
Formal Specification and Verification

Bernhard Beckert

Adaptation of slides by
Wolfgang Ahrendt

Chalmers University, Gothenburg, Sweden

Formal Specification and Verification: 1 / 20

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

But what do we mean by state?

Formal Specification and Verification: 2 / 20

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

But what do we mean by state?

Formal Specification and Verification: 2 / 20

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

But what do we mean by state?

Formal Specification and Verification: 2 / 20

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

the overall state

But what do we mean by state?

Formal Specification and Verification: 2 / 20

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

the locally visible part of the overall state

But what do we mean by state?

Formal Specification and Verification: 2 / 20

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

the locally visible part of the overall state

But what do we mean by state?

Formal Specification and Verification: 2 / 20

Prerequisite: Object-oriented States

By state, we mean a ‘snapshot’ of the system, at any point during the
the computation, described in terms of the programmer’s model.

An object oriented state consists of:

the set C of all loaded classes

the values of the static fields of classes in C
the set O of references to all created objects

the values of the instance fields of objects in O

Here, values of local variables and formal parameters are not considered
part of the state.

Formal Specification and Verification: 3 / 20

Prerequisite: Object-oriented States

By state, we mean a ‘snapshot’ of the system, at any point during the
the computation, described in terms of the programmer’s model.

An object oriented state consists of:

the set C of all loaded classes

the values of the static fields of classes in C
the set O of references to all created objects

the values of the instance fields of objects in O

Here, values of local variables and formal parameters are not considered
part of the state.

Formal Specification and Verification: 3 / 20

Prerequisite: Object-oriented States

By state, we mean a ‘snapshot’ of the system, at any point during the
the computation, described in terms of the programmer’s model.

An object oriented state consists of:

the set C of all loaded classes

the values of the static fields of classes in C
the set O of references to all created objects

the values of the instance fields of objects in O

Here, values of local variables and formal parameters are not considered
part of the state.

Formal Specification and Verification: 3 / 20

Prerequisite: Visible State

Like implementations, specifications can only refer to the locally visible
part of the state (e.g., not to private fields of other classes).

Formal Specification and Verification: 4 / 20

Prerequisite: Visible State

In our context, we stick to the following principle:

Same Visible State for Specifications and Implementations:

In some local context, specifications and implementations can access the
same part of the overall state.a

aLater, we’ll refine this principle, and introduce well defined exceptions.

Thus, specifications talk only about those parts of the state which are
accessible by:

respecting Java’s visibility rules (public, protected, private),

following (visible) references, starting from local fields.

Formal Specification and Verification: 5 / 20

Prerequisite: Visible State

In our context, we stick to the following principle:

Same Visible State for Specifications and Implementations:

In some local context, specifications and implementations can access the
same part of the overall state.a

aLater, we’ll refine this principle, and introduce well defined exceptions.

Thus, specifications talk only about those parts of the state which are
accessible by:

respecting Java’s visibility rules (public, protected, private),

following (visible) references, starting from local fields.

Formal Specification and Verification: 5 / 20

Prerequisite: Visible State

In our context, we stick to the following principle:

Same Visible State for Specifications and Implementations:

In some local context, specifications and implementations can access the
same part of the overall state.a

aLater, we’ll refine this principle, and introduce well defined exceptions.

Thus, specifications talk only about those parts of the state which are
accessible by:

respecting Java’s visibility rules (public, protected, private),

following (visible) references, starting from local fields.

Formal Specification and Verification: 5 / 20

Purely Functional Specification

A purely functional specification of a (non-void) method talks

only about

the result of a call
the initial value of input parameters

but not about

(any part of) the state

examples:

interface/class: method:
Math static int abs(int a)
Math static double sqrt(double a)

Formal Specification and Verification: 6 / 20

Purely Functional Specification

A purely functional specification of a (non-void) method talks

only about

the result of a call
the initial value of input parameters

but not about

(any part of) the state

examples:

interface/class: method:
Math static int abs(int a)
Math static double sqrt(double a)

Formal Specification and Verification: 6 / 20

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification and Verification: 7 / 20

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification and Verification: 7 / 20

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification and Verification: 7 / 20

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification and Verification: 7 / 20

Going a bit more formal

static int abs(int a)

Informal spec:
If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned.

Semi formal:

Under the precondition ‘a ∈ [0...2147483647]’,
abs ensures the postcondition ‘result = a’.

Under the precondition ‘a ∈ [−2147483648...− 1]’,
abs ensures the postcondition ‘result = −a’.

Formal Specification and Verification: 8 / 20

Going a bit more formal

static int abs(int a)

Informal spec:
If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned.

Semi formal:

Under the precondition ‘a ∈ [0...2147483647]’,
abs ensures the postcondition ‘result = a’.

Under the precondition ‘a ∈ [−2147483648...− 1]’,
abs ensures the postcondition ‘result = −a’.

Formal Specification and Verification: 8 / 20

Going a bit more formal

static int abs(int a)

Redundant informal spec:
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Semi formal:

Under the precondition ‘a = −2147483648’,
abs ensures the postcondition ‘result = −2147483648’.

Or simply:1

abs(−2147483648) = −2147483648

1But be careful when using a method call in a formula, see below.
Formal Specification and Verification: 9 / 20

Going a bit more formal

static int abs(int a)

Redundant informal spec:
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Semi formal:

Under the precondition ‘a = −2147483648’,
abs ensures the postcondition ‘result = −2147483648’.

Or simply:1

abs(−2147483648) = −2147483648

1But be careful when using a method call in a formula, see below.
Formal Specification and Verification: 9 / 20

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification and Verification: 10 / 20

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification and Verification: 10 / 20

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification and Verification: 10 / 20

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification and Verification: 10 / 20

State Aware Specification: List::set(i,e)

from the Java API of List::set (simplified):

public Object set(int index, Object element)

Replaces the element at the specified position in this list with the
specified element.

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.
Returns:
the element previously at the specified position.
Throws:
IndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size()).

Why is the spec state aware?
It talks about the state, in particular about the state change.

Formal Specification and Verification: 11 / 20

State Aware Specification: List::set(i,e)

from the Java API of List::set (simplified):

public Object set(int index, Object element)

Replaces the element at the specified position in this list with the
specified element.

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.
Returns:
the element previously at the specified position.
Throws:
IndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size()).

Why is the spec state aware?
It talks about the state, in particular about the state change.

Formal Specification and Verification: 11 / 20

State Aware Specification: List::set(i,e)

from the Java API of List::set (simplified):

public Object set(int index, Object element)

Replaces the element at the specified position in this list with the
specified element.

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.
Returns:
the element previously at the specified position.
Throws:
IndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size()).

Why is the spec state aware?
It talks about the state, in particular about the state change.

Formal Specification and Verification: 11 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postcondition:

element = ‘get(index) evaluated in the post-state’

Does this capture the meaning of the word ‘replace’?

Formal Specification and Verification: 12 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postcondition:

element = ‘get(index) evaluated in the post-state’

Does this capture the meaning of the word ‘replace’?

Formal Specification and Verification: 12 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postcondition:

element = ‘get(index) evaluated in the post-state’

Does this capture the meaning of the word ‘replace’?

Formal Specification and Verification: 12 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postconditions:

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification and Verification: 13 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postconditions:

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification and Verification: 13 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position.

Semi formal:
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification and Verification: 14 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position.

Semi formal:
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification and Verification: 14 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position ... Throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size()).

Semi formal:

Under the precondition ‘index ∈ [0...size()− 1]’,
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and
element = ‘get(index) evaluated in the post-state’, and
for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Under the precondition ‘index 6∈ [0...size()− 1]’,
set throws IndexOutOfBoundsException.

Formal Specification and Verification: 15 / 20

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position ... Throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size()).

Semi formal:

Under the precondition ‘index ∈ [0...size()− 1]’,
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and
element = ‘get(index) evaluated in the post-state’, and
for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Under the precondition ‘index 6∈ [0...size()− 1]’,
set throws IndexOutOfBoundsException.

Formal Specification and Verification: 15 / 20

Altogether:

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position ... Throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size()).

Semi formal:

Under the precondition ‘index ∈ [0...size()− 1]’,
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and
element = ‘get(index) evaluated in the post-state’, and
for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Under the precondition ‘index 6∈ [0...size()− 1]’,
set throws IndexOutOfBoundsException.

Formal Specification and Verification: 16 / 20

Reflection

We identify elements of a framework for Formal Specification

pairs of

preconditions
corresponding postconditions

a language to express these conditions, capturing:

relations, equality, logical connectives
quantification

constructs to refer to:

values in the new and in the old state
the throwing of exceptions

To identify one more element, we consider another example.

Formal Specification and Verification: 17 / 20

Reflection

We identify elements of a framework for Formal Specification

pairs of

preconditions
corresponding postconditions

a language to express these conditions, capturing:

relations, equality, logical connectives
quantification

constructs to refer to:

values in the new and in the old state
the throwing of exceptions

To identify one more element, we consider another example.

Formal Specification and Verification: 17 / 20

Consider Class SortedIntegers

public c la s s SortedIntegers {

private int arr[];
private int capacity , size = 0;

public SortedIntegers(int capacity) {
th i s .capacity = capacity;
th i s .arr = new int [capacity];

}

public void add(int elem) { /*...*/ }

public boolean remove(int elem) { /*...*/ }

public int max() { /*...*/ }
}

Which methods have purely functional / state aware specifications?

Formal Specification and Verification: 19 / 20

Consider Class SortedIntegers

public c la s s SortedIntegers {

private int arr[];
private int capacity , size = 0;

public SortedIntegers(int capacity) {
th i s .capacity = capacity;
th i s .arr = new int [capacity];

}

public void add(int elem) { /*...*/ }

public boolean remove(int elem) { /*...*/ }

public int max() { /*...*/ }
}

Which methods have purely functional / state aware specifications?

Formal Specification and Verification: 19 / 20

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of the elements in the array arr.

But that is not what we wanted.

max() should return the maximum of the elements which were already
added, and not removed thereafter.

Formal Specification and Verification: 20 / 20

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of the elements in the array arr.

But that is not what we wanted.

max() should return the maximum of the elements which were already
added, and not removed thereafter.

Formal Specification and Verification: 20 / 20

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of the elements in the array arr.

But that is not what we wanted.

max() should return the maximum of the elements which were already
added, and not removed thereafter.

Formal Specification and Verification: 20 / 20

	Unit Specification

