
Formal Specification and Verification
Proof Obligations

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at
Chalmers University, Göteborg

Formal Specification and Verification: Proof Obligations B. Beckert 1 / 55

This Part

making the connection between

JML

and

Dynamic Logic / KeY

I generating,

I understanding,

I and proving

DL proof obligations from JML specifications

Formal Specification and Verification: Proof Obligations B. Beckert 2 / 55

This Part

making the connection between

JML

and

Dynamic Logic / KeY

I generating,

I understanding,

I and proving

DL proof obligations from JML specifications

Formal Specification and Verification: Proof Obligations B. Beckert 2 / 55

This Part

making the connection between

JML

and

Dynamic Logic / KeY

I generating,

I understanding,

I and proving

DL proof obligations from JML specifications

Formal Specification and Verification: Proof Obligations B. Beckert 2 / 55

This Part

making the connection between

JML

and

Dynamic Logic / KeY

I generating,

I understanding,

I and proving

DL proof obligations from JML specifications

Formal Specification and Verification: Proof Obligations B. Beckert 2 / 55

Tutorial Example

we follow ‘KeY Quicktour for JML’ (cited below as [KQJ])

scenario: simple PayCard

Formal Specification and Verification: Proof Obligations B. Beckert 3 / 55

Inspecting JML Specification

inspect quicktour/jml/paycard/PayCard.java

follow [KQJ, 2.2]

Formal Specification and Verification: Proof Obligations B. Beckert 4 / 55

New JML Feature I: Nested Specification Cases

method charge() has nested specification case:

@ public normal_behavior

@ requires amount>0;
@ {|
@ requires amount+balance<limit && isValid()==true;
@ ensures \result == true;
@ ensures balance == amount + \old(balance);
@ assignable balance;
@
@ also

@
@ requires amount + balance >= limit;
@ ensures \result == false;
@ ensures unsuccessfulOperations
@ == \old(unsuccessfulOperations) + 1;
@ assignable unsuccessfulOperations;
@ |}
Formal Specification and Verification: Proof Obligations B. Beckert 6 / 55

Nested Specification Cases

nested specification cases allow to factor out common preconditions

@ public normal_behavior

@ requires R;
@ {|
@ requires R1;
@ ensures E1;
@ assignable A1;
@
@ also

@
@ requires R2;
@ ensures E2;
@ assignable A2;
@ |}

expands to ... (next page)

Formal Specification and Verification: Proof Obligations B. Beckert 8 / 55

Nested Specification Cases

(previous page) ... expands to

@ public normal_behavior

@ requires R;
@ requires R1;
@ ensures E1;
@ assignable A1;
@
@ also

@
@ public normal_behavior

@ requires R;
@ requires R2;
@ ensures E2;
@ assignable A2;

Formal Specification and Verification: Proof Obligations B. Beckert 10 / 55

Nested Specification Cases

@ public normal_behavior

@ requires amount>0;
@ {|
@ requires amount+balance<limit && isValid()==true;
@ ensures \result == true;
@ ensures balance == amount + \old(balance);
@ assignable balance;
@
@ also

@
@ requires amount + balance >= limit;
@ ensures \result == false;
@ ensures unsuccessfulOperations
@ == \old(unsuccessfulOperations) + 1;
@ assignable unsuccessfulOperations;
@ |}
expands to ... (next page)
Formal Specification and Verification: Proof Obligations B. Beckert 12 / 55

Nested Specification Cases

(previous page) ... expands to

@ public normal_behavior

@ requires amount>0;
@ requires amount+balance<limit && isValid()==true;
@ ensures \result == true;
@ ensures balance == amount + \old(balance);
@ assignable balance;
@
@ also

@
@ public normal_behavior

@ requires amount>0;
@ requires amount + balance >= limit;
@ ensures \result == false;
@ ensures unsuccessfulOperations
@ == \old(unsuccessfulOperations) + 1;
@ assignable unsuccessfulOperations;
Formal Specification and Verification: Proof Obligations B. Beckert 14 / 55

New JML Feature II: assignable \nothing

method charge() has exceptional behavior case:

@ public exceptional_behavior

@ requires amount <= 0;
@ assignable \nothing;

assignable \nothing prohibits side effects

difference to pure:

I pure also prohibits non-termination

I assignable clause is local to specification case
(here: local to exceptional_behavior)

Formal Specification and Verification: Proof Obligations B. Beckert 16 / 55

New JML Feature II: assignable \nothing

method charge() has exceptional behavior case:

@ public exceptional_behavior

@ requires amount <= 0;
@ assignable \nothing;

assignable \nothing prohibits side effects

difference to pure:

I pure also prohibits non-termination

I assignable clause is local to specification case
(here: local to exceptional_behavior)

Formal Specification and Verification: Proof Obligations B. Beckert 16 / 55

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover
I in quicktour/jml, open paycard
I select charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)
I select contract which modifies balance

(in JML: modifies synonymous for assignable)
I Current Goal pane displays proof obligation as DL sequent

Formal Specification and Verification: Proof Obligations B. Beckert 17 / 55

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover
I in quicktour/jml, open paycard
I select charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)
I select contract which modifies balance

(in JML: modifies synonymous for assignable)
I Current Goal pane displays proof obligation as DL sequent

Formal Specification and Verification: Proof Obligations B. Beckert 17 / 55

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover
I in quicktour/jml, open paycard
I select charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)
I select contract which modifies balance

(in JML: modifies synonymous for assignable)
I Current Goal pane displays proof obligation as DL sequent

Formal Specification and Verification: Proof Obligations B. Beckert 17 / 55

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover
I in quicktour/jml, open paycard
I select charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)

I select contract which modifies balance
(in JML: modifies synonymous for assignable)

I Current Goal pane displays proof obligation as DL sequent

Formal Specification and Verification: Proof Obligations B. Beckert 17 / 55

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover
I in quicktour/jml, open paycard
I select charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)
I select contract which modifies balance

(in JML: modifies synonymous for assignable)
I Current Goal pane displays proof obligation as DL sequent

Formal Specification and Verification: Proof Obligations B. Beckert 17 / 55

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover
I in quicktour/jml, open paycard
I select charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)
I select contract which modifies balance

(in JML: modifies synonymous for assignable)

I Current Goal pane displays proof obligation as DL sequent

Formal Specification and Verification: Proof Obligations B. Beckert 17 / 55

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover
I in quicktour/jml, open paycard
I select charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)
I select contract which modifies balance

(in JML: modifies synonymous for assignable)
I Current Goal pane displays proof obligation as DL sequent

Formal Specification and Verification: Proof Obligations B. Beckert 17 / 55

Generating Proof Obligations

for loading more proof obligations:
re-open Proof Obligation Browser under Tools menu

generate EnsuresPost PO for normal behavior of isValid()

generate EnsuresPost PO for exceptional behavior of charge()

generate PreservesOwnInv PO for charge()

expressing that charge() preserves all invariants (of its own class)

follow [KQJ, 4.3.1+4.3.2]

Formal Specification and Verification: Proof Obligations B. Beckert 18 / 55

Generating Proof Obligations

for loading more proof obligations:
re-open Proof Obligation Browser under Tools menu

generate EnsuresPost PO for normal behavior of isValid()

generate EnsuresPost PO for exceptional behavior of charge()

generate PreservesOwnInv PO for charge()

expressing that charge() preserves all invariants (of its own class)

follow [KQJ, 4.3.1+4.3.2]

Formal Specification and Verification: Proof Obligations B. Beckert 18 / 55

Generating Proof Obligations

for loading more proof obligations:
re-open Proof Obligation Browser under Tools menu

generate EnsuresPost PO for normal behavior of isValid()

generate EnsuresPost PO for exceptional behavior of charge()

generate PreservesOwnInv PO for charge()

expressing that charge() preserves all invariants (of its own class)

follow [KQJ, 4.3.1+4.3.2]

Formal Specification and Verification: Proof Obligations B. Beckert 18 / 55

Generating Proof Obligations

for loading more proof obligations:
re-open Proof Obligation Browser under Tools menu

generate EnsuresPost PO for normal behavior of isValid()

generate EnsuresPost PO for exceptional behavior of charge()

generate PreservesOwnInv PO for charge()

expressing that charge() preserves all invariants (of its own class)

follow [KQJ, 4.3.1+4.3.2]

Formal Specification and Verification: Proof Obligations B. Beckert 18 / 55

Translating JML to POs in DL

in the following:

principles of translating JML to proof obligations in DL

I issues in translating arithmetic expressions

I translating this

I identifying the method’s implementation

I translating boolean JML expressions to first-order logic formulas

I translating preconditions

I translating class invariants

I translating postconditions

I storing \old fields prior to method invocation

I storing actual parameters prior to method invocation

I expressing that ’exceptions are (not) thrown’

I putting everything together

Formal Specification and Verification: Proof Obligations B. Beckert 19 / 55

Translating JML to POs in DL

WARNING:

following presentation is

I incomplete

I not fully precise

I simplifying

I omitting details/complications

I deviating from exact implementation in KeY

aim of the following:

enable you to read/understand proof obligations

(notational remark: stick to ASCII syntax of KeY logic in this lecture)

Formal Specification and Verification: Proof Obligations B. Beckert 20 / 55

Translating JML to POs in DL

WARNING:

following presentation is

I incomplete

I not fully precise

I simplifying

I omitting details/complications

I deviating from exact implementation in KeY

aim of the following:

enable you to read/understand proof obligations

(notational remark: stick to ASCII syntax of KeY logic in this lecture)

Formal Specification and Verification: Proof Obligations B. Beckert 20 / 55

Translating JML to POs in DL

WARNING:

following presentation is

I incomplete

I not fully precise

I simplifying

I omitting details/complications

I deviating from exact implementation in KeY

aim of the following:

enable you to read/understand proof obligations

(notational remark: stick to ASCII syntax of KeY logic in this lecture)

Formal Specification and Verification: Proof Obligations B. Beckert 20 / 55

Issues on Translating Arithmetic Expressions

often:

I KeY replaces arithmetic Java operators by generalized operators,
generic towards various integer semantics (Java, Math),
example: “+” becomes “javaAddInt”

I KeY inserts casts like (jint),
needed for type hierarchy among primitive types,
example: “0” becomes “(jint)(0)”

(no need to memorize this)

Formal Specification and Verification: Proof Obligations B. Beckert 21 / 55

Issues on Translating Arithmetic Expressions

often:

I KeY replaces arithmetic Java operators by generalized operators,
generic towards various integer semantics (Java, Math),
example: “+” becomes “javaAddInt”

I KeY inserts casts like (jint),
needed for type hierarchy among primitive types,
example: “0” becomes “(jint)(0)”

(no need to memorize this)

Formal Specification and Verification: Proof Obligations B. Beckert 21 / 55

Translating this

both

I explicit

I implicit

this reference translated to self

e.g., given class

public class MyClass {
...
private int f;
...

}

I f translated to self.f

I this.f translated to self.f

Formal Specification and Verification: Proof Obligations B. Beckert 23 / 55

Translating this

both

I explicit

I implicit

this reference translated to self

e.g., given class

public class MyClass {
...
private int f;
...

}

I f translated to self.f

I this.f translated to self.f

Formal Specification and Verification: Proof Obligations B. Beckert 23 / 55

Translating this

both

I explicit

I implicit

this reference translated to self

e.g., given class

public class MyClass {
...
private int f;
...

}

I f translated to self.f

I this.f translated to self.f

Formal Specification and Verification: Proof Obligations B. Beckert 23 / 55

Identifying the Method’s Implementation

Java’s dynamic dispatch selects a method’s implementation at runtime

for a method call m(args),
KeY models selection of implementation from package.Class by
m(args)@package.Class

example:

charge(x)@paycard.PayCard
executes class paycard.PayCard’s implementation of method call

charge(x)

Formal Specification and Verification: Proof Obligations B. Beckert 24 / 55

Identifying the Method’s Implementation

Java’s dynamic dispatch selects a method’s implementation at runtime

for a method call m(args),
KeY models selection of implementation from package.Class by
m(args)@package.Class

example:

charge(x)@paycard.PayCard
executes class paycard.PayCard’s implementation of method call

charge(x)

Formal Specification and Verification: Proof Obligations B. Beckert 24 / 55

Identifying the Method’s Implementation

Java’s dynamic dispatch selects a method’s implementation at runtime

for a method call m(args),
KeY models selection of implementation from package.Class by
m(args)@package.Class

example:

charge(x)@paycard.PayCard
executes class paycard.PayCard’s implementation of method call

charge(x)

Formal Specification and Verification: Proof Obligations B. Beckert 24 / 55

Translating Boolean JML Expressions

first-order logic treated fundamentally different in JML and KeY logic

JML

I formulas no separate syntactic category

I instead:
Java’s boolean expressions extended with first-order concepts
(i.p. quantifiers)

KeY logic

I formulas and expressions completely separate

I truth constants true, false are formulas,
boolean constants TRUE, FALSE are expressions

I atomic formulas take expressions as arguments; e.g.:
I x - y < 5
I b = TRUE

Formal Specification and Verification: Proof Obligations B. Beckert 25 / 55

F Translates boolean JML Expressions to Formulas

F(v) = v = TRUE
F(f) = T (f) = TRUE
F(m()) = T (m)() = TRUE
F(!b 0) = !F(b 0)
F(b 0 && b 1) = F(b 0) & F(b 1)
F(b 0 || b 1) = F(b 0) | F(b 1)
F(b 0 ==> b 1) = F(b 0) -> F(b 1)
F(b 0 <==> b 1) = F(b 0) <-> F(b 1)
F(e 0 == e 1) = E(e 0) = E(e 1)
F(e 0 != e 1) = !E(e 0) = E(e 1)
F(e 0 >= e 1) = E(e 0) >= E(e 1)

v/f/m() boolean variables/fields/pure methods
b 0, b 1 boolean JML expressions
e 0, e 1 Java expressions

T may add ‘self.’ or ‘@ClassName’ (see pp.16,17)
E may add casts, transform operators (see p.15)
Formal Specification and Verification: Proof Obligations B. Beckert 27 / 55

F Translates boolean JML Expressions to Formulas

F((\forall T x; e 0)) = \forall T x;
!x=null -> F(e 0)

F((\exists T x; e 0)) = \exists T x;
!x=null & F(e 0)

F((\forall T x; e 0; e 1)) = \forall T x;
!x=null & F(e 0)

-> F(e 1)

F((\exists T x; e 0; e 1)) = \exists T x;
!x=null & F(e 0) & F(e 1)

Formal Specification and Verification: Proof Obligations B. Beckert 29 / 55

Translating Preconditions

if selected contract Contr has preconditions

@ requires b_1;
@ ...
@ requires b_n;

they are translated to

PRE(Contr)
=

F(b_1) & ... & F(b_n)

Formal Specification and Verification: Proof Obligations B. Beckert 31 / 55

Translating Preconditions

if selected contract Contr has preconditions

@ requires b_1;
@ ...
@ requires b_n;

they are translated to

PRE(Contr)
=

F(b_1) & ... & F(b_n)

Formal Specification and Verification: Proof Obligations B. Beckert 31 / 55

Translating Class Invariants

the invariant

class C {
...
//@ invariant inv_i;
...

}

is translated to

INV(inv_i)

=

\forall C o; ((o.<created> = TRUE & !o = null) ->
{self:=o}F(inv_i))

Formal Specification and Verification: Proof Obligations B. Beckert 33 / 55

Translating Class Invariants

the invariant

class C {
...
//@ invariant inv_i;
...

}

is translated to

INV(inv_i)

=

\forall C o; ((o.<created> = TRUE & !o = null) ->
{self:=o}F(inv_i))

Formal Specification and Verification: Proof Obligations B. Beckert 33 / 55

Translating Postconditions

if selected contract Contr has postconditions

@ ensures b_1;
@ ...
@ ensures b_n;

they are translated to

POST (Contr)
=

F(b_1) & ... & F(b_n)

special treatment of expressions in post-condition: see next slide

Formal Specification and Verification: Proof Obligations B. Beckert 35 / 55

Translating Postconditions

if selected contract Contr has postconditions

@ ensures b_1;
@ ...
@ ensures b_n;

they are translated to

POST (Contr)
=

F(b_1) & ... & F(b_n)

special treatment of expressions in post-condition: see next slide

Formal Specification and Verification: Proof Obligations B. Beckert 35 / 55

Translating Postconditions

if selected contract Contr has postconditions

@ ensures b_1;
@ ...
@ ensures b_n;

they are translated to

POST (Contr)
=

F(b_1) & ... & F(b_n)

special treatment of expressions in post-condition: see next slide

Formal Specification and Verification: Proof Obligations B. Beckert 35 / 55

Translating Expressions in Postconditions

below, we assume the following assignable clause

@ assignable <assignable_fields> ;

translating expressions in postconditions (interesting cases only):

E(\result) = result

E(\old(e)) = Eold(e)

Eold defined like E , with the exception of:

Eold(e.f) = fAtPre(Eold(e))
Eold(f) = fAtPre(self)

for f ∈ <assignable_fields>

‘fAtPre’ meant to refer to field ‘f’ in the pre-state

Formal Specification and Verification: Proof Obligations B. Beckert 37 / 55

Translating Expressions in Postconditions

below, we assume the following assignable clause

@ assignable <assignable_fields> ;

translating expressions in postconditions (interesting cases only):

E(\result) = result

E(\old(e)) = Eold(e)

Eold defined like E , with the exception of:

Eold(e.f) = fAtPre(Eold(e))
Eold(f) = fAtPre(self)

for f ∈ <assignable_fields>

‘fAtPre’ meant to refer to field ‘f’ in the pre-state

Formal Specification and Verification: Proof Obligations B. Beckert 37 / 55

Translating Expressions in Postconditions

below, we assume the following assignable clause

@ assignable <assignable_fields> ;

translating expressions in postconditions (interesting cases only):

E(\result) = result

E(\old(e)) = Eold(e)

Eold defined like E , with the exception of:

Eold(e.f) = fAtPre(Eold(e))
Eold(f) = fAtPre(self)

for f ∈ <assignable_fields>

‘fAtPre’ meant to refer to field ‘f’ in the pre-state

Formal Specification and Verification: Proof Obligations B. Beckert 37 / 55

Storing Pre-State of a Field

given an assignable field f of class C

class C {
...
private T f;
...

}

translation of postcondition replaced f in \old(..) by fAtPre (p.24)
left to do: store pre-state values of f in fAtPre

ST ORE(f)
=

\for C o; fAtPre(o) := o.f

note: not a formula, but a quantified update

Formal Specification and Verification: Proof Obligations B. Beckert 39 / 55

Storing Pre-State of a Field

given an assignable field f of class C

class C {
...
private T f;
...

}

translation of postcondition replaced f in \old(..) by fAtPre (p.24)
left to do: store pre-state values of f in fAtPre

ST ORE(f)
=

\for C o; fAtPre(o) := o.f

note: not a formula, but a quantified update

Formal Specification and Verification: Proof Obligations B. Beckert 39 / 55

Storing Pre-State of a Field

given an assignable field f of class C

class C {
...
private T f;
...

}

translation of postcondition replaced f in \old(..) by fAtPre (p.24)
left to do: store pre-state values of f in fAtPre

ST ORE(f)
=

\for C o; fAtPre(o) := o.f

note: not a formula, but a quantified update

Formal Specification and Verification: Proof Obligations B. Beckert 39 / 55

Storing Pre-State of a Field

given an assignable field f of class C

class C {
...
private T f;
...

}

translation of postcondition replaced f in \old(..) by fAtPre (p.24)
left to do: store pre-state values of f in fAtPre

ST ORE(f)
=

\for C o; fAtPre(o) := o.f

note: not a formula, but

a quantified update

Formal Specification and Verification: Proof Obligations B. Beckert 39 / 55

Storing Pre-State of a Field

given an assignable field f of class C

class C {
...
private T f;
...

}

translation of postcondition replaced f in \old(..) by fAtPre (p.24)
left to do: store pre-state values of f in fAtPre

ST ORE(f)
=

\for C o; fAtPre(o) := o.f

note: not a formula, but a quantified update

Formal Specification and Verification: Proof Obligations B. Beckert 39 / 55

Storing Pre-State of All Assignable Fields

if selected contract Contr has preconditions

@ assignable f_1, ..., f_n;

then pre-state of all assignable fields can be stored by

one parallel update:

ST ORE(Contr)
=

{ ST ORE(f_1) || ... || ST ORE(f_n) }

Formal Specification and Verification: Proof Obligations B. Beckert 41 / 55

Storing Pre-State of All Assignable Fields

if selected contract Contr has preconditions

@ assignable f_1, ..., f_n;

then pre-state of all assignable fields can be stored by
one parallel update:

ST ORE(Contr)
=

{ ST ORE(f_1) || ... || ST ORE(f_n) }

Formal Specification and Verification: Proof Obligations B. Beckert 41 / 55

Storing Pre-State of All Assignable Fields

if selected contract Contr has preconditions

@ assignable f_1, ..., f_n;

then pre-state of all assignable fields can be stored by
one parallel update:

ST ORE(Contr)
=

{ ST ORE(f_1) || ... || ST ORE(f_n) }

Formal Specification and Verification: Proof Obligations B. Beckert 41 / 55

Expressing Normal Termination

how can you express in DL:
method call m() will not throw an exception

(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> exc = null

note difference:

I Java assignments

I equation, i.e., formula (in KeY output format)

Formal Specification and Verification: Proof Obligations B. Beckert 43 / 55

Expressing Normal Termination

how can you express in DL:
method call m() will not throw an exception
(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> exc = null

note difference:

I Java assignments

I equation, i.e., formula (in KeY output format)

Formal Specification and Verification: Proof Obligations B. Beckert 43 / 55

Expressing Normal Termination

how can you express in DL:
method call m() will not throw an exception
(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> exc = null

note difference:

I Java assignments

I equation, i.e., formula (in KeY output format)

Formal Specification and Verification: Proof Obligations B. Beckert 43 / 55

Expressing Normal Termination

how can you express in DL:
method call m() will not throw an exception
(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> exc = null

note difference:

I Java assignments

I equation, i.e., formula (in KeY output format)

Formal Specification and Verification: Proof Obligations B. Beckert 43 / 55

Expressing Exceptional Termination

how can you express in DL:
method call m() will throw an exception

(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> !exc = null & <typing of exc>

Formal Specification and Verification: Proof Obligations B. Beckert 45 / 55

Expressing Exceptional Termination

how can you express in DL:
method call m() will throw an exception
(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> !exc = null & <typing of exc>

Formal Specification and Verification: Proof Obligations B. Beckert 45 / 55

Expressing Exceptional Termination

how can you express in DL:
method call m() will throw an exception
(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> !exc = null

& <typing of exc>

Formal Specification and Verification: Proof Obligations B. Beckert 45 / 55

Expressing Exceptional Termination

how can you express in DL:
method call m() will throw an exception
(if method body from class C in package p is invoked)

\<{ exc = null;
try {

m()@p.C;
} catch (java.lang.Throwable e) {
exc = e;

}
}\> !exc = null & <typing of exc>

Formal Specification and Verification: Proof Obligations B. Beckert 45 / 55

PO for Normal Behavior Contract

PO for a normal behavior contract Contr for void method m(),
with chosen assumed invariants inv_1, ..., inv_n

==>
INV(inv_1)

& ...
& INV(inv_n)
& PRE(Contr)

-> ST ORE(Contr)
\<{ exc = null;

try {
m()@p.C;

} catch (java.lang.Throwable e) {
exc = e;

}
}\> exc = null & POST (Contr)

Formal Specification and Verification: Proof Obligations B. Beckert 47 / 55

PO for Normal Behavior Allowing Non-Termination

PO for a normal behavior contract Contr for method m(),
where Contr has clause diverges true;

==>
INV(inv_1)

& ...
& INV(inv_n)
& PRE(Contr)

-> ST ORE(Contr)
\[{ exc = null;

try {
m()@p.C;

} catch (java.lang.Throwable e) {
exc = e;

}
}\] exc = null & POST (Contr)

Formal Specification and Verification: Proof Obligations B. Beckert 49 / 55

PO for Normal Behavior of Non-Void Method

PO for a normal behavior contract Contr for non-void method m(),

==>
INV(inv_1)

& ...
& INV(inv_n)
& PRE(Contr)

-> ST ORE(Contr)
\<{ exc = null;

try {
result = m()@p.C;

} catch (java.lang.Throwable e) {
exc = e;

}
}\> exc = null & POST (Contr)

recall: POST (Contr) translated \result to result (p.24)

Formal Specification and Verification: Proof Obligations B. Beckert 51 / 55

PO for Normal Behavior of Non-Void Method

PO for a normal behavior contract Contr for non-void method m(),

==>
INV(inv_1)

& ...
& INV(inv_n)
& PRE(Contr)

-> ST ORE(Contr)
\<{ exc = null;

try {
result = m()@p.C;

} catch (java.lang.Throwable e) {
exc = e;

}
}\> exc = null & POST (Contr)

recall: POST (Contr) translated \result to result (p.24)

Formal Specification and Verification: Proof Obligations B. Beckert 51 / 55

PO for Preserving Invariants

assume method m() has contracts Contr1, . . ., Contr j

PO stating that:
Invariants inv_1, ..., inv_n are preserved

in all cases covered by a contract.

==>
INV(inv_1) & ... & INV(inv_n)

& (PRE(Contr1) | ... | PRE(Contr1))
-> \[{ exc = null;

try {
m()@p.C;

} catch (java.lang.Throwable e) {
exc = e;

}
}\] INV(inv_1) & ... & INV(inv_n)

Formal Specification and Verification: Proof Obligations B. Beckert 53 / 55

Examples

don’t fit on slide: execute quicktour with KeY instead

Formal Specification and Verification: Proof Obligations B. Beckert 54 / 55

Literature for this Lecture

Essential

KeY Quicktour

Formal Specification and Verification: Proof Obligations B. Beckert 55 / 55

	Proof Obligations
	Tutorial Example
	Generating Proof Obligations
	Translating JML to DL
	Schematic POs
	Literature

