Formal Specification and Verification
 Reasoning about Programs with Loops

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at Chalmers University, Göteborg

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with. .

- 0 iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with. .

- 0 iterations? Unwind $1 \times$

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with. .

- 0 iterations? Unwind $1 \times$
- 10 iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with. .

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
(and don't make any plans for the rest of the day)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) p\} } \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if (b) }\{\mathrm{p} ; \text { while (b) } \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \ln v, \Delta \quad \text { (initially valid) }
$$

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \ln v, \Delta & (\text { initially valid) } \\
\operatorname{Inv}, b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \\
\text { (preserved })
\end{array}
$$

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \ln v, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \text { (preserved) } \\
\begin{array}{c}
\operatorname{In} v, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi
\end{array} & \text { (use case) } \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
\end{array}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { loopInvariant } \begin{array}{cc}
\operatorname{In} v, b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \text { (preserved) } \\
\begin{array}{l}
\operatorname{In} v, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
\end{array} & \text { (use case) }
\end{array}
\end{array}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \text { (preserved) } \\
\text { looplnvariant } \begin{array}{c}
\text { Inv, } b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
\end{array} & \text { (use case) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3 rd premise:
Γ, Δ in general don't hold in state defined by \mathcal{U}
2nd premise Inv must be invariant for any state, not only \mathcal{U} 3rd premise We don't know the state after the loop exits

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{lnv} & \text { (preserved) } \\
\text { loopInvariant } \begin{array}{c}
\text { Inv, } b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
\end{array} & \text { (use case) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3 rd premise:
Γ, Δ in general don't hold in state defined by \mathcal{U}
2nd premise Inv must be invariant for any state, not only \mathcal{U} 3rd premise We don't know the state after the loop exits
- But: context contains (part of) precondition and class invariants

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \ln v, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{lnv} & \text { (preserved) } \\
\text { loopInvariant } \begin{array}{c}
\ln v, b \doteq \text { FALSE } \Longrightarrow[\pi \omega] \phi \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
\end{array} & \text { (use case) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3 rd premise:
Γ, Δ in general don't hold in state defined by \mathcal{U}
2nd premise Inv must be invariant for any state, not only \mathcal{U} 3rd premise We don't know the state after the loop exits
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant Inv

Example

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example

Precondition: $\mathrm{l} \mathrm{a} \doteq$ null

```
int i = 0;
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```


Example

Precondition: ! $\mathrm{a} \doteq$ null

```
int i = 0;
while(i < a.length) \{
        a[i] = 1;
        i++;
\}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Example

Precondition: $\mathrm{a} \mathrm{a} \doteq$ null

```
int i = 0;
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad \& \quad i \leq a . l e n g t h$

Example

Precondition: $\mathrm{a} \mathrm{a} \doteq$ null

```
int i \(=0\);
while(i < a.length) \{
    \(a[i]=1\);
    i++;
\}
```

Postcondition: $\forall \operatorname{int} x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length
\& \forall int $x ;(0 \leq x<i \rightarrow a[x] \doteq 1)$

Example

Precondition: ! $\mathrm{a} \doteq$ null

```
int i \(=0\);
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \text { int } x ;(0 \leq x<\mathrm{i} \rightarrow \mathrm{a}[x] \doteq 1)
$$

$$
\&!a \doteq n u l l
$$

Example

Precondition: $\mathrm{a} \mathrm{a} \doteq$ null \& ClassInv

```
int i \(=0\);
while(i < a.length) \{
    \(a[i]=1\);
    i++;
\}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length
\& \forall int $x ;(0 \leq x<i \rightarrow a[x] \doteq 1)$
$\&!\mathrm{a} \doteq \mathrm{null}$
\& Classlnv'

Keeping the Context

- Want to keep part of the context that is unmodified by loop

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified

```
@ assignable i, a[*];
```


Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, a[*];
- How to erase all values of assignable locations in formula 「?

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, a[*];
- How to erase all values of assignable locations in formula 「?

Analogous situation: \forall-Right quantifier rule $\Rightarrow \forall x ; \phi$ Replace x with a fresh constant *

To change value of program location use update, not substitution

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, a[*];
- How to erase all values of assignable locations in formula 「?

Analogous situation: \forall-Right quantifier rule $\Rightarrow \forall x ; \phi$ Replace x with a fresh constant *

To change value of program location use update, not substitution

- Anonymising updates \mathcal{V} erase information about modified locations

$$
\mathcal{V}=\{i:=* \| \backslash \text { for } x ; a[x]:=*\}
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta
$$

(initially valid)

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \operatorname{TRUE} \rightarrow[\mathrm{p}] \ln v), \Delta & \text { (pritially val } \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta &
\end{array}
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially val } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \mathrm{TRUE} \rightarrow[\mathrm{p}] \operatorname{lnv}), \Delta & \text { (preserved) } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \mathrm{FALSE} \rightarrow[\pi \omega] \phi), \Delta & \text { (use case) }
\end{array}
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially val } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \operatorname{TRUE} \rightarrow[\mathrm{p}] \ln v), \Delta & \text { (preserved) } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\ln v \& b \doteq \operatorname{FALSE} \rightarrow[\pi \omega] \phi), \Delta & \text { (use case) } \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta &
\end{array}
$$

- Context is kept as far as possible
- Invariant does not need to include unmodified locations
- For assignable \everything (the default):
- $\mathcal{V}=\{*:=*\}$ wipes out all information
- Equivalent to basic invariant rule
- Avoid this! Always give a specific assignable clause

Example with Improved Invariant Rule

```
int i = 0;
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```


Example with Improved Invariant Rule

Precondition: ! $\mathrm{a} \doteq$ null

```
int i = 0;
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```


Example with Improved Invariant Rule

```
Precondition: ! \(\mathrm{a} \doteq\) null
    int i = 0;
    while(i < a.length) \{
        a[i] = 1;
        i++;
    \}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Example with Improved Invariant Rule

```
Precondition: ! \(\mathrm{a} \doteq\) null
    int i = 0;
    while(i < a.length) \{
        a[i] = 1;
        i++;
    \}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad \& \quad i \leq a . l e n g t h$

Example with Improved Invariant Rule

```
Precondition: ! a \(\doteq\) null
    int i \(=0\);
    while(i < a.length) \{
        a[i] = 1;
        i++;
    \}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad \& \quad i \leq a . l e n g t h$

$$
\& \forall \operatorname{int} x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example with Improved Invariant Rule

Precondition: $!\mathrm{a} \doteq$ null

```
int i \(=0\);
while(i < a.length) \{
a[i] = 1;
i++;
\}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \operatorname{int} x ;(0 \leq x<i \rightarrow \mathrm{a}[x] \doteq 1)
$$

Example with Improved Invariant Rule

Precondition: $\mathrm{a} \mathrm{a} \doteq$ null \& ClassInv

```
int i \(=0\);
while(i < a.length) \{
a[i] = 1;
i++;
\}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \operatorname{int} x ;(0 \leq x<i \rightarrow \mathrm{a}[x] \doteq 1)
$$

Example in JML/Java- Demo

public int[] a;
/*@ public normal_behavior
© ensures (\forall int $x ; 0<=x$ \&\& $x<a . l e n g t h ; a[x]==1$);
@ diverges true;
@*/
public void m() \{
int i $=0$;
/*@ loop_invariant
@ ($0<=$ i \&\& i <= a.length \&\&
@ (\backslash forall int $x ; 0<=x$ \&\& $x<i ; a[x]==1$)) ;
@ assignable i, a[*];
@*/
while (i < a.length) \{
$\mathrm{a}[\mathrm{i}]=1$;
i++;
\}

Hints

Proving assignable

- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable

Hints

Proving assignable

- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable

Setting in the KeY Prover when proving loops

- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /:

Arithmetic treatment: DefOps

- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Example (Same loop as above)
@ decreasing

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Example (Same loop as above)
@ decreasing a.length - i;

Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web page), Chapter 3: Dynamic Logic (Section 3.7)

