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Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of those elements in the array arr which
were already added, and not removed thereafter.

How can we state this without referring to the history of the object?

We can use the fact that the integers are (supposed to be) sorted.
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Specifying SortedIntegers::max()

Specification of int max() now much simpler

max() returns arr(size-1).

Sufficient if we assume sortedness.

Questions:

A) how to express the sortedness property?

B) how to specify that an instance of SortedIntegers always has this
property?
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A) Expressing Sortedness

A SortedIntegers object is sorted if:

for all i ∈ [0...size()− 2]: arr(i) ≤ arr(i+1)

Below, we abbreviate this condition by ‘SORT ED’.

Note:
Even SortedIntegers objects with with size() ≤ 1 satisfy SORT ED.
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B) Specifying Sortedness

How to specify that sortedness is a property of a SortedIntegers
object at any time?

State that SORT ED is invariant w.r.t. actions on SortedIntegers.

i.e., SORT ED is:

established by all constructors

maintained by all methods
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B) Specifying Sortedness

add SORT ED to

postcondition of all constructors

precondition and postcondition of all methods

Problem: This way,

invariant conditions bloat the specification,

invariant conditions are difficult to maintain.
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Solution: Class Invariants

Invariant conditions belong to the object, not to the actions on object.

Attach invariant conditions to the class, not to methods/constructors.

We call these conditions ‘class invariants’.

Constructors/methods of a class are implicitly (but firmly!) obliged to
establish/maintain invariant conditions of their class.
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Specification Conditions

in summary: three types of conditions in specifications

preconditions of methods

postconditions of methods and constructors

class invariants1

1not to be confused with loop invariants, see last part of course
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Formal Language for Conditions

We will use the ‘Java Modelling Language’ (JML) to specify Java
programs.

JML combines

Java

First-Order Logic (FOL)

We first introduce First-Order Logic, and JML afterwards.
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First-Order Logic

Signature

A first-order signature Σ consists of

a set TΣ of types

a set FΣ of function symbols, each with fixed typing

a set PΣ of predicate symbols, each with fixed typing

a typing αΣ

The typing αΣ assigns

to each function and predicate symbol:

its number of arguments (≥ 0)
its argument types

to each function symbol its result type.

We assume set V of variables (V ∩ (FΣ ∪ PΣ) = ∅), each having a
unique type.
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First-Order Terms

terms are defined recursively:

Terms

A first-order term of type τ ∈ TΣ

is either a variable of type τ , or

has the form f (t1, . . . , tn),
where f ∈ FΣ has result type τ , and each ti is term of the correct
type, following the typing αΣ of f .
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Atomic Formulae

Logical Atoms

A logical atom has either of the forms

true

false

t1 = tn (“equality”)

p(t1, . . . , tn) (“predicate”),
where p ∈ PΣ, and each ti is term of the correct type, following the
typing αΣ of p.
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General Formulae

first-order formulae are defined recursively:

Formulae

each atomic formula is a formula

if φ and ψ are formulae, and x is a variable, then the following are
also formulae:

¬φ (“not φ”)
φ ∧ ψ (“φ and ψ”)
φ ∨ ψ (“φ or ψ”)
φ→ ψ (“φ implies ψ”)
φ↔ ψ (“φ is equivalent to ψ”)
∀ t x . φ (“for all x of type t holds φ”)
∃ t x . φ (“there exists an x of type t such that φ”)
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In a real Logic Course ....

... we now would rigorously define:

validity of formulae

provability of formulae (in various calculi)

⇒ see course ‘Logic in Computer Science’

In our course, we stick to the intuitive meaning of formulae.

But we mention ‘models’.
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Models vs. States

Model

A model assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

In a given model M, a formula is either valid or not valid.

Tautologies

A formula is a tautology if it is valid in all models.

In the context of formal specification of imperative programs:
states take over the role of models.
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Tautologies
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2together with input values and results, and possibly paired with an old states
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Good to Remember

useful tautologies: whiteboard

Formal Specification and Verification: 16 / 17



Next Lecture

We will use the ‘Java Modelling Language’ (JML) to specify Java
programs.

JML combines

First-Order Logic (FOL)

Java
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