UML is not enough. ..

KR

<enumeration>
Colour

Person
name:String _ .
age:int bwner Ownership fijeef Vehicle
SO ' O colour:Colour
getName () : String .

birthday () ZF

black() :Colour
white() :Colour
red() :Colour

setAge (newAge:int) :int

Car | Bike |

e Possible number of owners a car can have
e Required age of car owners

e Requirement that a person may own at most one black car

-p.3

Some OCL examples |

KRL_

Person

name:String

age:int bwner ownership f]eet Vehicle
SO ' O colour:Colour
getName () : String :
birthday () [F
setAge (newAge:int) :int

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car |

Bike

“A vehicle owner must be at least 18 years old™:

-p4

Some OCL examples |

Person

name:String

age:int bwner ownership f]eet Vehicle
<query.> ' O colour:Colour
getName () : String .
birthday () ZF
setAge (newAge:int) :int -

KRL_

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old™:

context Vehicle
Inv. self. owner. age >=18

-p4

Some OCL examples |

KRL_

Person
name:String ‘)
age:int bwner ownership f]eet Vehicle
SO ' O colour:Colour
getName () : String .

birthday () ZF
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old™:

context Vehicle
Inv. self. owner. age >=18

-p4

Some OCL examples |

KRL_

Person
name:String ‘)
age:int buner ownership f]eet Vehicle
SO ' O colour:Colour
getName () : String .

birthday () ZF
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old™:

context Vehicle
Inv. self. owner. age >=18

-p4

Some OCL examples |

KRL_

Person
name:String ‘)
age:int buner ownership f]eet Vehicle
SO ' O colour:Colour
getName () : String .

birthday () ZF
setAge (newAge:int) :int -

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old™:

context Vehicle
Inv. self. owner. age >=18

-p4

Some OCL examples |

Person

name:String

age:int bwner ownership f]eet Vehicle
<query.> ' O colour:Colour
getName () : String .
birthday () ZF
setAge (newAge:int) :int -

KRL_

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car | Bike

“A vehicle owner must be at least 18 years old™:

context Vehicle
Inv. self. owner. age >=18

-p4

Some OCL examples |

KR

Person
name:String _ .
age:int bwner Ownership fijeef Vehicle
SO ' O colour:Colour
getName () : String .

birthday () ZF

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

setAge (newAge:int) :int
Car |

Bike

“A vehicle owner must be at least 18 years old™:

context Vehicle
Inv. self. owner. age >=18

What does this mean, instead?

context Person
Inv. self.age >=18

-p4

Some OCL examples |

KR

Person
name:String _ .
age:int bwner Ownership fijeef Vehicle
SO ' O colour:Colour
getName () : String .

birthday () [F
setAge (newAge:int) :int

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Car |

Bike

“A vehicle owner must be at least 18 years old™:

context Vehicle

Inv. self. owner. age >=18

“A owner must be at least 18 years old™:
context Car

Inv. self.owner.age >=18

-p4

Some OCL examples Il

KR

Person

name:String

Vehicle

age:int bwner OWNRership fleef
<Lquery> 1 0..%
getName () :String

colour:Colour

birthday ()
setAge (newAge:int) :int

7

Car

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

“Nobody has more than 3 vehicles”:

Bike

-p.5

Some OCL examples Il Kﬁ)’

Person
<enumeration>>
name:String ' Colour
age:int buner Oownership fjeet Vehicle
1 0..%
<query>> . colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int

Car | Bike |

“Nobody has more than 3 vehicles”:

context Person or change multiplicity
Inv. self.fleet— >size <=3

-p.5

Some OCL examples Il

KR

Person
<enumeration>>
name:String ' Colour
age:int buner Oownership fjeet Vehicle
1 0..%
<query>> . colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |

Car | Bike |

“All cars of a person are black”:

-p.5

Some OCL examples Il K

i

Person
<enumeration>>
name:String ' Colour
age:int buner Oownership fjeet Vehicle
<L query> 1 0..x colour-Colour black() :Colour
getName () :String - white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |
Car | Bike |

“All cars of a person are black”:

context Person

Inv. self.fleet— >forAll(v | v.colour = #black)

-p.5

Some OCL examples Il

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Person
name:String .
age:int bwner OWNership fjeef Vehicle
<query> 1 0..% :
gotNane () : String colour:Colour
birthday () 4
setAge (newAge:int) :int | |
Car | Bike
“All cars of a person are black”:
context Person
Inv. self.fleet— >forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles™.

-p.5

Some OCL examples Il

KR

Person
<enumeration>>
name:String . Colour
age:int bwner OWNership fjeef Vehicle
<L query> 1 0..* colour-Colour black() :Colour
getName () :String - white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |
Car | Bike

“All cars of a person are black”:

context Person

Inv. self.fleet— >forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles™.

context Person

Inv: self.fleet— >select(v | v.colour = #black)— >size <=3

-p.5

Some OCL examples |ll — iterate K

R

Person
<enumeration>>
name:String ' Colour
age:int buner Oownership fjeet Vehicle
1 0..% :
<query>> . colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |

Car | Bike |

What does this mean?
context Person
Inv. self.fleet— >iterate(v; acc:Integer=0

| if (v.colour=#black)
then acc + 1 else acc endif) <=3

-p.6

Some OCL examples IV — ocllIsKindOf Kﬁ)’

Person
<enumeration>>
:Stri 1
EZI:?intrmg byner OWRership f]eet Vehicle Colour
<Lquery>> . ! 0..* colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |
Car | Bike |
context Person
Inv. age<18 implies self.fleet— >forAll(v | not v.oclisKindOf(Car))

-p7

Some OCL examples IV — oclisKindOf

KR

Person
<enumeration>>
:Stri 1
EZI:?intrmg byner OWRership f]eet Vehicle Colour
<Lquery>> . ! 0..* colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |
Car | Bike
context Person
Inv. age<18 implies self.fleet— >forAll(v | not v.oclisKindOf(Car))

“A person younger than 18 owns no cars.’

-p7

Some OCL examples IV — oclisKindOf

KR

Person
<enumeration>>
:Stri 1
EZI:?intrmg byner OWRership fjeed Vehicle Colour
<Lquery>> . ! 0..* colour: Colour blgck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |
Car | Bike
context Person
Inv. age<18 implies self.fleet— >forAll(v | not v.oclisKindOf(Car))

“A person younger than 18 owns no cars.’

“self” can be omitted.

-p7

Some OCL examples IV — oclisKindOf

Person

name:String

setAge (newAge:int) :int

context Person

age: int bwner ownership fleet
<L query> 0..%
getName () :String

birthday ()

Vehicle

colour:Colour

7

Car

Bike

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Inv. age<18 implies self.fleet— >forAll(v | not v.oclIsKindOf(Car))
“A person younger than 18 owns no cars.’

“self” can be omitted.

Logical Junctors: and, or, not, implies, if...then...else

...endif, =

-p7

Some OCL examples V — alllnstances K

i

Person
<enumeration>>
name:String ' . Colour
age:int buner Oownership fjeet Vehicle
Lquery>> 1 0..x colour-Colour black() :Colour
getName () :String - white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |
Car | Bike |
context Car
Inv. Car.allinstances()->exists(c | c.colour=#red)

-p.8

Some OCL examples V — alllnstances K

i

Person
<enumeration>>
name:String ' Colour
age:int buner Oownership fjeet Vehicle
1 0..% :
<query>> . colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |

Car | Bike |

context Car
Inv. Car.allinstances()->exists(c | c.colour=#red)

“There Is a red car.”

-p.8

OCL pre-/post conditions — Examples Kﬁy

Person
<enumeration>>
name:String ' Colour
age:int buner Oownership fjeet Vehicle
1 0..%
<query>> . colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int | |

Car | Bike |

So far only considered class invariants.

-p.9

OCL pre-/post conditions — Examples Kﬁy

Person
<enumeration>>
name:String ' Colour
age:int buner Oownership fjeet Vehicle
1 0..%
<query>> . colour: Colour bléck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int

Car | Bike |

So far only considered class invariants.

OCL can also specify operations:

-p.9

OCL pre-/post conditions — Examples

Person

name:String

Vehicle

colour:Colour

7

age: int bwner ownership fleet

Lquery>> 1 0..%

getName () :String

birthday ()

setAge (newAge:int) :int i
Car

KR

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Bike

So far only considered class invariants.

OCL can also specify operations:

“If setAge(...) is called with a non-negative argument then

argument becomes the new value of the attribute age.”

context Person::setAge(newAge:int)

pre: newAge >=0
POSt: self.age = newAge

the

-p.9

OCL pre-/post conditions — Examples

KR

Person

name:String

Vehicle

colour:Colour

7

age: int bwner ownership fleet

Lquery>> 1 0..%

getName () :String

birthday ()

setAge (newAge:int) :int |
Car

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Bike

So far only considered class invariants.

OCL can also specify operations:

“Calling birthday() increments the age of a person by 1.

context Person::birthday/()
POst: self.age = self.age@pre + 1

-p.9

OCL pre-/post conditions — Examples

KR

Person

name:String

birthday ()
setAge (newAge:int) :int

age:int bwner Ownership fijeef
getName () : String

Vehicle

colour:Colour

7

Car

<enumeration>
Colour

black() :Colour
white() :Colour
red() :Colour

Bike

So far only considered class invariants.

OCL can also specify operations:

“Calling getName() delivers the value of the attribute name

context Person::getName()
POst: result = name

-p.9

Queries K

R

Person
<enumeration>>
name:String . Colour
age:int buner OWnership fieet Vehicle
1 0..%
<query>> . colour: Colour blgck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour
setAge (newAge:int) :int

Car | Bike |

Special to OCL are operations witha <<query > stereotype:

operations can be used within an OCL expression.

-p.10

Queries K

R

Person
<enumeration>>
name:String . Colour
age:int byner OWRership fjeed Vehicle
1 0..%

<query>> ‘ colour: Colour blgck() :Colour
getName () : String white() :Colour
birthday () 4 red() :Colour

setAge (newAge:int) :int

Car | Bike |

Special to OCL are operations witha <<query > stereotype:
operations can be used within an OCL expression.
“Calling getName() delivers the value of the attribute name

context Person
Inv. self.getName() = name

-p.10

	UML is not enoughldots
	Some OCL examples I
	Some OCL examples II
	Some OCL examples III --- iterate
	Some OCL examples IV --- oclIsKindOf
	Some OCL examples V --- allInstances
	OCL pre-/post conditions --- Examples
	Queries

