
Formal Specification and Verification
Formal Modeling with Temporal Logic

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at
Chalmers University, Göteborg

Formal Specification and Verification: Formal Modeling with TL B. Beckert 1 / 14

Beyond the Limitations of Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY

Formal Specification and Verification: Formal Modeling with TL B. Beckert 2 / 14

Beyond the Limitations of Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY

Formal Specification and Verification: Formal Modeling with TL B. Beckert 2 / 14

Beyond the Limitations of Propositional Logic

Propositional
Logic

Temporal
Logic

First-order
Logic

Dynamic
Logic

+computa
tions

+functions

+computations +functions

Spin

KeY

Formal Specification and Verification: Formal Modeling with TL B. Beckert 2 / 14

Temporal Logic

An extension of propositional logic that allows to
specify properties of sets of runs

Syntax

Based on propositional signature and syntax.

Extension with three connectives:

Always If φ is a formula then so is []φ

Sometimes If φ is a formula then so is <>φ

Until If φ and ψ are formulas then so is φ Uψ

Concrete Syntax

text book Spin

Always � []
Sometimes ♦ <>
Until U U

Formal Specification and Verification: Formal Modeling with TL B. Beckert 3 / 14

Temporal Logic— Syntax

An extension of propositional logic that allows to
specify properties of sets of runs

Syntax

Based on propositional signature and syntax.

Extension with three connectives:

Always If φ is a formula then so is []φ

Sometimes If φ is a formula then so is <>φ

Until If φ and ψ are formulas then so is φ Uψ

Concrete Syntax

text book Spin

Always � []
Sometimes ♦ <>
Until U U

Formal Specification and Verification: Formal Modeling with TL B. Beckert 3 / 14

Semantics of Temporal Logic

A run σ is an infinite chain of states

s0

I0

s1

I1

s2

I2

s3

I3

s4

I4

· · ·

Ij propositional interpretation of variables in j-th state
Write more compactly s0 s1 s2 s3 . . .

If σ = s0 s1 . . ., then σ|i denotes the suffix si si+1 . . . of σ.

Formal Specification and Verification: Formal Modeling with TL B. Beckert 4 / 14

Semantics of Temporal Logic

A run σ is an infinite chain of states

s0

I0

s1

I1

s2

I2

s3

I3

s4

I4

· · ·

Ij propositional interpretation of variables in j-th state
Write more compactly s0 s1 s2 s3 . . .

If σ = s0 s1 . . ., then σ|i denotes the suffix si si+1 . . . of σ.

Formal Specification and Verification: Formal Modeling with TL B. Beckert 4 / 14

Semantics of Temporal Logic (Cont’d)

Definition (Validity Relation)

Validity of temporal formula depends on runs σ = s0 s1 . . . for which the
formula may, or may not, hold:
σ |= p iff I0(p) = T , for p ∈ P.

σ |= !φ iff not σ |= φ (write σ 6|= φ)
σ |= φ & ψ iff σ |= φ and σ |= ψ
σ |= φ | ψ iff σ |= φ or σ |= ψ
σ |= φ −> ψ iff σ 6|= φ or σ |= ψ

Formal Specification and Verification: Formal Modeling with TL B. Beckert 5 / 14

Semantics of Temporal Logic (Cont’d)

Definition (Validity Relation)

Validity of temporal formula depends on runs σ = s0 s1 . . . for which the
formula may, or may not, hold:
σ |= p iff I0(p) = T , for p ∈ P.
σ |= !φ iff not σ |= φ (write σ 6|= φ)

σ |= φ & ψ iff σ |= φ and σ |= ψ
σ |= φ | ψ iff σ |= φ or σ |= ψ
σ |= φ −> ψ iff σ 6|= φ or σ |= ψ

Formal Specification and Verification: Formal Modeling with TL B. Beckert 5 / 14

Semantics of Temporal Logic (Cont’d)

Definition (Validity Relation)

Validity of temporal formula depends on runs σ = s0 s1 . . . for which the
formula may, or may not, hold:
σ |= p iff I0(p) = T , for p ∈ P.
σ |= !φ iff not σ |= φ (write σ 6|= φ)
σ |= φ & ψ iff σ |= φ and σ |= ψ

σ |= φ | ψ iff σ |= φ or σ |= ψ
σ |= φ −> ψ iff σ 6|= φ or σ |= ψ

Formal Specification and Verification: Formal Modeling with TL B. Beckert 5 / 14

Semantics of Temporal Logic (Cont’d)

Definition (Validity Relation)

Validity of temporal formula depends on runs σ = s0 s1 . . . for which the
formula may, or may not, hold:
σ |= p iff I0(p) = T , for p ∈ P.
σ |= !φ iff not σ |= φ (write σ 6|= φ)
σ |= φ & ψ iff σ |= φ and σ |= ψ
σ |= φ | ψ iff σ |= φ or σ |= ψ
σ |= φ −> ψ iff σ 6|= φ or σ |= ψ

Formal Specification and Verification: Formal Modeling with TL B. Beckert 5 / 14

Semantics of Temporal Logic Cont’d

s0 s1 · · · sk−1 sk · · ·

Definition (Validity Relation for Temporal Connectives)

Given a run σ = s0 s1 . . .

σ |= []φ iff σ|k |= φ for all k ≥ 0
σ |= <>φ iff σ|k |= φ for some k ≥ 0
σ |= φ Uψ iff σ|k |= ψ for some k ≥ 0, and σ|j |= φ for all 0≤j<k

Formal Specification and Verification: Formal Modeling with TL B. Beckert 6 / 14

Semantics of Temporal Logic Cont’d

s0 s1 · · · sk−1 sk · · ·

φ φ · · · φ φ · · ·

Definition (Validity Relation for Temporal Connectives)

Given a run σ = s0 s1 . . .
σ |= []φ iff σ|k |= φ for all k ≥ 0

σ |= <>φ iff σ|k |= φ for some k ≥ 0
σ |= φ Uψ iff σ|k |= ψ for some k ≥ 0, and σ|j |= φ for all 0≤j<k

Formal Specification and Verification: Formal Modeling with TL B. Beckert 6 / 14

Semantics of Temporal Logic Cont’d

s0 s1 · · · sk−1 sk · · ·

φ

Definition (Validity Relation for Temporal Connectives)

Given a run σ = s0 s1 . . .
σ |= []φ iff σ|k |= φ for all k ≥ 0
σ |= <>φ iff σ|k |= φ for some k ≥ 0

σ |= φ Uψ iff σ|k |= ψ for some k ≥ 0, and σ|j |= φ for all 0≤j<k

Formal Specification and Verification: Formal Modeling with TL B. Beckert 6 / 14

Semantics of Temporal Logic Cont’d

s0 s1 · · · sk−1 sk · · ·

φ φ · · · φ ψ

Definition (Validity Relation for Temporal Connectives)

Given a run σ = s0 s1 . . .
σ |= []φ iff σ|k |= φ for all k ≥ 0
σ |= <>φ iff σ|k |= φ for some k ≥ 0
σ |= φ Uψ iff σ|k |= ψ for some k ≥ 0, and σ|j |= φ for all 0≤j<k

Formal Specification and Verification: Formal Modeling with TL B. Beckert 6 / 14

Safety and Liveness Properties

Safety Properties

Always-formulas called safety property: something bad never happens

Let mutex be variable that is true when two process do not access a
critical resource at the same time

[] mutex expresses that simultaneous access never happens

Liveness Properties

Sometimes-formulas called liveness property: something good happens
eventually

Let s be variable that is true when a process delivers a service

<> s expresses that service is eventually provided

Formal Specification and Verification: Formal Modeling with TL B. Beckert 7 / 14

Safety and Liveness Properties

Safety Properties

Always-formulas called safety property: something bad never happens

Let mutex be variable that is true when two process do not access a
critical resource at the same time

[] mutex expresses that simultaneous access never happens

Liveness Properties

Sometimes-formulas called liveness property: something good happens
eventually

Let s be variable that is true when a process delivers a service

<> s expresses that service is eventually provided

Formal Specification and Verification: Formal Modeling with TL B. Beckert 7 / 14

Complex Properties

What does this mean?

[]<>φ

During a run the formulas φ will become true infinitely often.

Formal Specification and Verification: Formal Modeling with TL B. Beckert 8 / 14

Complex Properties

Infinitely Often

[]<>φ

During a run the formulas φ will become true infinitely often.

Formal Specification and Verification: Formal Modeling with TL B. Beckert 8 / 14

Validity Temporal Logic

Definition (Validity)

φ is valid, write |= φ, iff φ is valid in all runs σ = s0 s1

Recall that each run s0 s1 . . . essentially is an infinite sequence of
interpretations I0 I1

Formal Specification and Verification: Formal Modeling with TL B. Beckert 9 / 14

Examples

<>[]p

Valid?

No, there is a run in where it is not valid:
(! p, ! p, ! p, . . .)

Valid in some run?
Yes: (p, p, p, . . .)

[]φ −> φ (! []φ) <−> (<> !φ)

Both are valid!

I [] is reflexive

I [] and <> are dual connectives

Formal Specification and Verification: Formal Modeling with TL B. Beckert 10 / 14

Examples

<>[]p

Valid?
No, there is a run in where it is not valid:

(! p, ! p, ! p, . . .)

Valid in some run?
Yes: (p, p, p, . . .)

[]φ −> φ (! []φ) <−> (<> !φ)

Both are valid!

I [] is reflexive

I [] and <> are dual connectives

Formal Specification and Verification: Formal Modeling with TL B. Beckert 10 / 14

Examples

<>[]p

Valid?
No, there is a run in where it is not valid:
(! p, ! p, ! p, . . .)

Valid in some run?
Yes: (p, p, p, . . .)

[]φ −> φ (! []φ) <−> (<> !φ)

Both are valid!

I [] is reflexive

I [] and <> are dual connectives

Formal Specification and Verification: Formal Modeling with TL B. Beckert 10 / 14

Examples

<>[]p

Valid?
No, there is a run in where it is not valid:
(! p, ! p, ! p, . . .)

Valid in some run?

Yes: (p, p, p, . . .)

[]φ −> φ (! []φ) <−> (<> !φ)

Both are valid!

I [] is reflexive

I [] and <> are dual connectives

Formal Specification and Verification: Formal Modeling with TL B. Beckert 10 / 14

Examples

<>[]p

Valid?
No, there is a run in where it is not valid:
(! p, ! p, ! p, . . .)

Valid in some run?
Yes: (p, p, p, . . .)

[]φ −> φ (! []φ) <−> (<> !φ)

Both are valid!

I [] is reflexive

I [] and <> are dual connectives

Formal Specification and Verification: Formal Modeling with TL B. Beckert 10 / 14

Examples

<>[]p

Valid?
No, there is a run in where it is not valid:
(! p, ! p, ! p, . . .)

Valid in some run?
Yes: (p, p, p, . . .)

[]φ −> φ (! []φ) <−> (<> !φ)

Both are valid!

I [] is reflexive

I [] and <> are dual connectives

Formal Specification and Verification: Formal Modeling with TL B. Beckert 10 / 14

Examples

<>[]p

Valid?
No, there is a run in where it is not valid:
(! p, ! p, ! p, . . .)

Valid in some run?
Yes: (p, p, p, . . .)

[]φ −> φ (! []φ) <−> (<> !φ)

Both are valid!

I [] is reflexive

I [] and <> are dual connectives

Formal Specification and Verification: Formal Modeling with TL B. Beckert 10 / 14

Transition systems revisited

Definition (Transition System)

A Transition System T = (S , Ini , δ, I) is given by a set of states S , a
non-empty subset Ini ⊆ S of initial states, and a transition relation
δ ⊆ S × S , and I labeling each state s ∈ S with a propositional
interpretation Is .

Definition (Runs of Transition System)

A run of T is a is a run σ = s0 s1 . . ., with si ∈ S , such that s0 ∈ Ini and
(si , si+1) ∈ δ for all i .

Formal Specification and Verification: Formal Modeling with TL B. Beckert 11 / 14

Semantics of Temporal Logic (Cont’d)

Validity of temporal formula is extended to transition systems in the
following way:

Definition (Validity Relation)

Given a transition systems T = (S , Ini , δ, I), a temporal formula φ is
valid in T (write T |= φ) iff σ |= φ for all runs σ of T .

Formal Specification and Verification: Formal Modeling with TL B. Beckert 12 / 14

Literature for this Lecture

KeY W. Ahrendt: Using KeY. In: B. Beckert, R. Hähnle, and
P. Schmitt, editors. Verification of Object-Oriented Software:
The KeY Approach, Chapter 10, only pp 409–424, vol 4334
of LNCS. Springer, 2006.
(Access to e-version via Chalmers Library)

Ben-Ari Section 5.2.1
(Promela examples on the surface only)

Formal Specification and Verification: Formal Modeling with TL B. Beckert 13 / 14

	Temporal Logic

