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Part I

What is formal specification and
verification?
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Specification

A specification describes the semantics of a (software-)
component.

Informal Specification “Function max returns the maximum of
two values.”

Formal Specification

{i = x0 ∧ j = x1}

k := max(i,j)

{((x0 < x1) → k = x1) ∧ ((x0 ≥ x1) → k = x0)}

Formal specification gives a precise description of the
component’s behavior in a formal language.
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Informal Specification

Advantages

Easy to understand, even for non-experts.

Good tool support.

Better than no specification at all. . .

Disadvantages

Not precise.

Details, constraints and excepts may be overlooked.

Inconsistencies may not be detected.

⇒ Does the implementation really satisfy the specification?
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Formal Specification

Advantages

Precise

All details have to be specified.

Mathematical proofs of properties are possible.

⇒ Correctness of implementation can be proven
Disadvantages

Expensive

Expert knowledge required for writing, reading and
using it.

In many cases, tool support not that good

Some properties are hard to formalize
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Checking for correctness

If we have an informal specification only, we run tests
against the system.

Advantages

Writing tests is easy

Good tool support

Disadvantages

Not all cases can be tested. . .
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Tests

Example: Calculating the maximum of two numbers

A little program

Input:i,j Output:k
if(i < j) then

k := j
fi
if(j < i) then

k := i
fi

Is this program correct?
Let’s test it!

i j k

Uups!
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Tests

Example: Calculating the maximum of two numbers

A little program

Input:i,j Output:k
if(i < j) then

k := j
fi
if(j < i) then

k := i
fi

Is this program correct?
Let’s test it!

i j k

5 3 5 X

4 7 7 X

8 0 8 X

0 2 2 X

9 2 9 X

8 9 9 X
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What about formal specification?

If we have a formal specification, we can give a
mathematical proof of the correctness of the component.

Advantages

We know once and for all that the component satisfies
the specification.

Enforces clean and good specifications,
implementations, and documentations.

Disadvantages

Expert knowledge required.

Expensive
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(When) is it worth it?

Formal specifications makes always sense. (Well, at least
try to be formal as possible. . . )

Enforces good documentation

Guarantees compatibility to other components

If it still does not work, at least you know whose fault it
is.
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(When) is it worth it?

Proofs of correctness make sense, when. . .

. . . errors are expensive (Pentium bug)

. . . errors are dangerous (automotive electronics)

. . . processed data is sensible (patient data, security
systems)

. . . quality must be guaranteed (demands by law or by
the users)
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Who does formal verification?

Intel, AMD, Infineon
Verify (components of) chips

BMW
Automotive system

T-Systems
Chipcard based biometric identification system

AG KI @ Uni-Koblenz
Verified E-Mail Client as part of a fully verified system
KeY system for verifying Java programs
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Part II

Formal Verification of Software
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What is a state?

States describe configurations of a system.

State = Heap + Stack

Heap = Current values of all program variables.

(We will ignore the stack in this talk)

Y

X

Z 3

7

5 We describe states by logical
formulae called conditions.

{x = 5 ∧ y = 7 ∧ z = 3}
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What is a state?

Here is another one:

Y

X

Z ?

7

? {y = 7}

This describes all states in
which y = 7. Note that we
do not say anything about the
values of x and z.
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What is a state?

Here is another one:

Y

X

Z ?

7

? {y < 10}

This conditions requires that
the value of y is smaller than
10. The examples also satis-
fies this condition.
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What is a state?

Here is another one:

Y

X

Z ?

7

?
{y = 7} ⇒ {y < 10}

{y = 7} is stronger than
{y < 10}. All states satisfying
{y = 7} also satisfy {y < 10}.
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What is a state?

Here is another one:

Y

X

Z ?

7

?
{y = 7} ⇒ {y < 10}

{y = 7} is stronger than
{y < 10}. All states satisfying
{y = 7} also satisfy {y < 10}.

Wow, we just started reasoning about states!

If we could get program instructions into the game, we
could prove properties of programs!
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How do states change?

Program instructions may change the state.

Y

X

Z ?

7

?

Y

X

Z

Pre−State Command Post−State

X :== Y
?

7

7
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Hoare Triples

Y

X

Z ?

7

?

Y

X

Z

Pre−State Command Post−State

X :== Y
?

7

7

Effects of instructions can be described by Hoare Triples

{φ} P {ψ}

{φ} Precondition
P Instruction
{ψ} Postcondition

{y = 7} x:=y {x = 7 ∧ y = 7}
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Rules describing state changes

{y = 7} x:=y {x = 7 ∧ y = 7}

This describes only the results of one specific command for
a certain set of pre- and postconditions.

Let us try to generalize!

{Q[j/i]} i := j {Q}

(Q[x/i] means “replace all occurrences of term i in Q with
term x)

We have described the semantics of variable assignments!
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Rules describing state changes

{y = 7} x:=y {x = 7 ∧ y = 7}

This describes only the results of one specific command for
a certain set of pre- and postconditions.

Let us try to generalize!

{Q[j/i]} i := j {Q}

(Q[x/i] means “replace all occurrences of term i in Q with
term x)

We have described the semantics of variable assignments!

Verification – p.17/40



Rules describing state changes

{y = 7} x:=y {x = 7 ∧ y = 7}

This describes only the results of one specific command for
a certain set of pre- and postconditions.

Let us try to generalize!

{Q[j/i]} i := j {Q}

(Q[x/i] means “replace all occurrences of term i in Q with
term x)

We have described the semantics of variable assignments!

Verification – p.17/40



Proving programs

We use rule
{Q[j/i]} i := j {Q}

to prove the correctness of our little example

{y = 7} x:=y {x = 7 ∧ y = 7}

>
{Q[y/x]} x := y {Q}

{x = 7 ∧ y = 7[y/x]} x:=y {x = 7 ∧ y = 7}

{y = 7} x:=y {x = 7 ∧ y = 7}
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From instructions to programs

Most programs consist of more than one instruction.

x := y;
z := x;

Y

X

Z ?

7

?

Y

X

Z

X :== Y
?

7

7

7

7

7

Z :== X
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Sequence Rule

Y

X

Z ?

7

?

Y

X

Z

X :== Y
?

7

7

7

7

7

Z :== X

Generalized:

S1 S2

{P} {R} {Q}
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Sequence Rule

{Q}{R} {P} {Q}{P}

S1 S2 S1 ; S2

{P} S1 {R} {R} S2 {Q}

{P} S1;S2 {Q}

Example: {y = 7} x := y ; z := x {R ∧ z = 7}
Let R ≡ (x = 7 ∧ y = 7)

>
{R[y/x]} x:=y {R}

{y = 7} x:=y {R}

>
{R ∧ z = 7[y/z]} z := y {R ∧ z = 7}

{R} z := y {R ∧ z = 7}

{y = 7} x := y ; z := x {R ∧ z = 7}
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Example: Change values of two variables

Specification:

{i = x0 ∧ j = x1} P {i = x1 ∧ j = x0}

Lemma:
Satisfied by P =

m := i;
i := j;
j := m
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Example: Change values of two variables

m := i;
i := j;
j := m

?

J

I

M

M :== IJ

M

I

I := J J := M

x0

x1

x0

x1

x0

x1

x0

x1

x0

x0

x1
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Proof

P = {i = x0 ∧ j = x1} = R[i/m]

Q = {i = x1 ∧ j = x0}

R = {m = x0 ∧ j = x1} = S[j/i]

S = {m = x0 ∧ i = x1} = Q[m/j]

>
{P} m := i {R}

>
{R} i := j {S}

{P} m := i ; i := j {S}
>

{S} j := m {Q}

{P} m := i ; i := j ; j := m {Q}
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Program Language Constructs

What do we need for a “real” programming language?

Assignments i := x X

Sequences S1 ; S2 X

Conditionals IF E THEN S1 ELSE S2 Next slide
Loops WHILE E DO S1 Later. . .
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Example: Calculate maximum

Specification:

{i = x0 ∧ j = x1} P {k = max(x0, x1)}

Lemma: Satisfied by P =

IF(i < j) THEN
k := j

ELSE
k := i

FI
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Example: Calculate maximum

Specification:

{i = x0 ∧ j = x1} P {k = max(x0, x1)}

Side note: Why not specify this as

{} P {k = max(i, j)}?

Because a valid solution would be
P =
i := 5;
j := 5;
k := 5;
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Example: Calculate maximum

{i = x0 ∧ j = x1} P {k = max(x0, x1)}

{P ∧ E} S1 {Q} {P ∧ ¬E} S2 {Q}

{P} if E then S1 else S2 fi {Q}

IF(i < j) THEN
k := j

ELSE
k := i

FI

j

i

k

j

i

k

j

i

k

j

i

k

j

i

k

k := j

k := i

IF (i < j)

E

x1

x0

x0

{Q}

x1

x1

x0

{Q}

?

x1

{P}

x0
?

x1

x0

{P ∧ E}

{P ∧ ¬E}

?

x1

x0
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Example: Calculate maximum

{i = x0 ∧ j = x1} P {k = max(x0, x1)}

{P ∧ E} S1 {Q} {P ∧ ¬E} S2 {Q}

{P} if E then S1 else S2 fi {Q}

IF(i < j) THEN
k := j

ELSE
k := i

FI

j

i

k

j

i

k

j

i

k

j

i

k

j

i

k

k := j

k := i

IF (i < j)

E

x1

x0

x0

{Q}

x1

x1

x0

{Q}

?

x1

{P}

x0
?

x1

x0

{P ∧ E}

{P ∧ ¬E}

?

x1

x0
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Proof

P = {i = x0 ∧ j = x1}

Q = {k = max(x0, x1)}

= {((x0 < x1) → k = x1) ∧ ((x0 ≥ x1) → k = x0)}

E = {i < j}

Next Slide
{P ∧ E} k := j {Q}

Next Slide
{P ∧ ¬E} k := i {Q}

{P} if i < j then k := j else k := i fi {Q}
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Proof

P = {i = x0 ∧ j = x1}

Q = {((x0 < x1) → k = x1) ∧ ((x0 ≥ x1) → k = x0)}

E = {i < j}

Next Slide
{P ∧ E} k := j {Q}

Next Slide
{P ∧ ¬E} k := i {Q}

{P} if i < j then k := j else k := i fi {Q}
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Proof

P = {i = x0 ∧ j = x1}

Q = {((x0 < x1) → k = x1) ∧ ((x0 ≥ x1) → k = x0)}

E = {i < j}

We want to show:
{P ∧ E} k := j {Q} and {P ∧ ¬E} k := i {Q}

?
{i = x0 ∧ j = x1 ∧ x0 < x1} k := j {((x0 < x1) → k = x1) ∧ ((x0 ≥ x1) → k = x0)}

{i = x0 ∧ j = x1 ∧ i < j} k := j {((x0 < x1) → k = x1) ∧ ((x0 ≥ x1) → k = x0)}

{P ∧ E} k := j {Q}

We need one more rule!
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Strength

Remember what we said about some conditions being
stronger than other?

If condition A is stronger than condition B (A⇒ B), then for
all states where A holds, B holds as well.

Examples:

{y = 7} ⇒ {y < 10}

{y = 7 ∧ x = 5} ⇒ {y = 7}

{y = 7 ∧ x = 5} 6⇒ {x < 7}
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Pre-Strengthening/ Post-Weakening

Rule:

P ⇒ P ′ {P ′} S {Q′} Q′ ⇒ Q

{P} S {Q}

Example:

>
{z ≤ 5[y/z]} z := y {z ≤ 5}

>
z ≤ 5 ⇒ z ≤ 10

{y ≤ 5} z := y {z ≤ 10}
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Let’s continue the proof for max!

We want to show:
{P ∧ E} k := j {Q} (and {P ∧ ¬E} k := i {Q})

We use post-weakening

{P ∧ E} k := j {Q′} Q′ ⇒ Q

{P ∧ E} k := j {Q}

with Q′ = {i = x0 ∧ k = x1 ∧ i < k}

First part of the proof:

>
{i = x0 ∧ k = x1 ∧ i < k[j/k]} k := j {i = x0 ∧ k = x1 ∧ i < k}

{i = x0 ∧ j = x1 ∧ i < j} k := j {i = x0 ∧ k = x1 ∧ i < k}

{P ∧ E} k := j {Q′}

Verification – p.34/40



Let’s continue the proof for max!

We want to show:
{P ∧ E} k := j {Q} (and {P ∧ ¬E} k := i {Q})

We use post-weakening

{P ∧ E} k := j {Q′} Q′ ⇒ Q

{P ∧ E} k := j {Q}

with Q′ = {i = x0 ∧ k = x1 ∧ i < k}

First part of the proof:

>
{i = x0 ∧ k = x1 ∧ i < k[j/k]} k := j {i = x0 ∧ k = x1 ∧ i < k}

{i = x0 ∧ j = x1 ∧ i < j} k := j {i = x0 ∧ k = x1 ∧ i < k}

{P ∧ E} k := j {Q′}

Verification – p.34/40



Let’s continue the proof for max!

We want to show:
{P ∧ E} k := j {Q} (and {P ∧ ¬E} k := i {Q})

We use post-weakening

{P ∧ E} k := j {Q′} Q′ ⇒ Q

{P ∧ E} k := j {Q}

with Q′ = {i = x0 ∧ k = x1 ∧ i < k}

First part of the proof:

>
{i = x0 ∧ k = x1 ∧ i < k[j/k]} k := j {i = x0 ∧ k = x1 ∧ i < k}

{i = x0 ∧ j = x1 ∧ i < j} k := j {i = x0 ∧ k = x1 ∧ i < k}

{P ∧ E} k := j {Q′}

Verification – p.34/40



. . . going on. . .

We have to show: Q′ ⇒ Q

(i = x0 ∧ k = x1 ∧ x0 < x1) ⇒ ((x0 < x1) → k = x1)

∧((x0 ≥ x1) → k = x0)

Breaking up the conjunction

>
(> → >)

(i = x0 ∧ k = x1 ∧ x0 < x1) ⇒ ((x0 < x1) → k = x1)

and

>
(⊥ → k = x0)

(i = x0 ∧ k = x1 ∧ x0 < x1) ⇒ ((x0 ≥ x1) → k = x0)
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. . . (still) going on. . .

We have shown:

{P ∧ E} k := j {Q}

Next step is to prove the else clause:

{P ∧ ¬E} k := i {Q}

Now you understand why we use automatic theorem

provers!
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Infinite sequences

So far, we had programs executing in a finite number of
steps.

We have shown that The Right Thing (tm) happens in each
step.

Problem: Do all programs execute in a finite number of
steps?

10 PRINT "HALLO!"
20 GOTO 10

So we have a problem with. . .

Loops

Recursion
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Induction to the rescue!

{(a > 0) ∧ (b > 0)}
c := 0
i := 0
WHILE i < a DO

{(c = b · i) ∧ (i ≤ a)}
c := c + b
i := i + 1

OD
{(c = a · b)}
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Induction to the rescue!

{(a > 0) ∧ (b > 0)}
c := 0
i := 0
WHILE i < a DO

{(c = b · i) ∧ (i ≤ a)}
c := c + b
i := i + 1

OD
{(c = a · b)}

{(c = b · i) ∧ (i ≤ a)} is the
loop invariant.
An invariant holds each time
the loop test is evaluated.
Correctness of loops is shown
in two steps

1. The invariant holds on the
first iteration.

2. If the invariant held last it-
eration, it holds this itera-
tion, too.
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Induction to the rescue!

{(a > 0) ∧ (b > 0)}
c := 0
i := 0
WHILE i < a DO

{(c = b · i) ∧ (i ≤ a)}
c := c + b
i := i + 1

OD
{(c = a · b)}

The invariant holds on the first
iteration.

(a > 0) ∧ (c = 0) ∧ (i = 0)
∧(i < a)

⇒ (c = b · i) ∧ (i ≤ a)
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Induction to the rescue!

{(a > 0) ∧ (b > 0)}
c := 0
i := 0
WHILE i < a DO

{(c = b · i) ∧ (i ≤ a)}
c := c + b
i := i + 1

OD
{(c = a · b)}

If the invariant held last itera-
tion, it holds this iteration, too.

((c−b) = b·(i−1))∧((i−1) ≤ a)
∧((i− 1) < a)

⇒ (c = b · i) ∧ (i ≤ a)
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Induction to the rescue!

{(a > 0) ∧ (b > 0)}
c := 0
i := 0
WHILE i < a DO

{(c = b · i) ∧ (i ≤ a)}
c := c + b
i := i + 1

OD
{(c = a · b)}

No for the postcondition. It
must hold if the invariant but
not the loop test holds.

(c = b · i) ∧ (i ≤ a) ∧ ¬(i < a)
⇒ (c = a · b)
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Partial and total correctness

Important distinction:

Partial Correctness If the program terminates, the post
condition holds.

Total Correctness The program terminates and holds.

Is it always possible to prove termination?

No! ⇒ Haltproblem
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Soundness and Completeness

Hoare logic is sound and complete. . .

. . . if the underlying logic is sound and complete.

In most cases, the logic is sound but incomplete!
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