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State Dependence of Formula Evaluation
Closed FOL formula is either valid or not valid wrt model M
Consider M = (D, δ, I) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Example

Executing x=3; results in M such that M |= x
.
= 3

Executing x=4; results in M such that M 6|= x
.
= 3

Need a logic to capture state before/after program execution
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Rigid versus Flexible Symbols
Signature of program logic defined as in FOL, but:
In addition there are program variables, attributes, etc.

Rigid versus Flexible

I Rigid symbols, same interpretation in all program states

I First-order variables (aka logical variables)
Used to hold initial values of program variables

I Built-in functions and predicates such as 0,1,...,+,*,...,<,...

I Non-rigid (or flexible) symbols, interpretation depends on state

Capture side effects on state during program execution

I Functions modeling program variables and attributes are flexible

Any term containing at least one flexible symbol is also flexible
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Signature of Dynamic Logic (Simple Version)

Definition (Dynamic Logic Signature)

First-order signature Σ = (PSymr , FSymr , FSymnr , α)

Rigid Predicate Symbols PSym = {>, >=, . . .}
Rigid Function Symbols FSym = {+, −, ∗, 0, 1, . . . , true, false}
Non-rigid Function Symbols FSym = {i , j , k, . . . , p, q, r , . . .}

Type hierarchy

T = {⊥, int, boolean, >} with int, boolean incomparable

Standard typing: boolean true; <(int,int);, etc.
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Variables

Definition (First-Order/Logical Variables)

Typed logical variables (rigid), declared as T x;

Program Variables

Non-rigid constants int i; boolean p used as program variables
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Terms

I First-order terms defined as in FOL

I First-order terms may contain rigid and non-rigid symbols

I FSymr ∩ FSymnr = ∅

Example

Signature for FSymnr : int j; boolean p

Variables int x ; boolean b;

I j and j+ x are flexible terms of type int

I p is a flexible term of type boolean

I x + x is a rigid term of type int

I j+ b and j + p are not well-typed
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Atomic Programs

Definition (Atomic Programs)

The atomic programs Π0 are assignments of the form j = t where:

I T j; is a program variable (flexible constant)

I t is a first-order term of type T without logical variables

Example

Signature for FSymnr : int j; boolean p

Variables int x ; boolean b;

I j=j+1, j=0 and p=false are assignments

I j=j+x contains a logical variable on the right

I x=1 contains a logical variable on the left

I j
.
=j is equality, not assignment

I p=0 is ill-typed
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Dynamic Logic Programs (Simple Version)

Definition (Program)

Inductive definition of the set of (DL) programs Π:

I If π is an atomic program, then π; is a program

I If p and q are programs, then pq is a program

I If b is a variable-free term of type boolean, p and q programs, then

i f (b) p e l se q; i f (b) p;

are programs

I If b is a variable-free term of type boolean, p a program, then

while (b) p;

is a program

Programs contain no logical variables!
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Dynamic Logic Programs Cont’d

Example (Admissible Program)

Signature for FSymnr : int r; int i; int n;

Signature for FSymr : int 0; int +(int,int); int -(int,int);
Signature for PSymr : <(int,int);

i=0;
r=0;
while (i<n) {

i=i+1;
r=r+i;

};
r=r+r-n;

Which value does the program compute in r?
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Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

I Each FOL formula is a DL formula

I If p is a program and φ a DL formula then

{
〈p〉φ
[p]φ

}
is a DL formula

I DL formulas closed under FOL quantifiers and connectives

I Program variables are flexible constants: never bound in quantifiers

I Program variables need not be declared or initialized in program

I Programs contain no logical variables

I Modalities can be arbitrarily nested
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Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 1;〉x .
= y) <−> (〈x = 1*1;〉x .

= y))

Well-formed if FSymnr contains int x;

I ∃ int x ; [x = 1;](x
.
= 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {};]false)

Well-formed if FSymnr contains int x;

program formulas can be nested
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Dynamic Logic Semantics: States
First-order model can be considered as program state

I Interpretation of non-rigid symbols can vary from state to state

(eg, program variables, attribute values)

I Interpretation of rigid symbols is the same in all states

(eg, built-in functions and predicates)

States as first-order models

From now, consider program state as first-order model M = (D, δ, I)

I Only interpretation I of non-rigid symbols in FSymnr can change

⇒ only record values of f ∈ FSymnr : use s (for state) instead of M
I Set of all states s is S
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Dynamic Logic Semantics: Kripke Structure

Definition (Kripke Structure (aka Labelled Transition System))

Kripke structure or Labelled transition system K = (S , ρ)

I State (=first-order model) s = (D, δ, I) ∈ S
I Transition relation ρ : Π → (S → S)

I ρ is the operational semantics of programs Π

I Each program p ∈ Π transforms a start state s into end state ρ(p)(s)

I ρ(p)(s) can be undefined: p does not terminate when started in s

I Our programs are deterministic (unlike Promela):
ρ(p) is a function (at most one value)
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Dynamic Logic Semantics: Kripke Structure Cont’d

Example (Kripke Structure)

Two programs p and q
Show ρ(p) and ρ(q), states S = {s1, . . . , s6}

s5

s1 s2

s3

s4

s6

q

q

q

q

p

pp

When p is started in s5 it terminates in s4, etc.

In general, Π and S are infinite!
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Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

I s, β |= 〈p〉φ iff ρ(p)(s), β |= φ and ρ(p)(s) is defined

p terminates and φ is true in the final state after execution

I s, β |= [p]φ iff ρ(p)(s), β |= φ whenever ρ(p)(s) is defined

If p terminates then φ is true in the final state after execution

s5

s1 s2

s3

s4

s6

q

q

q

q

p

pp
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Dynamic Logic Semantics: Kripke Structure Cont’d

Example (Semantic Evaluation of Program Formulas)

Signature FSymnr : boolean a; boolean b;

Notation: I(x) = T iff x appears in lower compartment

s5

s1
ab

s2
b

s3

s4
a

s6

q

q

q

q

p

p

p

Question 1: s1 |= 〈p〉(a .
= true) ?
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s5

s1
ab

s2
b

s3

s4
a

s6

q

q

q

q

p

p
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Dynamic Logic Semantics: Kripke Structure Cont’d

Example (Semantic Evaluation of Program Formulas)
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s5

s1
ab

s2
b

s3

s4
a

s6

q

q

q

q

p

p

p
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Program Correctness

Definition (Notions of Correctness)

I If s, β |= 〈p〉φ then

p totally correct (with respect to φ) in s, β

I If s, β |= [p]φ then
p partially correct (with respect to φ) in s, β

I Duality 〈p〉φ iff ![p] !φ
Exercise: justify this with help of semantic definitions

I Implication if 〈p〉φ then [p]φ
Total correctness implies partial correctness

I converse is false
I holds only for deterministic programs
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Semantics of Sequents
Γ = {φ1, . . . , φn} and ∆ = {ψ1, . . . , ψm} sets of program formulas
where all logical variables occur bound

Recall: s |= (Γ =⇒ ∆) iff s |= (φ1 & · · · & φn) −> (ψ1 | · · · | ψm)

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent Γ =⇒ ∆ over program formulas is valid iff

s |= (Γ =⇒ ∆) in all states s

Consequence for program variables

Initial value of program variables implicitly “universally quantified”
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Initial States

Java initial states

KeY prover “starts” programs in initial states according to Java
convention:

I Values of array entries initialized to default values: int[] to 0, etc.

I Static object initialization

I No objects created

How to restrict validity to set of initial states S0 ⊆ S ?

1. Design closed FOL formula Init with
s |= Init iff s ∈ S0

2. Use sequent Γ, Init =⇒ ∆

Later: simple method for specifying initial value of program variables
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Operational Semantics of Programs

In labelled transition system K = (S , ρ):
ρ : Π → (S → S) is operational semantics of programs p ∈ Π

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)

States s interpret non-rigid symbols f with Is(f )

ρ(x=t)(s) = s ′ where s ′ identical to s except Is′(x) = vals(t)

Very tedious task to define ρ for Java . . .
⇒ go directly to calculus for program formulas!
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Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; r ?

Symbolic Execution (King, late 60s)

I Follow the natural control flow when analysing a program

I Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

int x; int y; x=x+y; y=x-y; x=x-y;
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Symbolic Execution of Programs Cont’d

General form of rule conclusions in symbolic execution calculus

〈stmt; rest〉φ, [stmt; rest]φ

I Rules must symbolically execute first statement

I Repeated application of rules in a proof corresponds to
symbolic program execution
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Symbolic Execution of Programs Cont’d

Symbolic execution of assignment

assign
{x/xold}Γ, x

.
= {x/xold}t =⇒ 〈rest〉φ, {x/xold}∆
Γ =⇒ 〈x = t; rest〉φ,∆

xold new program variable that “rescues” old value of x

Example

Conclusion matching: {x/x}, {t/x+y}, {rest/y=x-y; x=x-y;},
{φ/(x .

= y0 & y
.
= x0)}, {Γ/x

.
= x0, y

.
= y0}, {∆/∅}

xold
.
= x0, y

.
= y0, x

.
= xold+y =⇒ 〈y=x-y; x=x-y;〉(x .

= y0 & y
.
= x0)

x
.
= x0, y

.
= y0 =⇒ 〈x=x+y; y=x-y; x=x-y;〉(x .

= y0 & y
.
= x0)
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Proving Partial Correctness

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)

In DL Pre −> [p]Post (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

\programVariables {
int x; int y; }

\problem {
(\forall int x0; \forall int y0; ((x=x0 & y=y0) ->

\<{x=x+y; y=x-y; x=x-y;}\>(x=y0 & y=x0)))
}
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More Properties

Example

∀T y ; ((〈p〉x .
= y) <−> (〈q〉x .

= y))

Not valid in general

Programs p behave q equivalently on variable T x

Example

∃T y ; (x
.
= y −> 〈p〉true)

Not valid in general

Program p terminates in all states where x has suitable initial value
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Symbolic Execution of Programs Cont’d

Symbolic execution of conditional

if
Γ, b

.
= true =⇒ 〈p; rest〉φ,∆ Γ, b

.
= false =⇒ 〈q; rest〉φ,∆

Γ =⇒ 〈 if (b) { p } else { q } ; rest〉φ,∆

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ 〈 if (b) { p; while (b) p}; r〉φ,∆

Γ =⇒ 〈while (b) {p}; r〉φ,∆
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Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: ∀T i; 〈...i...〉φ (program 6= logical variable)

Not intended: =⇒ 〈...i...〉φ (Validity of sequents:
quantification over all states)

As previous: ∀T i0; (i0
.
= i −> 〈...i...〉φ)

Solution

Use explicit construct to record values in current state

Update ∀T i0; ({i := i0}〈...i...〉φ)
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Explicit State Updates

Updates specify computation state where formula is evaluated

Definition (Syntax of Updates)

If v is program variable, t FOL term type-compatible with v,
t ′ any FOL term, and φ any DL formula, then

I {v := t}t ′ is DL term

I {v := t}φ is DL formula

Definition (Semantics of Updates)

State s interprets non-rigid symbols f with Is(f )
β variable assignment for logical variables in t

ρ({v := t})(s) = s ′ where s ′ identical to s except Is′(x) = vals,β(t)
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Explicit State Updates Cont’d

Facts about updates {v := t}
I Update semantics identical to assignment

I Value of update depends on logical variables in t: use β

I Updates as “lazy” assignments (no term substitution done)

I Updates are not assignments: right-hand side is FOL term

{x := n}φ cannot be turned into assignment (n logical variable)

〈x=i++;〉φ cannot directly be turned into update

I Updates are not equations: change value of non-rigid terms
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Computing Effect of Updates (Automatic)

Rewrite rules for update followed by . . .

program variable

{
{x := t}y  y
{x := t}x  t

logical variable {x := t}w  w

complex term {x := t}f (t1, . . . , tn) f ({x := t}t1, . . . , {x := t}tn)

FOL formula


{x := t}(φ & ψ)  {x := t}φ & {x := t}ψ

· · ·
{x := t}(∀T y ; φ) ∀T y ; ({x := t}φ)

program formula {x := t}(〈p〉φ)  {x := t}(〈p〉φ) unchanged!

Update computation delayed until p symbolically executed
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Assignment Rule Using Updates

Symbolic execution of assignment using updates

assign
Γ =⇒ {x := t}〈rest〉φ,∆
Γ =⇒ 〈x = t; rest〉φ,∆

I Avoids renaming of program variables

I Works as long as t has no side effects (ok in simple DL)

I Special cases for x =t1 + t2, etc.

Demo
Examples/lect11/swap.key
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Example Proof

Example

\programVariables {
int x;

}
\problem {

(\exists int y;
({x := y}\<{while (x > 0) {x = x-1;}}\> x=0 ))

}

Intuitive Meaning? Satisfiable? Valid?

Demo
Examples/lect11/term.key

What to do when we cannot determine a concrete loop bound?
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Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

int x; int y; x=x+y; y=x-y; x=x-y;

yields:

{x := x+y}{y := x-y}{x := x-y}

Need to compose three sequential state changes into a single one!
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Parallel Updates Cont’d

Definition (Parallel Update)

A parallel update is expression of the form {l1 := v1|| · · · ||ln := vn} where
each {li := vi} is simple update

I All vi computed in old state before update is applied

I Updates of all locations li executed simultaneously

I Upon conflict li = lj , vi 6= vj later update (max{i , j}) wins

Definition (Composition Sequential Updates/Conflict Resolution)

{l1 := r1}{l2 := r2} = {l1 := r1||l2 := {l1 := r1}r2}

{l1 := v1|| · · · ||ln := vn}x =

{
x if x 6∈ {l1, . . . , ln}
vk if x = lk , x 6∈ {lk+1, . . . , ln}
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Parallel Updates Cont’d

Example

({x := x+y}{y := x-y}){x := x-y} =
{x := x+y || y := (x+y)-y}{x := x-y} =
{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{x := x+y || y := x || x := y} =
{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lect11/swap.key

Parallel updates to store intermediate state of symbolic computation

Formal Specification and Verification: Simple DL B. Beckert 51 / 53



Parallel Updates Cont’d

Example

({x := x+y}{y := x-y}){x := x-y} =
{x := x+y || y := (x+y)-y}{x := x-y} =
{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{x := x+y || y := x || x := y} =
{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lect11/swap.key

Parallel updates to store intermediate state of symbolic computation

Formal Specification and Verification: Simple DL B. Beckert 51 / 53



A Warning

First-order rules that substitute arbitrary terms

∃−right
Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆
∀−left

Γ,∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀T x ; φ =⇒ ∆

applyEq
Γ, t

.
= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t
.
= t ′, ψ =⇒ φ,∆

t, t ′ must be rigid, because all occurrences must have the same value

Example

Γ, i
.
= 0 −> 〈i++〉i .

= 0 =⇒ ∆

Γ,∀T x ; (x
.
= 0 −> 〈i++〉x .

= 0) =⇒ ∆

Logically valid formula would result in unsatisfiable antecedent!
KeY prohibits unsound substitutions
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Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 10: Using KeY

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic (Sections 3.1, 3.2, 3.4,
3.5, 3.6.1, 3.6.3, 3.6.4)
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