
Formal Specification and Verification
Modeling Distributed Systems

Bernhard Beckert

Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at
Chalmers University, Göteborg

Formal Specification and Verification: Distributed Systems B. Beckert 1 / 45

This Lecture

using Promela channels for modeling distributed systems

Formal Specification and Verification: Distributed Systems B. Beckert 2 / 45

Modeling Distributed Systems

distributed systems consist of

I nodes connected by

I communication channels

I protocols control data flow among nodes

distributed systems are very complex

models of distributed systems abstract away from details of
networks/protocols/nodes

in Promela:

I nodes modeled by Promela processes

I communication channels modeled by Promela channels

I protocols modeled by algorithm distributed over the processes

Formal Specification and Verification: Distributed Systems B. Beckert 3 / 45

Channels in Promela

in Promela, channels are first class citizens

data type chan with two operations for sending and receiving

a variable of channel type is declared by initializer:

chan name = [capacity] of {type1, ..., typen}

name name of channel variable
capacity non-negative integer constant
type i Promela data types

example:
chan ch = [2] of { mtype, byte, bool }

Formal Specification and Verification: Distributed Systems B. Beckert 5 / 45

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

creates a channel, a pointer to which is stored in name

messages communicated via the channel are n-tuples ∈ type1× ...× typen

can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

the channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Formal Specification and Verification: Distributed Systems B. Beckert 7 / 45

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

creates a channel, a pointer to which is stored in name

messages communicated via the channel are n-tuples ∈ type1× ...× typen

can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

the channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Formal Specification and Verification: Distributed Systems B. Beckert 7 / 45

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

creates a channel, a pointer to which is stored in name

messages communicated via the channel are n-tuples ∈ type1× ...× typen

can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

the channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Formal Specification and Verification: Distributed Systems B. Beckert 7 / 45

Meaning of Channels

chan name = [capacity] of {type1, ..., typen}

creates a channel, a pointer to which is stored in name

messages communicated via the channel are n-tuples ∈ type1× ...× typen

can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

the channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Formal Specification and Verification: Distributed Systems B. Beckert 7 / 45

Meaning of Channels

example:

chan ch = [2] of { mtype, byte, bool }

creates a channel, a pointer to which is stored in ch

messages communicated via ch are 3-tuples ∈ mtype × byte × bool

given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Formal Specification and Verification: Distributed Systems B. Beckert 8 / 45

Meaning of Channels

example:

chan ch = [2] of { mtype, byte, bool }

creates a channel, a pointer to which is stored in ch

messages communicated via ch are 3-tuples ∈ mtype × byte × bool

given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Formal Specification and Verification: Distributed Systems B. Beckert 8 / 45

Meaning of Channels

example:

chan ch = [2] of { mtype, byte, bool }

creates a channel, a pointer to which is stored in ch

messages communicated via ch are 3-tuples ∈ mtype × byte × bool

given, e.g., mtype {red, yellow, green},
an example message can be:

green, 20, false

ch is a buffered channel, buffering up to 2 messages

Formal Specification and Verification: Distributed Systems B. Beckert 8 / 45

Meaning of Channels

example:

chan ch = [2] of { mtype, byte, bool }

creates a channel, a pointer to which is stored in ch

messages communicated via ch are 3-tuples ∈ mtype × byte × bool

given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Formal Specification and Verification: Distributed Systems B. Beckert 8 / 45

Meaning of Channels

example:

chan ch = [2] of { mtype, byte, bool }

creates a channel, a pointer to which is stored in ch

messages communicated via ch are 3-tuples ∈ mtype × byte × bool

given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Formal Specification and Verification: Distributed Systems B. Beckert 8 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable

I expr1, ... , exprn: sequence of expressions,
where number and types match message type

I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type

I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message

I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable

I var1, ... , varn: sequence of variables,
where number and types match message type

I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type

I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn

I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn

I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn

I example: ch ? color, time, flash

Formal Specification and Verification: Distributed Systems B. Beckert 9 / 45

Scope of Channels

channels are typically declared global

global channel

I usual case
I all processes can send and/or receive messages

local channel

I rarely used
I dies with its process
I can be useful to model security issues

example:
pointer to local channel could be passed
through a global channel

Formal Specification and Verification: Distributed Systems B. Beckert 10 / 45

Client-Server

chan request = [0] of { byte };

active proctype Client0 () {
request ! 0;

}

active proctype Client1 () {
request ! 1;

}

...

Client0 and Client1 send messages 0 and 1 to request

order of sending is nondeterministic

Formal Specification and Verification: Distributed Systems B. Beckert 12 / 45

Client-Server

chan request = [0] of { byte };

active proctype Client0 () {
request ! 0;

}

active proctype Client1 () {
request ! 1;

}

...

Client0 and Client1 send messages 0 and 1 to request

order of sending is nondeterministic

Formal Specification and Verification: Distributed Systems B. Beckert 12 / 45

Client-Server

chan request = [0] of { byte };

active proctype Client0 () {
request ! 0;

}

active proctype Client1 () {
request ! 1;

}

...

Client0 and Client1 send messages 0 and 1 to request

order of sending is nondeterministic

Formal Specification and Verification: Distributed Systems B. Beckert 12 / 45

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {
byte num;
do

:: request ? num;
print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

Formal Specification and Verification: Distributed Systems B. Beckert 14 / 45

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {
byte num;
do

:: request ? num;
print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

Formal Specification and Verification: Distributed Systems B. Beckert 14 / 45

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {
byte num;
do

:: request ? num;
print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request,

storing value in num

I printing

Formal Specification and Verification: Distributed Systems B. Beckert 14 / 45

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {
byte num;
do

:: request ? num;
print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

Formal Specification and Verification: Distributed Systems B. Beckert 14 / 45

Client-Server

chan request = [0] of { byte };

...

active proctype Server () {
byte num;
do

:: request ? num;
print f ("serving client %d\n", num)

od
}

Server loops on:

I receiving first message from request, storing value in num

I printing

Formal Specification and Verification: Distributed Systems B. Beckert 14 / 45

Demo

rendezvous1
random simulation

run spin -a ...

Formal Specification and Verification: Distributed Systems B. Beckert 15 / 45

Executability of receive Statement

request ? num

executable only if a message is available in channel request

⇒ receive statement frequently used as guard in if/do-statements

do
:: request ? num ->

print f ("serving client %d\n", num)
od

Formal Specification and Verification: Distributed Systems B. Beckert 17 / 45

Executability of receive Statement

request ? num

executable only if a message is available in channel request

⇒ receive statement frequently used as guard in if/do-statements

do
:: request ? num ->

print f ("serving client %d\n", num)
od

Formal Specification and Verification: Distributed Systems B. Beckert 17 / 45

Executability of receive Statement

request ? num

executable only if a message is available in channel request

⇒ receive statement frequently used as guard in if/do-statements

do
:: request ? num ->

print f ("serving client %d\n", num)
od

Formal Specification and Verification: Distributed Systems B. Beckert 17 / 45

Demo

interactive simulation

Formal Specification and Verification: Distributed Systems B. Beckert 18 / 45

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */
byte hour , minute;

active proctype Sender () {
print f ("ready\n");
ch ! 11, 45;
print f ("Sent\n")

}

active proctype Receiver () {
print f ("steady\n");
ch ? hour , minute;
print f ("Received\n")

}

Which interleavings can occur? ⇒ ask SpinSpider

Formal Specification and Verification: Distributed Systems B. Beckert 20 / 45

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */
byte hour , minute;

active proctype Sender () {
print f ("ready\n");
ch ! 11, 45;
print f ("Sent\n")

}

active proctype Receiver () {
print f ("steady\n");
ch ? hour , minute;
print f ("Received\n")

}

Which interleavings can occur?

⇒ ask SpinSpider

Formal Specification and Verification: Distributed Systems B. Beckert 20 / 45

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */
byte hour , minute;

active proctype Sender () {
print f ("ready\n");
ch ! 11, 45;
print f ("Sent\n")

}

active proctype Receiver () {
print f ("steady\n");
ch ? hour , minute;
print f ("Received\n")

}

Which interleavings can occur? ⇒ ask SpinSpider

Formal Specification and Verification: Distributed Systems B. Beckert 20 / 45

Demo

through jSpin:
SpinSpider on ReadySteady.pml

Formal Specification and Verification: Distributed Systems B. Beckert 21 / 45

Rendezvous are Synchronous

On a rendezvous channel:

transfer of message from sender to receiver is synchronous,
i.e., one single operation

Sender Receiver
...

...
(11,45) −→ (hour,minute)

...
...

Formal Specification and Verification: Distributed Systems B. Beckert 22 / 45

Rendezvous are Synchronous

On a rendezvous channel:

transfer of message from sender to receiver is synchronous,
i.e., one single operation

Sender Receiver
...

...
(11,45) −→ (hour,minute)

...
...

Formal Specification and Verification: Distributed Systems B. Beckert 22 / 45

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

Formal Specification and Verification: Distributed Systems B. Beckert 23 / 45

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

Formal Specification and Verification: Distributed Systems B. Beckert 23 / 45

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

Formal Specification and Verification: Distributed Systems B. Beckert 23 / 45

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

Formal Specification and Verification: Distributed Systems B. Beckert 23 / 45

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

Formal Specification and Verification: Distributed Systems B. Beckert 23 / 45

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously

Formal Specification and Verification: Distributed Systems B. Beckert 23 / 45

Rendezvous are Synchronous

Either:

1. Sender process’ location counter at send (“!”):
“offer to engage in rendezvous”

2. Receiver process’ location counter at receive (“?”):
“rendezvous can be accepted”

or the other way round:

1. Receiver process’ location counter at receive (“?”):
“offer to engage in rendezvous”

2. Sender process’ location counter at send (“!”):
“rendezvous can be accepted”

in any cases:

location counter of both processes is incremented at once

only place where Promela processes execute synchronously
Formal Specification and Verification: Distributed Systems B. Beckert 23 / 45

Reconsider Client Server

chan request = [0] of { byte };

active proctype Server () {
byte num;
do :: request ? num ->

print f ("serving client %d\n", num)
od

}
active proctype Client0 () {

request ! 0
}
active proctype Client1 () {

request ! 1
}

so far no reply to clients

Formal Specification and Verification: Distributed Systems B. Beckert 25 / 45

Reconsider Client Server

chan request = [0] of { byte };

active proctype Server () {
byte num;
do :: request ? num ->

print f ("serving client %d\n", num)
od

}
active proctype Client0 () {

request ! 0
}
active proctype Client1 () {

request ! 1
}

so far no reply to clients

Formal Specification and Verification: Distributed Systems B. Beckert 25 / 45

Reply Channels

chan request = [0] of { byte };
chan reply = [0] of { bool };

active proctype Server () {
byte num;
do :: request ? num ->

print f ("serving client %d\n", num);
reply ! true

od
}
active proctype Client0 () {

request ! 0; reply ? _
}
active proctype Client1 () {

request ! 1; reply ? _
}

Formal Specification and Verification: Distributed Systems B. Beckert 27 / 45

Reply Channels

chan request = [0] of { byte };
chan reply = [0] of { bool };

active proctype Server () {
byte num;
do :: request ? num ->

print f ("serving client %d\n", num);
reply ! true

od
}
active proctype Client0 () {

request ! 0; reply ? _
}
active proctype Client1 () {

request ! 1; reply ? _
}

(anonymous variable “_” used if interested in receipt, not content)

Formal Specification and Verification: Distributed Systems B. Beckert 27 / 45

Reply Channels

chan request = [0] of { byte };
chan reply = [0] of { bool };

active proctype Server () {
byte num;
do :: request ? num ->

print f ("serving client %d\n", num);
reply ! true

od
}
active proctype Client0 () {

request ! 0; reply ? _
}
active proctype Client1 () {

request ! 1; reply ? _
}

But: client might get ‘wrong’ reply

Formal Specification and Verification: Distributed Systems B. Beckert 27 / 45

chan request = [0] of { mtype };
chan reply = [0] of { mtype };
mtype = { nice , rude };

active proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion valid? Ask Spin.

Formal Specification and Verification: Distributed Systems B. Beckert 29 / 45

chan request = [0] of { mtype };
chan reply = [0] of { mtype };
mtype = { nice , rude };

active proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;
assert(msg == nice)

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion valid? Ask Spin.

Formal Specification and Verification: Distributed Systems B. Beckert 29 / 45

chan request = [0] of { mtype };
chan reply = [0] of { mtype };
mtype = { nice , rude };

active proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;
assert(msg == nice)

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion valid?

Ask Spin.

Formal Specification and Verification: Distributed Systems B. Beckert 29 / 45

chan request = [0] of { mtype };
chan reply = [0] of { mtype };
mtype = { nice , rude };

active proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;
assert(msg == nice)

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion valid? Ask Spin.

Formal Specification and Verification: Distributed Systems B. Beckert 29 / 45

Several Servers

More realistic with several servers:

active [2] proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion correct here? analyze with Spin

Formal Specification and Verification: Distributed Systems B. Beckert 31 / 45

Several Servers

More realistic with several servers:

active [2] proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;
assert(msg == nice)

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion correct here? analyze with Spin

Formal Specification and Verification: Distributed Systems B. Beckert 31 / 45

Several Servers

More realistic with several servers:

active [2] proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;
assert(msg == nice)

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion correct here?

analyze with Spin

Formal Specification and Verification: Distributed Systems B. Beckert 31 / 45

Several Servers

More realistic with several servers:

active [2] proctype Server () {
mtype msg;
do :: request ? msg; reply ! msg
od

}
active proctype NiceClient () {

mtype msg;
request ! nice; reply ? msg;
assert(msg == nice)

}
active proctype RudeClient () {

mtype msg;
request ! rude; reply ? msg

}

Is the assertion correct here? analyze with Spin

Formal Specification and Verification: Distributed Systems B. Beckert 31 / 45

Sending Channels via Channels

One way to fix the protocol:

clients declare local reply channel + send it to server

(live in lecture)

Formal Specification and Verification: Distributed Systems B. Beckert 33 / 45

Sending Channels via Channels

One way to fix the protocol:

clients declare local reply channel + send it to server

(live in lecture)

Formal Specification and Verification: Distributed Systems B. Beckert 33 / 45

Sending Channels via Channels

mtype = { nice , rude };
chan request = [0] of { mtype, chan };

active [2] proctype Server () {
mtype msg; chan ch;
do :: request ? msg , ch;

ch ! msg
od

}
active proctype NiceClient () {

chan reply = [0] of { mtype }; mtype msg;
request ! nice , reply; reply ? msg;
assert (msg == nice)

}
active proctype RudeClient () {

chan reply = [0] of { mtype }; mtype msg;
request ! rude , reply; reply ? msg

}

verify with Spin

Formal Specification and Verification: Distributed Systems B. Beckert 35 / 45

Sending Channels via Channels

mtype = { nice , rude };
chan request = [0] of { mtype, chan };

active [2] proctype Server () {
mtype msg; chan ch;
do :: request ? msg , ch;

ch ! msg
od

}
active proctype NiceClient () {

chan reply = [0] of { mtype }; mtype msg;
request ! nice , reply; reply ? msg;
assert (msg == nice)

}
active proctype RudeClient () {

chan reply = [0] of { mtype }; mtype msg;
request ! rude , reply; reply ? msg

}
verify with Spin

Formal Specification and Verification: Distributed Systems B. Beckert 35 / 45

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };
request ! reply , pid;
reply ? serverID , clientID;

assert (clientID == pid)

Formal Specification and Verification: Distributed Systems B. Beckert 37 / 45

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };
request ! reply , pid;
reply ? serverID , clientID;

assert (clientID == pid)

Formal Specification and Verification: Distributed Systems B. Beckert 37 / 45

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };
request ! reply , pid;
reply ? serverID , clientID;

assert (clientID == pid)

Formal Specification and Verification: Distributed Systems B. Beckert 37 / 45

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };
request ! reply , pid;
reply ? serverID , clientID;

assert (clientID == pid)

Formal Specification and Verification: Distributed Systems B. Beckert 37 / 45

Sending Process IDs

used fixed constants used for identification (here nice, rude)

I inflexible

I doesn’t scale

Alternative:
processes send their own, unique process ID, _pid, as part of message

example, clients code:

chan reply = [0] of { byte, byte };
request ! reply , pid;
reply ? serverID , clientID;

assert (clientID == pid)

Formal Specification and Verification: Distributed Systems B. Beckert 37 / 45

Limitations of Rendezvous Channels

I rendezvous too restrictive for many applications

I servers and clients block each other too much

I difficult to manage uneven workload
(online shop: dozens of webservers serve thousands of clients)

Formal Specification and Verification: Distributed Systems B. Beckert 38 / 45

Buffered Channel

buffered channels queue messages;
requests/services no not immediately block clients/servers

example:
chan ch = [3] of { mtype, byte, bool }

Formal Specification and Verification: Distributed Systems B. Beckert 40 / 45

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

Formal Specification and Verification: Distributed Systems B. Beckert 41 / 45

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

Formal Specification and Verification: Distributed Systems B. Beckert 41 / 45

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

Formal Specification and Verification: Distributed Systems B. Beckert 41 / 45

Buffered Channels

buffered channels, with capacity cap

I can hold up to cap messages

I are a FIFO (first-in-first-out) data structure:
always the ‘oldest’ message in channel is retrieved by a receive

I (normal) receive statement reads and removes message from cap

I Sending and Receiving to/from buffered channels is asynchronous,
i.e. interleaved

Formal Specification and Verification: Distributed Systems B. Beckert 41 / 45

Executability of Buffered Channel operations

given channel ch, with capacity cap, currently containing n messages

receive statement ch ? msg

is executable iff ch is not empty, i.e., n > 0

send statement ch ! msg

is executable iff there is still ‘space’ in the message queue,
i.e., n < cap

An non-executable receive or send statement will block until it is
executable again

(There is a Spin option, -m, for a different send semantics:
attempting to send to a full channel does not block, but the message
gets lost instead.)

Formal Specification and Verification: Distributed Systems B. Beckert 42 / 45

Executability of Buffered Channel operations

given channel ch, with capacity cap, currently containing n messages

receive statement ch ? msg

is executable iff ch is not empty, i.e., n > 0

send statement ch ! msg

is executable iff there is still ‘space’ in the message queue,
i.e., n < cap

An non-executable receive or send statement will block until it is
executable again

(There is a Spin option, -m, for a different send semantics:
attempting to send to a full channel does not block, but the message
gets lost instead.)

Formal Specification and Verification: Distributed Systems B. Beckert 42 / 45

Checking Channel for Full/Empty

this can safe from unnecessary blocking:

given channel ch:

full(ch) checks whether ch is full
nfull(ch) checks whether ch is not full
empty(ch) checks whether ch is empty
nempty(ch) checks whether ch is not empty

illegal to negate those
avoid combining with else

Formal Specification and Verification: Distributed Systems B. Beckert 43 / 45

Copy Message without Removing

with
cs ? color, time, flash

you

I assign values from the message to color, time, flash

I remove message from ch

with
cs ? <color, time, flash>

you

I assign values from the message to color, time, flash

I leave message in ch

Formal Specification and Verification: Distributed Systems B. Beckert 44 / 45

Copy Message without Removing

with
cs ? color, time, flash

you

I assign values from the message to color, time, flash

I remove message from ch

with
cs ? <color, time, flash>

you

I assign values from the message to color, time, flash

I leave message in ch

Formal Specification and Verification: Distributed Systems B. Beckert 44 / 45

And finally

Buffered channels are part of the state!

State space gets much bigger using buffered channels

Use with care (and with small buffers).

Formal Specification and Verification: Distributed Systems B. Beckert 45 / 45

	Modeling Distributed Systems
	Channels in Promela

