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Loop Invariants

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if (b) { p; while (b) p} ω]φ,∆

Γ =⇒ U [π while (b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×

(and don’t make any plans for the rest of the day)

I an unknown number of iterations?

We need an invariant rule (or some other form of induction)
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Loop Invariants Cont’d

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop guard and body

I Consequence: if Inv was valid at start of the loop, then it still holds
after arbitrarily many loop iterations

I If the loop terminates at all, then Inv holds afterwards

I Encode the desired postcondition after loop into Inv

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b

.
= TRUE =⇒ [p]Inv (preserved)

Inv , b
.
= FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while (b) p ω]φ,∆
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Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b

.
= TRUE =⇒ [p]Inv (preserved)

Inv , b
.
= FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while (b) p ω]φ,∆

I Context Γ, ∆, U must be omitted in 2nd and 3rd premise:

Γ, ∆ in general don’t hold in state defined by U
2nd premise Inv must be invariant for any state, not only U
3rd premise We don’t know the state after the loop exits

I But: context contains (part of) precondition and class invariants

I Required context information must be added to loop invariant Inv
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Example

Precondition: ! a
.
= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀ int x ; (0 ≤ x < a.length −> a[x]
.
= 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x < i −> a[x]
.
= 1)

& ! a
.
= null

& ClassInv ′
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Keeping the Context

I Want to keep part of the context that is unmodified by loop

I assignable clauses for loops can tell what might be modified

@ assignable i, a[*];

I How to erase all values of assignable locations in formula Γ ?

Analogous situation: ∀-Right quantifier rule =⇒ ∀ x ; φ
Replace x with a fresh constant *

To change value of program location use update, not substitution

I Anonymising updates V erase information about modified locations

V = {i := * || \for x ; a[x] := *}
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Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (initially valid)
Γ =⇒ UV(Inv & b

.
= TRUE −> [p]Inv),∆ (preserved)

Γ =⇒ UV(Inv & b
.
= FALSE −> [π ω]φ),∆ (use case)

Γ =⇒ U [π while (b) p ω]φ,∆

I Context is kept as far as possible

I Invariant does not need to include unmodified locations
I For assignable \everything (the default):

I V = {∗ := ∗} wipes out all information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause
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Example with Improved Invariant Rule

Precondition: ! a
.
= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀ int x ; (0 ≤ x < a.length −> a[x]
.
= 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x < i −> a[x]
.
= 1)
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Example in JML/Java— Demo

public int[] a;
/*@ public normal_behavior

@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true;
@*/

public void m() {
int i = 0;
/*@ loop_invariant

@ (0 <= i && i <= a.length &&
@ (\forall int x; 0<=x && x<i; a[x]==1));
@ assignable i, a[*];
@*/
while(i < a.length) {

a[i] = 1;
i++;

}
}Formal Specification and Verification: Loops B. Beckert 17 / 22



Hints

Proving assignable

I The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove nonsense

I Invariant rule of KeY generates proof obligation that ensures
correctness of assignable

Setting in the KeY Prover when proving loops

I Loop treatment: Invariant

I Quantifier treatment: No Splits with Progs

I If program contains *, /:
Arithmetic treatment: DefOps

I Is search limit high enough (time out, rule apps.)?

I When proving partial correctness, add diverges true;
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Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/Java

I Remove directive diverges true;

I Add directive decreasing v; to loop invariant

I KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example (Same loop as above)

@ decreasing a.length - i;
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Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic (Section 3.7)
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