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Temporal Logic

An extension of propositional logic that allows to
specify properties of sets of runs

Syntax

Based on propositional signature and syntax.

Extension with three connectives:

Always If φ is a formula then so is [ ]φ

Sometimes If φ is a formula then so is <>φ

Until If φ and ψ are formulas then so is φ Uψ

Concrete Syntax

text book Spin

Always � [ ]
Sometimes ♦ <>
Until U U
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Semantics of Temporal Logic

A run σ is an infinite chain of states

s0

I0

s1

I1

s2

I2

s3

I3

s4

I4

· · ·

Ij propositional interpretation of variables in j-th state
Write more compactly s0 s1 s2 s3 . . .

If σ = s0 s1 . . ., then σ|i denotes the suffix si si+1 . . . of σ.
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Semantics of Temporal Logic (Cont’d)

Definition (Validity Relation)

Validity of temporal formula depends on runs σ = s0 s1 . . . for which the
formula may, or may not, hold:
σ |= p iff I0(p) = T , for p ∈ P.

σ |= !φ iff not σ |= φ (write σ 6|= φ)
σ |= φ & ψ iff σ |= φ and σ |= ψ
σ |= φ | ψ iff σ |= φ or σ |= ψ
σ |= φ −> ψ iff σ 6|= φ or σ |= ψ
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Semantics of Temporal Logic Cont’d

s0 s1 · · · sk−1 sk · · ·

Definition (Validity Relation for Temporal Connectives)

Given a run σ = s0 s1 . . .

σ |= [ ]φ iff σ|k |= φ for all k ≥ 0
σ |= <>φ iff σ|k |= φ for some k ≥ 0
σ |= φ Uψ iff σ|k |= ψ for some k ≥ 0, and σ|j |= φ for all 0≤j<k
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Safety and Liveness Properties

Safety Properties

Always-formulas called safety property: something bad never happens

Let mutex be variable that is true when two process do not access a
critical resource at the same time

[ ] mutex expresses that simultaneous access never happens

Liveness Properties

Sometimes-formulas called liveness property: something good happens
eventually

Let s be variable that is true when a process delivers a service

<> s expresses that service is eventually provided
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Complex Properties

What does this mean?

[ ]<>φ

During a run the formulas φ will become true infinitely often.
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Validity Temporal Logic

Definition (Validity)

φ is valid, write |= φ, iff φ is valid in all runs σ = s0 s1 . . ..

Recall that each run s0 s1 . . . essentially is an infinite sequence of
interpretations I0 I1 . . ..
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Examples

<>[ ]p

Valid?

No, there is a run in where it is not valid:
(! p, ! p, ! p, . . .)

Valid in some run?
Yes: (p, p, p, . . .)

[ ]φ −> φ (! [ ]φ) <−> (<> !φ)

Both are valid!

I [ ] is reflexive

I [ ] and <> are dual connectives
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Transition systems revisited

Definition (Transition System)

A Transition System T = (S , Ini , δ, I) is given by a set of states S , a
non-empty subset Ini ⊆ S of initial states, and a transition relation
δ ⊆ S × S , and I labeling each state s ∈ S with a propositional
interpretation Is .

Definition (Runs of Transition System)

A run of T is a is a run σ = s0 s1 . . ., with si ∈ S , such that s0 ∈ Ini and
(si , si+1) ∈ δ for all i .
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Semantics of Temporal Logic (Cont’d)

Validity of temporal formula is extended to transition systems in the
following way:

Definition (Validity Relation)

Given a transition systems T = (S , Ini , δ, I), a temporal formula φ is
valid in T (write T |= φ) iff σ |= φ for all runs σ of T .
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Literature for this Lecture

KeY W. Ahrendt: Using KeY. In: B. Beckert, R. Hähnle, and
P. Schmitt, editors. Verification of Object-Oriented Software:
The KeY Approach, Chapter 10, only pp 409–424, vol 4334
of LNCS. Springer, 2006.
(Access to e-version via Chalmers Library)

Ben-Ari Section 5.2.1
(Promela examples on the surface only)
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