
1

Assignment 1 (Promela) (10p)

(a) The Promela code below is an incomplete implementation of a threshold filter.
The filter receives values on channel C and forwards them based on the threshold
variables t1 and t2. When a received value is greater or equal than t1 it is sent on
channel O1, if it is between t2 and t1 it is sent on channel O2, and if it is smaller
than t2 it is dropped. For verification we use a listener process that receives values
on channels O1 and O2 and asserts that these values satisfy the corresponding
thresholds. Your task is to implement the filter and listener processes. You may
assume that t1 > t2.
chan C = [0] of {byte}
chan O1 = [0] of {byte}
chan O2 = [0] of {byte}

byte t1 = 4; /* thresholds */
byte t2 = 2;

active proctype generator () {
end:

do
:: C ! 0
:: C ! 1
:: C ! 2
:: C ! 3
:: C ! 4
:: C ! 5

od
}

active proctype filter () { /* ... */ }

active proctype listener () { /* ... */ }

(For part (b) of this assignment, see next page)



2

(b) The Promela model below has a flaw: it may deadlock. Explain why a deadlock
is possible and show a trail of channel messages that exhibits it.

mtype {msgA , msgB};
chan C1 = [1] of {mtype}; /* buffered channel */
chan C2 = [0] of {mtype}; /* synchronous channel */

active proctype P() {
C1 ! msgA

}

active proctype Q() {
C2 ! msgB

}

active proctype Z() {
byte x;

end:
do

:: C1 ? x ->
i f :: C1 ! x

:: C2 ! x
f i

:: C2 ? x ->
i f :: C1 ! x

:: C2 ! x
f i

od
}

Solution
[6p,4p]
Implementation for (a)

active proctype filter () {
byte x;

end:
do

:: C ? x ->
i f

:: (x >= t1) -> O1 ! x
:: (x >= t2 && x < t1 ) -> O2 ! x
:: e l se -> skip;

f i ;
od

}

active proctype listener () {
byte y = 0;

end:
do

:: O1 ? y -> assert (y >= t1)
:: O2 ? y -> assert (y >= t2 && y < t1)

od



3

}

Full trace for (b)

Starting P with pid 0
Starting Q with pid 1
Starting Z with pid 2
1: proc 1 (Q) line 17 "br.pml" (state -) [values: 1!msgB]
1: proc 1 (Q) line 17 "br.pml" (state 1) [C2!msgB]

2: proc 2 (Z) line 29 "br.pml" (state -) [values: 1?msgB]
2: proc 2 (Z) line 29 "br.pml" (state 6) [C2?x]

Z(2):x = msgB

3: proc 2 (Z) line 30 "br.pml" (state -) [values: 2!msgB]
3: proc 2 (Z) line 30 "br.pml" (state 7) [C1!x]

queue 2 (C1): [msgB]

4: proc 2 (Z) line 25 "br.pml" (state -) [values: 2?msgB]
4: proc 2 (Z) line 25 "br.pml" (state 1) [C1?x]

queue 2 (C1):
Z(2):x = msgB

5: proc 0 (P) line 12 "br.pml" (state -) [values: 2!msgA]
5: proc 0 (P) line 12 "br.pml" (state 1) [C1!msgA]

queue 2 (C1): [msgA]

spin: trail ends after 5 steps
#processes: 3
queue 2 (C1): [msgA]
5: proc 2 (Z) line 26 "br.pml" (state 4)
5: proc 1 (Q) line 18 "br.pml" (state 2)
5: proc 0 (P) line 14 "br.pml" (state 2)

3 processes created
Exit-Status 0
null



4

Assignment 2 (Temporal Logic) (10p)

Consider the following Promela model:

byte x = 0;
bool b = f a l s e

active proctype P() {
do

:: x < 20 -> x = 20; b = true
:: x >= 0 -> i f

:: x < 30 -> x++
:: e l se -> x = 10

f i
od

}

Take your time to understand the behavior of P. Then consider the following properties, each
of which might or might not hold:

1. b will be true at some point.

2. x will always be ≥ 10.

3. At some point, x will be 10.

4. At some point, x will be 11.

5. From some point on, x will always be ≥ 10.

6. x will infinitely often be 11.

7. If b will never be true, then x will infinitely often be 11.

(a) Formulate each of the properties 1. - 7. in Temporal Logic.

(b) For each of the properties 1. - 7., tell whether or not the property is valid in the
transition system given by the above Promela model. (You don’t need to explain
your answer.)

Solution
[6p, 4p]
(a)

1. <>b

2. [](x >= 10)

3. <>(x == 10)

4. <>(x == 11)



5

5. <>[](x >= 10)

6. []<>(x == 11)

7. (!<>b) -> []<>(x == 11)

(b)

1. invalid

2. invalid

3. valid

4. invalid

5. valid

6. invalid

7. valid


