Formal Specification and Verification

Reasoning about Programs with Dynamic Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hahnle at
Chalmers University, Goteborg

Formal Specification and Verification: Simple DL B. Beckert

1/53

Beyond Propositional Logic

Temporal
Logic

Propositional
Logic

Dynamic
Logic

First-order
Logic

Beyond Propositional Logic

|}
ot e, SPIN
* *

2 2 *
. .
;' Temporal | =
(ation Logic .
. . ¢
Propositional +computap.o-ns tﬁun&mns | Dynamic
Logic | Logic
m’
Cliopg First-order

Logic

Beyond Propositional Logic

| BN |
o2 T, SPIN
*

*
0’ *
. .
L]
= | Temporal | =
. H LN
u’iat‘\o(\; LOgIC '. Q“‘ ' .'0
Comp . : .0 0‘
X L 5 : .
Propositional +com putap.o-ns tﬁlmﬁtmns = | Dynamic .
Logic . Logic .
\ / ..
f[jn . * *
Ct, 5 * ¢
/Ong Flrst—o.rder KeY *onpnnns®’
Logic Today's lecture

Formal Specification and Verification: Simple DL B. Beckert 2 /53

State Dependence of Formula Evaluation
Closed FOL formula is either valid or not valid wrt model M
Consider M = (D, 0,7) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Formal Specification and Verification: Simple DL B. Beckert 3 /53

State Dependence of Formula Evaluation
Closed FOL formula is either valid or not valid wrt model M
Consider M = (D, 0,7) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Example

Executing x=3; results in M such that M |=x =3
Executing x=4; results in M such that M [~ x =3

Formal Specification and Verification: Simple DL B. Beckert

3753

State Dependence of Formula Evaluation
Closed FOL formula is either valid or not valid wrt model M
Consider M = (D, 0,7) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Example

Executing x=3; results in M such that M |=x =3
Executing x=4; results in M such that M [~ x =3

Need a logic to capture state before/after program execution J

Formal Specification and Verification: Simple DL B. Beckert 3 /53

Rigid versus Flexible Symbols
Signature of program logic defined as in FOL, but:
In addition there are program variables, attributes, etc.
Rigid versus Flexible
» Rigid symbols, same interpretation in all program states

> First-order variables (aka logical variables)
Used to hold initial values of program variables
> Built-in functions and predicates such as 0,1, ...,+,*,...,<
» Non-rigid (or flexible) symbols, interpretation depends on state
Capture side effects on state during program execution

» Functions modeling program variables and attributes are flexible

e Sy e

Any term containing at least one flexible symbol is also flexible

Formal Specification and Verification: Simple DL B. Beckert

4753

Signature of Dynamic Logic (Simple Version)

Definition (Dynamic Logic Signature)
First-order signature ¥ = (PSym,, FSym,, FSym,,, a)
Rigid Predicate Symbols PSym = {>, >=,...}

Rigid Function Symbols FSym = {+, —, %, 0, 1,..., true, false}
Non-rigid Function Symbols FSym = {i,j, k,...,p,q,r,...}

Type hierarchy
T ={L, int, boolean, T} with int, boolean incomparable

Standard typing: boolean true; <(int,int);, etc.

Formal Specification and Verification: Simple DL B. Beckert 5 /53

Variables

Definition (First-Order/Logical Variables)
Typed logical variables (rigid), declared as T x;

Program Variables

Non-rigid constants int i; boolean p used as program variables

Formal Specification and Verification: Simple DL B. Beckert 6 /53

Terms

» First-order terms defined as in FOL
» First-order terms may contain rigid and non-rigid symbols

» FSym, N FSym,, =0

Example
Signature for FSym,,: int j; boolean p
Variables int x; boolean b;
> j and j+ x are flexible terms of type int
> pis a flexible term of type boolean
> x + x is a rigid term of type int
» j+ b and j + p are not well-typed

Formal Specification and Verification: Simple DL B. Beckert

7753

Atomic Programs

Definition (Atomic Programs)

The atomic programs [y are assignments of the form j =t where:
» T j; is a program variable (flexible constant)
> tis a first-order term of type T without logical variables

Example
Signature for FSym,,: int j; boolean p
Variables int x; boolean b;
> j=j+1, j=0 and p=false are assignments
> j=j+x contains a logical variable on the right
> x=1 contains a logical variable on the left
> j=j is equality, not assignment
> p=0 is ill-typed

Formal Specification and Verification: Simple DL B. Beckert

§/53

Dynamic Logic Programs (Simple Version)

Definition (Program)
Inductive definition of the set of (DL) programs I1:
» If 7 is an atomic program, then 7; is a program
» If p and q are programs, then pq is a program
» If b is a variable-free term of type boolean, p and q programs, then
if (b) p else q; if (b) p;
are programs
» If b is a variable-free term of type boolean, p a program, then

while (b) p;

is a program

Formal Specification and Verification: Simple DL B. Beckert 10 /53

Dynamic Logic Programs (Simple Version)

Definition (Program)
Inductive definition of the set of (DL) programs I1:
» If 7 is an atomic program, then 7; is a program
» If p and q are programs, then pq is a program
» If b is a variable-free term of type boolean, p and q programs, then
if (b) p else q; if (b) p;
are programs
» If b is a variable-free term of type boolean, p a program, then

while (b) p;

is a program

Programs contain no logical variables! J

Formal Specification and Verification: Simple DL B. Beckert 10 /53

Dynamic Logic Programs Cont’d

Example (Admissible Program)

Signature for FSym,,: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int);
i=0;
r=0;
while (i<n) {
i=i+1;
r=r+i;
};

r=r+r-n;

Formal Specification and Verification: Simple DL B. Beckert 12 /53

Dynamic Logic Programs Cont’d

Example (Admissible Program)

Signature for FSym,,: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int);
i=0;
r=0;
while (i<n) {
i=i+1;
r=r+i;
};

r=r+r-n;

Which value does the program compute in r? J

Formal Specification and Verification: Simple DL B. Beckert 12 /53

Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

» Each FOL formula is a DL formula

» If p is a program and ¢ a DL formula then {ngj} is a DL formula

» DL formulas closed under FOL quantifiers and connectives

Formal Specification and Verification: Simple DL B. Beckert 14 /53

Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

» Each FOL formula is a DL formula

» If p is a program and ¢ a DL formula then {ngj} is a DL formula

» DL formulas closed under FOL quantifiers and connectives

Program variables are flexible constants: never bound in quantifiers
Program variables need not be declared or initialized in program

Programs contain no logical variables

vV v . v Y

Modalities can be arbitrarily nested

Formal Specification and Verification: Simple DL B. Beckert 14 /53

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

> Vint y; ((x = 15)x=y) <> ((x = 1*x15)x =y))

Formal Specification and Verification: Simple DL B. Beckert 16 /53

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
> Vint y; (((x = 15)x=y) <> ((x = 1*15)x = y))

Well-formed if FSym,,, contains int x;

Formal Specification and Verification: Simple DL B. Beckert 16 /53

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
> Wint v; ((x = 13)x = y) <> ((x = 1x15)x = y))
Well-formed if FSym,,, contains int x;
» Jint x; [x = 1;](x=1)

Formal Specification and Verification: Simple DL B. Beckert 16 /53

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
> Wint v; ((x = 13)x = y) <> ((x = 1x15)x = y))
Well-formed if FSym,,, contains int x;
» Jint x; [x = 1;](x=1)

Not well-formed, because logical variable occurs in program

Formal Specification and Verification: Simple DL B. Beckert 16 /53

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
> Wint v; ((x = 13)x = y) <> ((x = 1x15)x = y))
Well-formed if FSym,,, contains int x;
» Jint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in program
» (x = 1;)([while (true) {};]false)

Formal Specification and Verification: Simple DL B. Beckert 16 /53

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
> Wint v; ((x = 13)x = y) <> ((x = 1x15)x = y))
Well-formed if FSym,,, contains int x;
» Jint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in program
» (x = 1;)([while (true) {};]false)

Well-formed if FSym,, contains int x;
program formulas can be nested

Formal Specification and Verification: Simple DL B. Beckert

16 /53

Dynamic Logic Semantics: States
First-order model can be considered as program state

> Interpretation of non-rigid symbols can vary from state to state
(eg, program variables, attribute values)
> Interpretation of rigid symbols is the same in all states

(eg, built-in functions and predicates)

States as first-order models
From now, consider program state as first-order model M = (D, 4,7)
» Only interpretation Z of non-rigid symbols in FSym,, can change

= only record values of f € FSym,,: use s (for state) instead of M

> Set of all states sis S

Formal Specification and Verification: Simple DL B. Beckert 17 /53

Dynamic Logic Semantics: Kripke Structure

Definition (Kripke Structure (aka Labelled Transition System))
Kripke structure or Labelled transition system K = (S, p)
» State (=first-order model) s = (D,4,7) € S
» Transition relation p: M — (S — S)
> p is the operational semantics of programs [1
» Each program p € I transforms a start state s into end state p(p)(s)
> p(p)(s) can be undefined: p does not terminate when started in s

> Our programs are deterministic (unlike PROMELA):
p(p) is a function (at most one value)

Formal Specification and Verification: Simple DL B. Beckert 18 /53

Dynamic Logic Semantics: Kripke Structure Cont'd

Example (Kripke Structure)

Two programs p and q
Show p(p) and p(q), states S = {s1,...,ss}

When p is started in s5 it terminates in s4, etc.

In general, 1 and S are infinite!

Formal Specification and Verification: Simple DL

B. Beckert

19 /53

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

> 5,8 (p)¢ iff p(p)(s), B | ¢ and p(p)(s) is defined

p terminates and ¢ is true in the final state after execution
» s,0 = [ple iff p(p)(s), B = ¢ whenever p(p)(s) is defined

If p terminates then ¢ is true in the final state after execution

Formal Specification and Verification: Simple DL B. Beckert 20 /53

Dynamic Logic Semantics: Kripke Structure Cont’d

Example (Semantic Evaluation of Program Formulas)
Signature FSym,,,: boolean a; boolean b;

Notation: Z(x) = T iff x appears in lower compartment

Question 1: s; = (p)(a = true) ?

Formal Specification and Verification: Simple DL B. Beckert 22 /53

Dynamic Logic Semantics: Kripke Structure Cont’d

Example (Semantic Evaluation of Program Formulas)
Signature FSym,,,: boolean a; boolean b;

Notation: Z(x) = T iff x appears in lower compartment

Question 2: s1 = (q)(a = true) ?

Formal Specification and Verification: Simple DL B. Beckert 22 /53

Dynamic Logic Semantics: Kripke Structure Cont’d

Example (Semantic Evaluation of Program Formulas)
Signature FSym,,,: boolean a; boolean b;

Notation: Z(x) = T iff x appears in lower compartment

Question 3: s5 = (q)(a = true) ?

Formal Specification and Verification: Simple DL B. Beckert 22 /53

Dynamic Logic Semantics: Kripke Structure Cont’d

Example (Semantic Evaluation of Program Formulas)
Signature FSym,,,: boolean a; boolean b;

Notation: Z(x) = T iff x appears in lower compartment

Question 4: s5 = [q](a = true) ?

Formal Specification and Verification: Simple DL B. Beckert 22 /53

Program Correctness

Definition (Notions of Correctness)

» If 5,5 = (p)¢ then

p totally correct (with respect to ¢) in s, 3

» If s, 3 E [p]¢ then

p partially correct (with respect to ¢) in s, 3

» Duality (p)¢ iff lp]!¢
Exercise: justify this with help of semantic definitions

» Implication if (p)¢ then [p]¢
Total correctness implies partial correctness

» converse is false
> holds only for deterministic programs

Formal Specification and Verification: Simple DL B. Beckert

23 /53

Semantics of Sequents

F={¢1,...,0n} and A = {t1,...,9m} sets of program formulas
where all logical variables occur bound

Recall: s=(T=A) iff skE(p1& - &dp) = (1| | ¥m)

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent [= A over program formulas is valid iff

sE (= A) in all states s

Formal Specification and Verification: Simple DL B. Beckert 24 /53

Semantics of Sequents

F={¢1,...,0n} and A = {t1,...,9m} sets of program formulas
where all logical variables occur bound

Recall: s=(T=A) iff skE(p1& - &dp) = (1| | ¥m)

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent [= A over program formulas is valid iff

sE (= A) in all states s

Consequence for program variables

Initial value of program variables implicitly “universally quantified”

Formal Specification and Verification: Simple DL B. Beckert 24 /53

Initial States

Java initial states

KeY prover “starts” programs in initial states according to JAvA
convention:

> Values of array entries initialized to default values: int[] to 0, etc.

» Static object initialization

» No objects created

How to restrict validity to set of initial states S C S ? J

1. Design closed FOL formula Init with
s = Init iff seS

2. Use sequent I Init = A

Later: simple method for specifying initial value of program variables

Formal Specification and Verification: Simple DL B. Beckert 25 /53

Operational Semantics of Programs

In labelled transition system K = (S, p):
p: M — (S —S) is operational semantics of programs p € I1

How is p defined for concrete programs and states? J

Formal Specification and Verification: Simple DL B. Beckert 26 /53

Operational Semantics of Programs

In labelled transition system K = (S, p):
p: M — (S —S) is operational semantics of programs p € I1

How is p defined for concrete programs and states? J

Example (Operational semantics of assignment)

States s interpret non-rigid symbols f with Z¢(f)

p(x=t)(s) = s’ where s’ identical to s except Zy(x) = vals(t)

Very tedious task to define p for JAVA ...
= go directly to calculus for program formulas!

Formal Specification and Verification: Simple DL B. Beckert 26 /53

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; r 7

Symbolic Execution (King, late 60s)

» Follow the natural control flow when analysing a program

> Values of some variables unknown: symbolic state representation

Formal Specification and Verification: Simple DL B. Beckert 28 /53

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; r 7

Symbolic Execution (King, late 60s)
» Follow the natural control flow when analysing a program

> Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

int x; int y; x=x+y; y=x-y; x=x-y;

Formal Specification and Verification: Simple DL B. Beckert 28 /53

Symbolic Execution of Programs Cont’d

General form of rule conclusions in symbolic execution calculus

(stmt; rest)o, [stmt; rest|¢

» Rules must symbolically execute first statement

> Repeated application of rules in a proof corresponds to
symbolic program execution

Formal Specification and Verification: Simple DL B. Beckert 30/53

Symbolic Execution of Programs Cont’d

Symbolic execution of assignment

{x/%01d}T, x ={x/x014}t = (rest)o, {x/xo}A

assign
& = (x = t; rest)p, A

Xold New program variable that “rescues”’ old value of x

Formal Specification and Verification: Simple DL B. Beckert

32/53

Symbolic Execution of Programs Cont’d

Symbolic execution of assignment

{x/%01d}T, x ={x/x014}t = (rest)o, {x/xo}A

i = (x = t; rest)p, A

Xold New program variable that “rescues”’ old value of x

Example

Conclusion matching: {x/x}, {t/x+y}, {rest/y=x-y; x=x-y;},
{¢/(x=y0 &y =x0)}, {T/x =x0, y = yo}, {A/0}

Xold = X0, ¥ = Y0, X = Xold+y = (y=x-y; x=x-7;)(x = yo & y = Xo)
X = X0, ¥ = Yo = (x=x+y; y=x-y; x=x-y;)(x = yo & y = Xo)

Formal Specification and Verification: Simple DL B. Beckert 32/53

Proving Partial Correctness

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre — [p]|Post (Pre, Post any DL formula)

Formal Specification and Verification: Simple DL B. Beckert 34 /53

Proving Partial Correctness

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre — [p]|Post (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

\programVariables {
int x; int y; }

\problem {
(\forall int x0; \forall int yO0; ((x=x0 & y=y0) ->
\<H{x=x+y; y=x-y; x=x-y;}\>(x=y0 & y=x0)))
}

Formal Specification and Verification: Simple DL B. Beckert

347/°53

More Properties

Example
VT y; ((Px=y) <> ((@Qx=y))

Formal Specification and Verification: Simple DL B. Beckert 36 /53

More Properties

Example
VT yi ((p)x=y) <= ((9x =y))
Not valid in general

Programs p behave q equivalently on variable T x

Formal Specification and Verification: Simple DL B. Beckert 36 /53

More Properties

Example
VT yi ((Plx=y) <> ((@)x=y))
Not valid in general

Programs p behave q equivalently on variable T x

Example
ATy, (x=y — (p)true)

Formal Specification and Verification: Simple DL B. Beckert 36 /53

More Properties

Example
VT yi ((p)x=y) <= ((9x =y))
Not valid in general

Programs p behave q equivalently on variable T x

Example
ATy, (x=y — (p)true)
Not valid in general

Program p terminates in all states where x has suitable initial value

Formal Specification and Verification: Simple DL B. Beckert 36 /53

Symbolic Execution of Programs Cont’d

Symbolic execution of conditional

[b= true = (p; rest)¢p, A b= false = (q; rest)¢p, A

if
' [— (if ® {ptelse {q}; rest)p,A

Symbolic execution must consider all possible execution branches J

Formal Specification and Verification: Simple DL B. Beckert 38 /53

Symbolic Execution of Programs Cont’d

Symbolic execution of conditional

[b= true = (p; rest)¢p, A [b= false = (q; rest)p, A
= (if) {p) else { ql} ; rest)p,A

if

Symbolic execution must consider all possible execution branches J

Symbolic execution of loops: unwind

= (if (b) { p; while (b) p}; r)p, A
= (while (b) {p}; r)¢, A

unwindLoop

Formal Specification and Verification: Simple DL B. Beckert 38 /53

Quantifying over Program Variables

How to express correctness for any initial value of program variable? J

Formal Specification and Verification: Simple DL B. Beckert 39 /53

Quantifying over Program Variables

How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Formal Specification and Verification: Simple DL B. Beckert 39 /53

Quantifying over Program Variables

How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)

Formal Specification and Verification: Simple DL B. Beckert 39 /53

Quantifying over Program Variables

How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)

As previous: VT i (=1 — (...i...)¢)

Formal Specification and Verification: Simple DL B. Beckert 39 /53

Quantifying over Program Variables

How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)

As previous: VT i (=1 — (...i...)¢)

Solution

Use explicit construct to record values in current state

Update VT i {i:=h}(...i...)9)

Formal Specification and Verification: Simple DL B. Beckert 39 /53

Explicit State Updates

Updates specify computation state where formula is evaluated J

Definition (Syntax of Updates)

If v is program variable, t FOL term type-compatible with v,
t" any FOL term, and ¢ any DL formula, then

» {v:=t}t' is DL term
» {v:=t}¢ is DL formula

Definition (Semantics of Updates)

State s interprets non-rigid symbols f with Z¢(f)
[variable assignment for logical variables in t

p({v := t})(s) = s’ where s’ identical to s except Zy(x) = vals 5(t)

Formal Specification and Verification: Simple DL B. Beckert 40 /53

Explicit State Updates Cont'd

Facts about updates {v := t}

v

Update semantics identical to assignment

» Value of update depends on logical variables in t: use 3

» Updates as “lazy” assignments (no term substitution done)
|

Updates are not assignments: right-hand side is FOL term
{x := n}¢ cannot be turned into assignment (n logical variable)

(x=i++;)¢ cannot directly be turned into update

v

Updates are not equations: change value of non-rigid terms

Formal Specification and Verification: Simple DL B. Beckert 41 /53

Computing Effect of Updates (Automatic)
Rewrite rules for update followed by ...

. {x=tly ~ y
program variable {{x — e e
logical variable {x :=t}w ~ w
complex term {x :=t}f(t1,...,ty) ~ F({x:=t}t1,..., {x = t}t,)

{xi=t}(¢ & ¥) ~ {x:=1t}¢ & {x:=t}y

FOL formula S
{x=t}(VT y; &)~ VT y; ({x:=t}9)
program formula {x :=t}((p)9) ~ {x:=t}({(p)9) unchanged!
Update computation delayed until p symbolically executed J

Formal Specification and Verification: Simple DL B. Beckert 42 /53

Assignment Rule Using Updates

Symbolic execution of assignment using updates
= {x:=t}(rest)¢, A
= (x = t; rest)op, A

assign

» Avoids renaming of program variables
» Works as long as t has no side effects (ok in simple DL)

» Special cases for x =t; + ty, etc.

Demo
Examples/lectl11/swap.key

Formal Specification and Verification: Simple DL B. Beckert 43 /53

Example Proof

Example

\programVariables {
int x;
}
\problem {
(\exists int y;
({x := yI\<{while (x > 0) {x = x-1;}}\> x=0))
}

Intuitive Meaning? Satisfiable? Valid?

Demo
Examples/lectll/term.key

Formal Specification and Verification: Simple DL B. Beckert 45 /53

Example Proof

Example

\programVariables {
int x;
}
\problem {
(\exists int y;
({x := yI\<{while (x > 0) {x = x-1;}}\> x=0))
}

Intuitive Meaning? Satisfiable? Valid?

Demo
Examples/lectll/term.key

What to do when we cannot determine a concrete loop bound? J

Formal Specification and Verification: Simple DL B. Beckert 45 /53

Parallel Updates

How to apply updates on updates?

Example
Symbolic execution of

int x; int y; x=x+y; y=x-y; x=x-y;
yields:
{x = x+yHy := x-yHx := x-y}

Need to compose three sequential state changes into a single onel

Formal Specification and Verification: Simple DL B. Beckert

4753

Parallel Updates Cont’'d

Definition (Parallel Update)

A parallel update is expression of the form {h := vi||-- ||/, := vn} where
each {/; := v;} is simple update
» All v; computed in old state before update is applied

» Updates of all locations /; executed simultaneously

» Upon conflict ; =1/;, v; # v; later update (max{/,,}) wins

Formal Specification and Verification: Simple DL B. Beckert 49 /53

Parallel Updates Cont’'d

Definition (Parallel Update)

A parallel update is expression of the form {h := vi||-- ||/, := vn} where
each {/; := v;} is simple update
» All v; computed in old state before update is applied

» Updates of all locations /; executed simultaneously

» Upon conflict ; =1/;, v; # v; later update (max{/,,}) wins

Definition (Composition Sequential Updates/Conflict Resolution)
{/1 = rl}{/z = r2} = {/1 = r1\|/2 = {/1 = rl}rg}

. . _ x ifxg{h,.... I}
=l [l = vabx = { vie iFx=lx¢& (gt s/}

Formal Specification and Verification: Simple DL B. Beckert 49 /53

Parallel Updates Cont’'d

Example

{x := x+yHy := x-yP{x := x-y} =

{x :=x+y || y := (x+y)-yHx := x-y} =

{x :=x+ty || vy := x+y)-y || x = (x+y)-((x+y)-y)} =
{xi=xty ||l y:=x || x :=y} =

{y :=x Il x :=y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lectl1/swap.key

Formal Specification and Verification: Simple DL B. Beckert 51 /53

Parallel Updates Cont’'d

Example

{x := x+yHy := x-yP{x := x-y} =

{x :=x+y || y := (x+y)-yHx := x-y} =

{x :=x+ty || vy := x+y)-y || x = (x+y)-((x+y)-y)} =
xi=xty ||l y :=x || x :=y} =

{y :=x Il x :=y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lectl1/swap.key

Parallel updates to store intermediate state of symbolic computation J

Formal Specification and Verification: Simple DL B. Beckert 51 /53

A Warning
First-order rules that substitute arbitrary terms

_ = [x/t')¢, 3T x; ¢, A LY Tx; ¢, [x/t' o= A
J—right V—left
N=3Tx; ¢, A FVTx ¢= A

Mt=1t,[t/t|y=[t/t|¢,A
Mt=t,y= ¢ A

applyEq

t, t’ must be rigid, because all occurrences must have the same value

Example
Ni=0— (i+Hi=0= A
VTx (x=0—= (it)x =0) = A

Logically valid formula would result in unsatisfiable antecedent!
KeY prohibits unsound substitutions

Formal Specification and Verification: Simple DL B. Beckert 52 /53

Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 10: Using KeY

KeY Book Verification of Object-Oriented Software (see course web

page), Chapter 3: Dynamic Logic (Sections 3.1, 3.2, 3.4,
3.5, 3.6.1,3.6.3, 3.6.4)

Formal Specification and Verification: Simple DL B. Beckert 53 /53

	Titlepage
	Overview
	State Dependence
	Signature
	Terms
	Atomic Programs
	DL Programs
	Program Formulas
	States
	Kripke Structures
	Program Formula Valuation
	Correctness
	Operational Semantics
	Symbolic Execution
	Updates
	Parallel Updates
	Restrictions
	Literature

