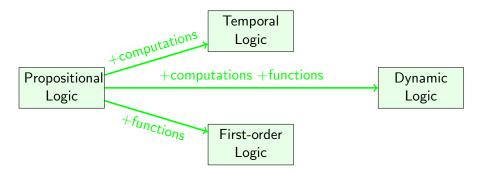
Formal Specification and Verification Formal Modeling with Temporal Logic

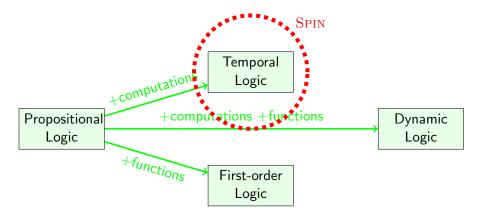
Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at Chalmers University, Göteborg

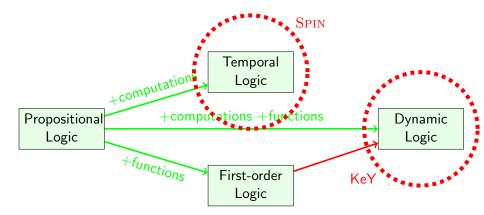
Beyond the Limitations of Propositional Logic



Beyond the Limitations of Propositional Logic



Beyond the Limitations of Propositional Logic



Temporal Logic

An extension of propositional logic that allows to specify properties of sets of runs

Temporal Logic— Syntax

An extension of propositional logic that allows to specify properties of sets of runs

Syntax

Based on propositional signature and syntax.

Extension with three connectives:

Always If ϕ is a formula then so is [] ϕ

Sometimes If ϕ is a formula then so is $<>\phi$

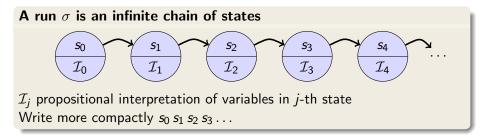
Until If ϕ and ψ are formulas then so is $\phi U \psi$

Concrete Syntax

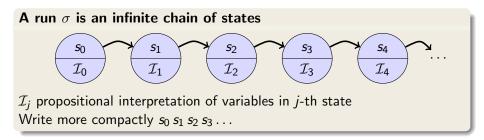
	text book	Spin
Always		[]
Sometimes	\diamond	<>
Until	\mathcal{U}	U

Formal Specification and Verification: Formal Modeling with TL

Semantics of Temporal Logic



Semantics of Temporal Logic



If $\sigma = s_0 s_1 \dots$, then $\sigma|_i$ denotes the suffix $s_i s_{i+1} \dots$ of σ .

Validity of temporal formula depends on runs $\sigma=s_0\,s_1\ldots$ for which the formula may, or may not, hold:

$$\sigma \models p$$
 iff $\mathcal{I}_{0}(p) = T$, for $p \in \mathcal{P}$.

Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$ for which the formula may, or may not, hold:

 $\sigma \models p \quad \text{iff} \quad \mathcal{I}_0(p) = T, \text{ for } p \in \mathcal{P}. \\ \sigma \models ! \phi \quad \text{iff} \quad \text{not } \sigma \models \phi \quad (\text{write } \sigma \not\models \phi)$

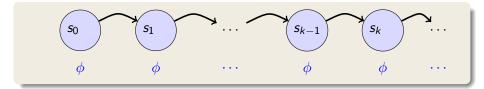
Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$ for which the formula may, or may not, hold:

 $\begin{array}{ll} \sigma \models p & \text{iff} \quad \mathcal{I}_{0}(p) = T, \text{ for } p \in \mathcal{P}. \\ \sigma \models ! \phi & \text{iff} \quad \text{not } \sigma \models \phi \quad (\text{write } \sigma \not\models \phi) \\ \sigma \models \phi \And \psi & \text{iff} \quad \sigma \models \phi \text{ and } \sigma \models \psi \end{array}$

Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$ for which the formula may, or may not, hold:

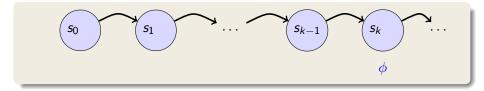
$\sigma \models \mathbf{p}$	iff	${\mathcal I}_{m 0}(p)=T$, for $p\in {\mathcal P}.$
$\sigma \models !\phi$	iff	not $\sigma \models \phi$ (write $\sigma \not\models \phi$)
$\sigma \models \phi \And \psi$	iff	$\sigma \models \phi$ and $\sigma \models \psi$
$\sigma \models \phi \mid \psi$	iff	$\sigma \models \phi \text{ or } \sigma \models \psi$
$\sigma \models \phi \mathrel{\longrightarrow} \psi$	iff	$\sigma \not\models \phi \text{ or } \sigma \models \psi$

Definition (Validity Relation for Temporal Connectives) Given a run $\sigma = s_0 s_1 \dots$



Definition (Validity Relation for Temporal Connectives)

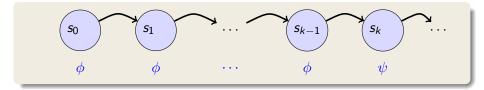
Given a run $\sigma = s_0 s_1 \dots$ $\sigma \models []\phi$ iff $\sigma|_k \models \phi$ for all $k \ge 0$



Definition (Validity Relation for Temporal Connectives)

Given a run
$$\sigma = s_0 s_1 \dots$$

 $\sigma \models []\phi$ iff $\sigma|_k \models \phi$ for all $k \ge 0$
 $\sigma \models <>\phi$ iff $\sigma|_k \models \phi$ for some $k \ge 0$



Definition (Validity Relation for Temporal Connectives)

Given a run
$$\sigma = s_0 s_1 \dots$$

 $\sigma \models []\phi$ iff $\sigma|_k \models \phi$ for all $k \ge 0$
 $\sigma \models <>\phi$ iff $\sigma|_k \models \phi$ for some $k \ge 0$
 $\sigma \models \phi U \psi$ iff $\sigma|_k \models \psi$ for some $k \ge 0$, and $\sigma|_j \models \phi$ for all $0 \le j < k$

Safety and Liveness Properties

Safety Properties

Always-formulas called safety property: something bad never happens

Let mutex be variable that is true when two process do not access a critical resource at the same time

[]mutex expresses that simultaneous access never happens

Safety and Liveness Properties

Safety Properties

Always-formulas called safety property: something bad never happens

Let mutex be variable that is true when two process do not access a critical resource at the same time

[]mutex expresses that simultaneous access never happens

Liveness Properties

Sometimes-formulas called liveness property: something good happens eventually

Let s be variable that is true when a process delivers a service

<>s expresses that service is eventually provided

Complex Properties

What does this mean?

 $[]{<}{>}\phi$

Complex Properties

Infinitely Often

 $[] <> \phi$

During a run the formulas ϕ will become true infinitely often.

Definition (Validity)

 ϕ is valid, write $\models \phi$, iff ϕ is valid in all runs $\sigma = s_0 s_1 \dots$

Recall that each run $s_0 s_1 \dots$ essentially is an infinite sequence of interpretations $\mathcal{I}_0 \mathcal{I}_1 \dots$

<>[]p

Valid?

<>[]p

Valid?

No, there is a run in where it is not valid:

<>[]p

Valid?

No, there is a run in where it is not valid: (! p, ! p, ! p, ...)

<>[]p

Valid?

No, there is a run in where it is not valid: (! p, ! p, ! p, ...)

Valid in some run?

<>[]p

Valid?

No, there is a run in where it is not valid: (! p, ! p, ! p, ...)

Valid in some run?

Yes: (p, p, p, ...)

<>[]p

Valid?

No, there is a run in where it is not valid: (! p, ! p, ! p, ...)

Valid in some run?

Yes: (p, p, p, ...)

$$[]\phi \rightarrow \phi \qquad (![]\phi) < \to (<>!\phi)$$

Both are valid!

<>[]p

Valid?

No, there is a run in where it is not valid: (! p, ! p, ! p, ...)

Valid in some run?

Yes: (p, p, p, ...)

$$[]\phi \rightarrow \phi \qquad (![]\phi) < \to (<>!\phi)$$

Both are valid!

- [] is reflexive
- [] and <> are dual connectives

Definition (Transition System)

A Transition System $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$ is given by a set of states S, a non-empty subset $Ini \subseteq S$ of initial states, and a transition relation $\delta \subseteq S \times S$, and \mathcal{I} labeling each state $s \in S$ with a propositional interpretation \mathcal{I}_s .

Definition (Runs of Transition System)

A run of \mathcal{T} is a is a run $\sigma = s_0 s_1 \dots$, with $s_i \in S$, such that $s_0 \in Ini$ and $(s_i, s_{i+1}) \in \delta$ for all *i*.

Validity of temporal formula is extended to transition systems in the following way:

Definition (Validity Relation)

Given a transition systems $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

KeY W. Ahrendt: Using KeY. In: B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented Software: The KeY Approach, Chapter 10, only pp 409–424, vol 4334 of LNCS. Springer, 2006. (Access to e-version via Chalmers Library)
Ben-Ari Section 5.2.1 (PROMELA examples on the surface only)