
Formal Specification and Verification
Reasoning about Java Programs

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at
Chalmers University, Göteborg

Formal Specification and Verification: Java DL B. Beckert 1 / 39

Java Type Hierarchy

Signature based on Java’s type hierarchy

>

⊥

booleaninteger

shortint

· · ·

· · ·

Object

API, user-defined classes

Null

Each class referenced in API and target program is in signature
with appropriate partial order

Formal Specification and Verification: Java DL B. Beckert 3 / 39

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

I Each o ∈ DPerson has associated age value

I I(age) is function from Person to int

I Attribute values can be changed

I For each class C with attribute a of type T :
FSymnr declares non-rigid function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

Formal Specification and Verification: Java DL B. Beckert 5 / 39

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

I Each o ∈ DPerson has associated age value

I I(age) is function from Person to int

I Attribute values can be changed

I For each class C with attribute a of type T :
FSymnr declares non-rigid function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

Formal Specification and Verification: Java DL B. Beckert 5 / 39

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

I Each o ∈ DPerson has associated age value

I I(age) is function from Person to int

I Attribute values can be changed

I For each class C with attribute a of type T :
FSymnr declares non-rigid function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

Formal Specification and Verification: Java DL B. Beckert 5 / 39

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

I Each o ∈ DPerson has associated age value

I I(age) is function from Person to int

I Attribute values can be changed

I For each class C with attribute a of type T :
FSymnr declares non-rigid function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

Formal Specification and Verification: Java DL B. Beckert 5 / 39

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

I Each o ∈ DPerson has associated age value

I I(age) is function from Person to int

I Attribute values can be changed

I For each class C with attribute a of type T :
FSymnr declares non-rigid function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

Formal Specification and Verification: Java DL B. Beckert 5 / 39

Modeling Attributes in FOL Cont’d

Properties of attributes

I When not initialized, I(a) = null

I Overloading can be resolved by qualifying with class path:
Person::p.age

Changing the value of attributes

How to translate assignment to attribute p.age=17;?

assign
Γ =⇒ {l := t}〈rest〉φ,∆

Γ =⇒ 〈l = t; rest〉φ,∆

Admit on left-hand side of update program location expressions

Formal Specification and Verification: Java DL B. Beckert 7 / 39

Modeling Attributes in FOL Cont’d

Properties of attributes

I When not initialized, I(a) = null

I Overloading can be resolved by qualifying with class path:
Person::p.age

Changing the value of attributes

How to translate assignment to attribute p.age=17;?

assign
Γ =⇒ {p.age := 17}〈rest〉φ,∆

Γ =⇒ 〈p.age = 17; rest〉φ,∆

Admit on left-hand side of update program location expressions

Formal Specification and Verification: Java DL B. Beckert 7 / 39

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

I Signature FSymnr : C a(C); C b(C); C o;

I Consider {o.a.a := o}{o.b.a := o.a}
I First update may affect left side of second update

I o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

Formal Specification and Verification: Java DL B. Beckert 9 / 39

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

I Signature FSymnr : C a(C); C b(C); C o;

I Consider {o.a.a := o}{o.b.a := o.a}

I First update may affect left side of second update

I o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

Formal Specification and Verification: Java DL B. Beckert 9 / 39

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

I Signature FSymnr : C a(C); C b(C); C o;

I Consider {o.a.a := o}{o.b.a := o.a}
I First update may affect left side of second update

I o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

Formal Specification and Verification: Java DL B. Beckert 9 / 39

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

I Signature FSymnr : C a(C); C b(C); C o;

I Consider {o.a.a := o}{o.b.a := o.a}
I First update may affect left side of second update

I o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

Formal Specification and Verification: Java DL B. Beckert 9 / 39

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

I Signature FSymnr : C a(C); C b(C); C o;

I Consider {o.a.a := o}{o.b.a := o.a}
I First update may affect left side of second update

I o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

Formal Specification and Verification: Java DL B. Beckert 9 / 39

Modeling Static Attributes in FOL

Modeling class (static) attributes

For each class C with static attribute a of type T :
FSymnr declares non-rigid constant T a;

I Value of a is I(a) for all instances of C

I If necessary, qualify with class (path):
byte java.lang.Byte.MAX_VALUE

I Standard values are predefined in KeY:
I(byte java.lang.Byte.MAX_VALUE) = 127

Formal Specification and Verification: Java DL B. Beckert 11 / 39

The Self Reference

Modeling reference this to the receiving object

Special name for the object whose Java code is currently executed:

in JML: Object self;

in Java: Object this;

in KeY: Object self;

Default assumption in JML-KeY translation: !(self = null)

Formal Specification and Verification: Java DL B. Beckert 13 / 39

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states of LTS K = (S , ρ)

Desirable consequence:
Validity of rigid FOL formulas unaffected by programs

|= ∀T x ; φ −> [p](∀T x ; φ) is valid for rigid φ

Realizing Constant Domain Assumption

I Non-rigid function boolean <created>(Object);

I Equal to true iff argument object has been created

I Initialized as I(<created>)(o) = F for all o ∈ D
I Object creation modeled as {o.<created> := true} for next “free” o

Formal Specification and Verification: Java DL B. Beckert 15 / 39

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states of LTS K = (S , ρ)

Desirable consequence:
Validity of rigid FOL formulas unaffected by programs

|= ∀T x ; φ −> [p](∀T x ; φ) is valid for rigid φ

Realizing Constant Domain Assumption

I Non-rigid function boolean <created>(Object);

I Equal to true iff argument object has been created

I Initialized as I(<created>)(o) = F for all o ∈ D
I Object creation modeled as {o.<created> := true} for next “free” o

Formal Specification and Verification: Java DL B. Beckert 15 / 39

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states of LTS K = (S , ρ)

Desirable consequence:
Validity of rigid FOL formulas unaffected by programs

|= ∀T x ; φ −> [p](∀T x ; φ) is valid for rigid φ

Realizing Constant Domain Assumption

I Non-rigid function boolean <created>(Object);

I Equal to true iff argument object has been created

I Initialized as I(<created>)(o) = F for all o ∈ D
I Object creation modeled as {o.<created> := true} for next “free” o

Formal Specification and Verification: Java DL B. Beckert 15 / 39

Quantified Updates

Initialization of all objects in a given class C

C
int a

I Specify that default value of attribute int a(C) is 0

I Can use ∀ C o; o.a
.
= 0 in premise

I Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

I For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

I If there are several l with conflicting d then choose T -minimal one

Formal Specification and Verification: Java DL B. Beckert 17 / 39

Quantified Updates

Initialization of all objects in a given class C

C
int a

I Specify that default value of attribute int a(C) is 0

I Can use ∀ C o; o.a
.
= 0 in premise

I Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

I For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

I If there are several l with conflicting d then choose T -minimal one

Formal Specification and Verification: Java DL B. Beckert 17 / 39

Quantified Updates

Initialization of all objects in a given class C

C
int a

I Specify that default value of attribute int a(C) is 0

I Can use ∀ C o; o.a
.
= 0 in premise

I Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

I For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

I If there are several l with conflicting d then choose T -minimal one

Formal Specification and Verification: Java DL B. Beckert 17 / 39

Quantified Updates

Initialization of all objects in a given class C

C
int a

I Specify that default value of attribute int a(C) is 0

I Can use ∀ C o; o.a
.
= 0 in premise

I Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

I For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

I If there are several l with conflicting d then choose T -minimal one

Formal Specification and Verification: Java DL B. Beckert 17 / 39

Quantified Updates Cont’d

I The conditional expression is optional

I Typically, x occurs in P, l, and r (but doesn’t need to)

I There is a normal form for updates computed efficiently by KeY

Example (Integer types are well-ordered in KeY— Demo)

\exists int n; ({\for int i; l := i}(l = n))

I Is valid both for Java int and ZZ (n
.
= 0 non-standard order)

I Proven automatically by update simplifier

Example (Initialization of field a for all objects in class C)

{\for T o; o.a := 0}

Formal Specification and Verification: Java DL B. Beckert 19 / 39

Quantified Updates Cont’d

I The conditional expression is optional

I Typically, x occurs in P, l, and r (but doesn’t need to)

I There is a normal form for updates computed efficiently by KeY

Example (Integer types are well-ordered in KeY— Demo)

\exists int n; ({\for int i; l := i}(l = n))

I Is valid both for Java int and ZZ (n
.
= 0 non-standard order)

I Proven automatically by update simplifier

Example (Initialization of field a for all objects in class C)

{\for T o; o.a := 0}

Formal Specification and Verification: Java DL B. Beckert 19 / 39

Quantified Updates Cont’d

I The conditional expression is optional

I Typically, x occurs in P, l, and r (but doesn’t need to)

I There is a normal form for updates computed efficiently by KeY

Example (Integer types are well-ordered in KeY— Demo)

\exists int n; ({\for int i; l := i}(l = n))

I Is valid both for Java int and ZZ (n
.
= 0 non-standard order)

I Proven automatically by update simplifier

Example (Initialization of field a for all objects in class C)

{\for T o; o.a := 0}

Formal Specification and Verification: Java DL B. Beckert 19 / 39

Extending Dynamic Logic to Java

Any syntactically correct Java with some extensions

I Needs not be compilable unit

I Permit externally declared, non-initialized variables

I Referenced class definitions loaded in background

And some limitations . . .

I No concurrency

I No generics

I No Strings

I No I/O

I No floats

I No dynamic class loading or reflexion

I API method calls: need either JML contract or implementation

Formal Specification and Verification: Java DL B. Beckert 20 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types
that occur in given program

I Types ordered according to Java subtyping rules

I Non-rigid functions modeling attributes can have
array type

I Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

I Model array with non-rigid function T [](C,int)

I Instead of [](ar,i) write ar[i]

I Arrays a and b can refer to same object (aliases)

I KeY implements update application and simplification
rules for array locations

Formal Specification and Verification: Java DL B. Beckert 22 / 39

Java Features in Dynamic Logic:
Complex Expressions

Complex expressions with side effects

I Java expressions may contain assignment operator with side effect

I FOL terms have no side effect on the state

I Java expressions can be complex and nested

Example (Complex expression with side effects in Java)

int i = 0; if ((i=2)>= 2) i++; value of i ?

Formal Specification and Verification: Java DL B. Beckert 23 / 39

Complex Expressions Cont’d

Decomposition of complex terms by symbolic execution

Follow the rules laid down in Java Language Specification

Local code transformations

evalOrderIteratedAssgnmt
Γ =⇒ 〈y = t; x = y; rest〉φ,∆

Γ =⇒ 〈x = y = t; rest〉φ,∆
t simple

Temporary variables store result of evaluating subexpression

ifEval
Γ =⇒ 〈boolean v0; v0 = b; if (v0) p; r〉φ,∆

Γ =⇒ 〈 if (b) p; r〉φ,∆
b complex

Guards of conditionals/loops always evaluated (hence: side effect-free)
before conditional/unwind rules applied

Formal Specification and Verification: Java DL B. Beckert 24 / 39

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈π try ξp catch(e) q finally r; ω〉φ

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒ 〈π if (e instanceof T) {try x=e;q finally r} else {r; throw e};ω〉φ
=⇒ 〈π try {throw e; p} catch(T x) q finally r; ω〉φ

Demo
lect13/exc2.key

Formal Specification and Verification: Java DL B. Beckert 26 / 39

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈π try ξp catch(e) q finally r; ω〉φ

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒ 〈π if (e instanceof T) {try x=e;q finally r} else {r; throw e};ω〉φ
=⇒ 〈π try {throw e; p} catch(T x) q finally r; ω〉φ

Demo
lect13/exc2.key

Formal Specification and Verification: Java DL B. Beckert 26 / 39

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈π try ξp catch(e) q finally r; ω〉φ

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒ 〈π if (e instanceof T) {try x=e;q finally r} else {r; throw e};ω〉φ
=⇒ 〈π try {throw e; p} catch(T x) q finally r; ω〉φ

Demo
lect13/exc2.key

Formal Specification and Verification: Java DL B. Beckert 26 / 39

Java Features in Dynamic Logic: Aliasing

Reference Aliasing

Naive alias resolution causes proof split (on o
.
= u) at each access

=⇒ o.age
.
= 1 −> 〈u.age = 2;〉o.age .

= u.age

Unnecessary case analyses

=⇒ o.age
.
= 1 −> 〈u.age = 2; o.age = 2;〉o.age .

= u.age

=⇒ o.age
.
= 1 −> 〈u.age = 2;〉u.age .

= 2

Updates avoid case analyses— Demo lect13/alias2.key

I Delayed state computation until clear what is required

I Eager simplification of updates

Formal Specification and Verification: Java DL B. Beckert 27 / 39

Java Features in Dynamic Logic: Aliasing

Reference Aliasing

Naive alias resolution causes proof split (on o
.
= u) at each access

=⇒ o.age
.
= 1 −> 〈u.age = 2;〉o.age .

= u.age

Unnecessary case analyses

=⇒ o.age
.
= 1 −> 〈u.age = 2; o.age = 2;〉o.age .

= u.age

=⇒ o.age
.
= 1 −> 〈u.age = 2;〉u.age .

= 2

Updates avoid case analyses— Demo lect13/alias2.key

I Delayed state computation until clear what is required

I Eager simplification of updates

Formal Specification and Verification: Java DL B. Beckert 27 / 39

Java Features in Dynamic Logic: Aliasing

Reference Aliasing

Naive alias resolution causes proof split (on o
.
= u) at each access

=⇒ o.age
.
= 1 −> 〈u.age = 2;〉o.age .

= u.age

Unnecessary case analyses

=⇒ o.age
.
= 1 −> 〈u.age = 2; o.age = 2;〉o.age .

= u.age

=⇒ o.age
.
= 1 −> 〈u.age = 2;〉u.age .

= 2

Updates avoid case analyses— Demo lect13/alias2.key

I Delayed state computation until clear what is required

I Eager simplification of updates

Formal Specification and Verification: Java DL B. Beckert 27 / 39

Aliasing Cont’d

Form of Java program locations

I Program variable x

I Attribute access o.a

I Array access ar[i]

Assignment rule for arbitrary Java locations

assign
Γ =⇒ U{l := t}〈π ω〉φ,∆

Γ =⇒ U〈πl = t; ω〉φ,∆

Updates in front of program formula (= current state) carried over

I Rules for applying updates complex for reference types

I Aliasing analysis causes case split: delayed using conditional terms

{o.a := t}u.a \if ({o.a := t}u .
= o) \then (t) \else ({o.a := t}u).a

Formal Specification and Verification: Java DL B. Beckert 29 / 39

Java Features in Dynamic Logic: Method Calls

Method Call with actual parameters arg0, . . . , argn

{arg0 := t0 || · · · || argn := tn || c := tc}〈c .m(arg0, . . . , argn);〉φ

where m declared as void m(T0 p0, . . . , Tn pn)

Actions of rule methodCall

I (type conformance of argi to Ti guaranteed by Java compiler)

I for each formal parameter pi of m:
declare & initialize new local variable Ti p#i =argi ;

I look up implementation class C of m and split proof
if implementation cannot be uniquely determined

I create method invocation c .m(p#0, . . . , p#n)@C

Formal Specification and Verification: Java DL B. Beckert 31 / 39

Method Calls Cont’d

Method Body Expand

1. Execute code that binds actual to formal parameters Ti p#i =argi ;

2. Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆

Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Demo
lect13/method2.key

Formal Specification and Verification: Java DL B. Beckert 33 / 39

Method Calls Cont’d

Method Body Expand

1. Execute code that binds actual to formal parameters Ti p#i =argi ;

2. Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆

Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Symbolic Execution
Only static information available, proof splitting

Demo
lect13/method2.key

Formal Specification and Verification: Java DL B. Beckert 33 / 39

Method Calls Cont’d

Method Body Expand

1. Execute code that binds actual to formal parameters Ti p#i =argi ;

2. Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆

Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Symbolic Execution
Runtime infrastructure required in calculus

Demo
lect13/method2.key

Formal Specification and Verification: Java DL B. Beckert 33 / 39

Method Calls Cont’d

Method Body Expand

1. Execute code that binds actual to formal parameters Ti p#i =argi ;

2. Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆

Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Symbolic Execution
Runtime infrastructure required in calculus

Demo
lect13/method2.key

Formal Specification and Verification: Java DL B. Beckert 33 / 39

A Round Tour of Java Features in DL Cont’d

Localisation of Fields and Method Implementation

Java has complex rules for localisation of
attributes and method implementations

I Polymorphism

I Late binding

I Scoping (class vs. instance)

I Context (static vs. runtime)

I Visibility (private, protected, public)

Use information from semantic analysis of compiler framework
Proof split into cases when implementation not statically determined

Formal Specification and Verification: Java DL B. Beckert 34 / 39

A Round Tour of Java Features in DL Cont’d

Null pointer exceptions

There are no “exceptions” in FOL: I total on FSym

Need to model possibility that o
.
=null in o.a

I KeY creates PO for ! o
.
=null upon each field access

I Can be switched off with option nullPointerPolicy

Formal Specification and Verification: Java DL B. Beckert 35 / 39

A Round Tour of Java Features in DL Cont’d

Object initialization

Java has complex rules for object initialization

I Chain of constructor calls until Object

I Implicit calls to super()

I Visbility issues

I Initialization sequence

Coding of initialization rules in methods <createObject>(), <init>(),. . .
which are then symbolically executed

Formal Specification and Verification: Java DL B. Beckert 36 / 39

A Round Tour of Java Features in DL Cont’d

Formal specification of Java API

How to perform symbolic execution when Java API method is called?

1. API method has reference implementation in Java
Call method and execute symbolically

Problem Reference implementation not always available
Problem Too expensive

2. Use JML contract of API method:

2.1 Show that requires clause is satisfied
2.2 Obtain postcondition from ensures clause
2.3 Delete updates with modifiable locations from symbolic state

Java Card API in JML or DL

DL version available in KeY, JML work in progress See W. Mostowski

www.cs.ru.nl/~woj/software/software.html

Formal Specification and Verification: Java DL B. Beckert 37 / 39

www.cs.ru.nl/~woj/software/software.html

A Round Tour of Java Features in DL Cont’d

Formal specification of Java API

How to perform symbolic execution when Java API method is called?

1. API method has reference implementation in Java
Call method and execute symbolically

Problem Reference implementation not always available
Problem Too expensive

2. Use JML contract of API method:

2.1 Show that requires clause is satisfied
2.2 Obtain postcondition from ensures clause
2.3 Delete updates with modifiable locations from symbolic state

Java Card API in JML or DL

DL version available in KeY, JML work in progress See W. Mostowski

www.cs.ru.nl/~woj/software/software.html

Formal Specification and Verification: Java DL B. Beckert 37 / 39

www.cs.ru.nl/~woj/software/software.html

Summary

I Most Java features covered in KeY
I Several of remaining features available in experimental version

I Simplified multi-threaded JMM
I Floats

I Degree of automation for loop-free programs is high
I Proving loops requires user to provide invariant

I Automatic invariant generation sometimes possible

I Symbolic execution paradigm lets you use KeY
w/o understanding details of logic

Formal Specification and Verification: Java DL B. Beckert 38 / 39

Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic, Sections 3.6.1, 3.6.2,
3.6.5, 3.6.7

Recommended

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic, Section 3.9

Formal Specification and Verification: Java DL B. Beckert 39 / 39

	Java Type Hierarchy
	Modeling OO Programs
	Self
	Object Creation
	Quantified Updates
	Round Tour
	Java Programs
	Arrays
	Side Effects
	Abrupt Termination
	Aliasing
	Method Calls
	Null Pointers
	Initialization
	API
	API

	Summary
	Literature

