML

recall class fields:

public final int limit;
private int arr[];
private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

Formal Specification and Verification: Java Modeling Language B. Beckert 99 / 1

Specifying Sortedness with JML

recall class fields:

public final int limit;
private int arr[];
private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

Formal Specification and Verification: Java Modeling Language B. Beckert 99 / 1

Specifying Sortedness with JML

recall class fields:

public final int limit;
private int arr[];
private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

Formal Specification and Verification: Java Modeling Language B. Beckert 99 / 1

Specifying Sortedness with JML

recall class fields:

public final int limit;
private int arr[];
private int size = 0;

sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(what’s the value of this if size < 2?)

but where in the specification does the red expression go?

Formal Specification and Verification: Java Modeling Language B. Beckert 99 / 1

Specifying Sorted contains()

can assume sortedness of pre-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@ ensures \result == (\exists int i;
@ 0 <= i && i < size;
@ arr[i] == elem);
@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of post-state trivially ensured

Formal Specification and Verification: Java Modeling Language B. Beckert 101 / 1

Specifying Sorted contains()

can assume sortedness of pre-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@ ensures \result == (\exists int i;
@ 0 <= i && i < size;
@ arr[i] == elem);
@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of post-state trivially ensured

Formal Specification and Verification: Java Modeling Language B. Beckert 101 / 1

Specifying Sorted contains()

can assume sortedness of pre-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@ ensures \result == (\exists int i;
@ 0 <= i && i < size;
@ arr[i] == elem);
@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of post-state trivially ensured

Formal Specification and Verification: Java Modeling Language B. Beckert 101 / 1

Specifying Sorted remove()

can assume sortedness of pre-state
must ensure sortedness of post-state

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@ ensures !contains(elem);
@ ensures (\forall int e;
@ e != elem;
@ contains(e) <==> \old(contains(e)));
@ ensures \old(contains(elem))
@ ==> size == \old(size) - 1;
@ ensures !\old(contains(elem))
@ ==> size == \old(size);
@ ensures (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@*/

public void remove(int elem) {/*...*/}
Formal Specification and Verification: Java Modeling Language B. Beckert 103 / 1

Specifying Sorted add() (spec-case1)

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@ requires size < limit && !contains(elem);
@ ensures \result == true;
@ ensures contains(elem);
@ ensures (\forall int e;
@ e != elem;
@ contains(e) <==> \old(contains(e)));
@ ensures size == \old(size) + 1;
@ ensures (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@
@ also <spec-case2>

@*/
public boolean add(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 105 / 1

Specifying Sorted add() (spec-case2)

/*@ public normal_behavior

@
@ <spec-case1> also

@
@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@ requires (size == limit) || contains(elem);
@ ensures \result == false;
@ ensures (\forall int e;
@ contains(e) <==> \old(contains(e)));
@ ensures size == \old(size);
@ ensures (\forall int i; 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@*/

public boolean add(int elem) {/*...*/}

Formal Specification and Verification: Java Modeling Language B. Beckert 107 / 1

Factor out Sortedness

so far: ‘sortedness’ has swamped our specification

we can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

Formal Specification and Verification: Java Modeling Language B. Beckert 108 / 1

Factor out Sortedness

so far: ‘sortedness’ has swamped our specification

we can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

Formal Specification and Verification: Java Modeling Language B. Beckert 108 / 1

Factor out Sortedness

so far: ‘sortedness’ has swamped our specification

we can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

Formal Specification and Verification: Java Modeling Language B. Beckert 108 / 1

JML Class Invariant

public class LimitedSortedIntegerSet {

public final int limit;

/*@ public invariant (\forall int i;
@ 0 < i && i < size;
@ arr[i-1] <= arr[i]);
@*/

private /*@ spec_public @*/ int arr[];
private /*@ spec_public @*/ int size = 0;

// constructor and methods,

// without sortedness in pre/post-conditions

}

Formal Specification and Verification: Java Modeling Language B. Beckert 110 / 1

JML Class Invariant

I JML class invariant can be places anywhere in class

I (contrast: method contract must be in front of its method)

I custom to place class invariant in front of fields it talks about

Formal Specification and Verification: Java Modeling Language B. Beckert 111 / 1

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

instance is default
if instance or static is omitted ⇒ instance invariant!

Formal Specification and Verification: Java Modeling Language B. Beckert 112 / 1

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

instance is default
if instance or static is omitted ⇒ instance invariant!

Formal Specification and Verification: Java Modeling Language B. Beckert 112 / 1

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

instance is default
if instance or static is omitted ⇒ instance invariant!

Formal Specification and Verification: Java Modeling Language B. Beckert 112 / 1

Instance vs. Static Invariants

instance invariants
can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘self’, like ‘self.size’)
JML syntax: instance invariant

static invariants
cannot refer to instance fields of this object
JML syntax: static invariant

both
can refer to
– static fields
– instance fields via explicit reference, like ‘o.size’

instance is default
if instance or static is omitted ⇒ instance invariant!

Formal Specification and Verification: Java Modeling Language B. Beckert 112 / 1

Static JML Invariant Example

public class BankCard {

/*@ public static invariant

@ (\forall BankCard p1, p2;
@ \created(p1) && \created(p2);
@ p1!=p2 ==> p1.cardNumber!=p2.cardNumber)
@*/

private /*@ spec_public @*/ int cardNumber;

// rest of class follows

}

Formal Specification and Verification: Java Modeling Language B. Beckert 114 / 1

Recall Specification of enterPIN()

private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/ int wrongPINCounter = 0;
private /*@ spec_public @*/ boolean customerAuthenticated

= false;

/*@ <spec-case1> also <spec-case2> also <spec-case3>

@*/
public void enterPIN (int pin) { ...

last lecture:
all 3 spec-cases were normal_behavior

Formal Specification and Verification: Java Modeling Language B. Beckert 116 / 1

Recall Specification of enterPIN()

private /*@ spec_public @*/ BankCard insertedCard = null;
private /*@ spec_public @*/ int wrongPINCounter = 0;
private /*@ spec_public @*/ boolean customerAuthenticated

= false;

/*@ <spec-case1> also <spec-case2> also <spec-case3>

@*/
public void enterPIN (int pin) { ...

last lecture:
all 3 spec-cases were normal_behavior

Formal Specification and Verification: Java Modeling Language B. Beckert 116 / 1

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

Formal Specification and Verification: Java Modeling Language B. Beckert 117 / 1

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

Formal Specification and Verification: Java Modeling Language B. Beckert 117 / 1

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

Formal Specification and Verification: Java Modeling Language B. Beckert 117 / 1

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if pre-state satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if pre-state satisfies P

keyword signals specifies post-state, depending on thrown exception

keyword signals_only limits types of thrown exception

Formal Specification and Verification: Java Modeling Language B. Beckert 117 / 1

Completing Specification of enterPIN()

/*@ <spec-case1> also <spec-case2> also <spec-case3> also

@
@ public exceptional_behavior

@ requires insertedCard==null;
@ signals_only ATMException;
@ signals (ATMException) !customerAuthenticated;
@*/

public void enterPIN (int pin) { ...

in case insertedCard==null in pre-state

I an exception must be thrown (‘exceptional_behavior’)

I it can only be an ATMException (‘signals_only’)

I method must then ensure !customerAuthenticated in post-state
(‘signals’)

Formal Specification and Verification: Java Modeling Language B. Beckert 119 / 1

Completing Specification of enterPIN()

/*@ <spec-case1> also <spec-case2> also <spec-case3> also

@
@ public exceptional_behavior

@ requires insertedCard==null;
@ signals_only ATMException;
@ signals (ATMException) !customerAuthenticated;
@*/

public void enterPIN (int pin) { ...

in case insertedCard==null in pre-state

I an exception must be thrown (‘exceptional_behavior’)

I it can only be an ATMException (‘signals_only’)

I method must then ensure !customerAuthenticated in post-state
(‘signals’)

Formal Specification and Verification: Java Modeling Language B. Beckert 119 / 1

signals_only Clause: General Case

an exceptional specification case can have one clause of the form

signals_only (E1,..., En);

where E1,..., En are exception types

Meaning:

if an exception is thrown, it is of type E1 or ... or En

Formal Specification and Verification: Java Modeling Language B. Beckert 121 / 1

signals_only Clause: General Case

an exceptional specification case can have one clause of the form

signals_only (E1,..., En);

where E1,..., En are exception types

Meaning:

if an exception is thrown, it is of type E1 or ... or En

Formal Specification and Verification: Java Modeling Language B. Beckert 121 / 1

signals Clause: General Case

an exceptional specification case can have several clauses of the form

signals (E) b;

where E is exception type, b is boolean expression

Meaning:

if an exception of type E is thrown, b holds in post condition

Formal Specification and Verification: Java Modeling Language B. Beckert 123 / 1

signals Clause: General Case

an exceptional specification case can have several clauses of the form

signals (E) b;

where E is exception type, b is boolean expression

Meaning:

if an exception of type E is thrown, b holds in post condition

Formal Specification and Verification: Java Modeling Language B. Beckert 123 / 1

Allowing Non-Termination

by default, both:

I normal_behavior

I exceptional_behavior

specification cases enforce termination

in each specification case, termination can be permitted via the clause

diverges true;

Meaning:

given the precondition of the specification case holds in pre-state,
the method may or may not terminate

Formal Specification and Verification: Java Modeling Language B. Beckert 124 / 1

Allowing Non-Termination

by default, both:

I normal_behavior

I exceptional_behavior

specification cases enforce termination

in each specification case, termination can be permitted via the clause

diverges true;

Meaning:

given the precondition of the specification case holds in pre-state,
the method may or may not terminate

Formal Specification and Verification: Java Modeling Language B. Beckert 124 / 1

Allowing Non-Termination

by default, both:

I normal_behavior

I exceptional_behavior

specification cases enforce termination

in each specification case, termination can be permitted via the clause

diverges true;

Meaning:

given the precondition of the specification case holds in pre-state,
the method may or may not terminate

Formal Specification and Verification: Java Modeling Language B. Beckert 124 / 1

Further Modifiers: non_null and nullable

JML extends the Java modifiers by further modifiers:

I class fields

I method parameters

I method return types

can be declared as

I nullable: may or may not be null

I non_null: must not be null

Formal Specification and Verification: Java Modeling Language B. Beckert 126 / 1

non_null: Examples

private /*@ spec_public non_null @*/ String name;

implicit invariant
‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

implicit precondition
‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

implicit postcondition
‘ensures \result != null;’
added to each specification case of toString

Formal Specification and Verification: Java Modeling Language B. Beckert 128 / 1

non_null is default in JML!

⇒ same effect even without explicit ‘non null’s

private /*@ spec_public @*/ String name;

implicit invariant
‘public invariant name != null;’
added to class

public void insertCard(BankCard card) {..

implicit precondition
‘requires card != null;’
added to each specification case of insertCard

public String toString()

implicit postcondition
‘ensures \result != null;’
added to each specification case of toString

Formal Specification and Verification: Java Modeling Language B. Beckert 130 / 1

nullable: Examples

To prevent such pre/post-conditions and invariants: ‘nullable’

private /*@ spec_public nullable @*/ String name;

no implicit invariant added

public void insertCard(/*@ nullable @*/ BankCard card) {..

no implicit precondition added

public /*@ nullable @*/ String toString()

no implicit postcondition added to specification cases of toString

Formal Specification and Verification: Java Modeling Language B. Beckert 132 / 1

LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedList next;
....

In JML this means:

I all elements in the list are non_null

I the list is cyclic, or infinite!

Formal Specification and Verification: Java Modeling Language B. Beckert 134 / 1

LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedList next;
....

In JML this means:

I all elements in the list are non_null

I the list is cyclic, or infinite!

Formal Specification and Verification: Java Modeling Language B. Beckert 134 / 1

LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedList next;
....

In JML this means:

I all elements in the list are non_null

I the list is cyclic, or infinite!

Formal Specification and Verification: Java Modeling Language B. Beckert 134 / 1

LinkedList: non_null or nullable?

Repair:

public class LinkedList {
private Object elem;
private /*@ nullable @*/ LinkedList next;
....

⇒ Now, the list is allowed to end somewhere!

Formal Specification and Verification: Java Modeling Language B. Beckert 136 / 1

Final Remark on non_null and nullable

non_null as default in JML is fairly new.

⇒ Not yet well reflected in literature and tools.

Formal Specification and Verification: Java Modeling Language B. Beckert 138 / 1

JML and Inheritance

All JML contracts, i.e.

I specification cases

I class invariants

are inherited down from superclasses to subclasses.

A class has to fulfill all contracts of its superclasses.

in addition, the subclass may add further specification cases,
starting with also:

/*@ also

@
@ <subclass-specific-spec-cases>

@*/
public void method () { ...

Formal Specification and Verification: Java Modeling Language B. Beckert 140 / 1

Tools

Many tools support JML (see www.eecs.ucf.edu/~leavens/JML/).
Most basic tool set:

I jml, a syntax and type checker

I jmlc, JML/Java compiler. Compile runtime assertion checks into
the code.

I jmldoc, like javadoc for Java + JML

I jmlunit, unit testing based on JML

For the lab, we do not require using the tools, but we recommend to use
jml to check the syntax.

Formal Specification and Verification: Java Modeling Language B. Beckert 142 / 1

Literature for this Lecture

essential reading:

in KeY Book A. Roth and Peter H. Schmitt: Formal Specification.
Chapter 5 only sections 5.1,5.3, In: B. Beckert, R. Hähnle, and
P. Schmitt, editors. Verification of Object-Oriented Software: The
KeY Approach, vol 4334 of LNCS. Springer, 2006.
(e-version via Chalmers Library)

further reading, all available at
www.eecs.ucf.edu/~leavens/JML/documentation.shtml:

JML Reference Manual Gary T. Leavens, Erik Poll, Curtis Clifton,
Yoonsik Cheon, Clyde Ruby, David Cok, Peter Müller, and
Joseph Kiniry.
JML Reference Manual

JML Tutorial Gary T. Leavens, Yoonsik Cheon.
Design by Contract with JML

JML Overview Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design

Formal Specification and Verification: Java Modeling Language B. Beckert 144 / 1

