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Abstract State Machines (ASMs)

Purpose

Formalism for modelling/formalising (sequential) algorithms

Not: Computability / complexity analysis

Invented/developed by

Yuri Gurevich, 1988

Old name

Evolving algebras
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Features of ASMs

Universality: ASMs can represent all sequential algorithms

Precision: ASMs use classical mathematical structures
that are well-understood

Faithfulness: ASMs require a minimal amount of notational coding

Understandability: ASMs use an extremely simple syntax,
which can be read as a form of pseudo-code

Executablity: ASMs can be tested by executing them

Scalability: ASMs can describe a system/algorithm
on different levels of abstraction

Generality: ASMs have been shown to be useful in
many different application domains
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Three Postulates

Sequential Time Postulate

An algortihm can be described by defining a set of states,
a subset of initial states, and a state transformation function

Abstract State Postulate

States can be described as first-order structures

Bounded Exploration Postulate

An algorithm explores only finitely many elements in a state
to decide what the next state is

There is a finite number of names (terms) for all these
“interesting” elements in all states
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Example: Computing Squares

Initial State

square = 0

count = 0

ASM for computing the square of input

if input < 0 then
input := −input

else if input > 0 ∧ count < input then
par

square := square + input

count := count + 1
endpar

B. Beckert: Formal Specification of Software – p.5



Example: Turing Machine

par
currentState := newState(currentState, content(head ))
content(head ) := newSymbol (currentState, content(head ))
head := head + move(currentState, content(head ))

endpar
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The Sequential Time Postulate

Sequential algorithm

An algorithm is associated with

a set S of states

a set I ⊂ S of initial states

A function τ : S → S
(the one-step transformation of the algorithm)

Run (computation)

A run (computation) is a sequence X0, X1, X2, . . . of states such that

X0 ∈ I
τ (Xi) = Xi+1 for all i ≥ 0

B. Beckert: Formal Specification of Software – p.7



The Sequential Time Postulate

Sequential algorithm

An algorithm is associated with

a set S of states

a set I ⊂ S of initial states

A function τ : S → S
(the one-step transformation of the algorithm)

Run (computation)

A run (computation) is a sequence X0, X1, X2, . . . of states such that

X0 ∈ I
τ (Xi) = Xi+1 for all i ≥ 0

B. Beckert: Formal Specification of Software – p.7



Termination

The definition avoids the issue of termination

Possible solutions

Add a set F ⊂ T of final states

Make the function τ partial

Define a state s to be final if τ (s) = s
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The Abstract State Postulate

States are first-order structures where

all states have the same vocabulary (signature)

the transformation τ does not change the base set (universe)

S and I are closed under isomorphism

if ζ is an isomorphism from a state X onto a state Y,
then ζ is also an isomorphism from τ (X) onto τ (Y)
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Vocabulary (Signature)

Signatures

A signature is a finite set of function symbols, where

– each symbol is assigned an arity n ≥ 0
– symbols can be marked relational (predicates)
– symbols can be marked static (default: dynamic)

Each signature contains

– the constant ⊥ (“undefined”)
– the relational constants true, false
– the unary relational symbols Boole, ¬
– the binary relational symbols ∧, ∨, →, ↔, =

These special symbols are all static
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Variables and Terms

Variables

There is an infinite set of variables

An infinite subset of these are boolean variables

Terms

Terms are build as usual from variables and function symbols

A term is boolean if

– it is a boolean variable or
– its top-level symbol is relational
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First-order Structures (States)

First-order structures (states) consist of

a non-empty universe (called BaseSet)

an interpretation I of the symbols in the signature

Restrictions on states

– tt ,ff ,⊥ ∈ BaseSet (different elements)
– I(true) = tt

– I(false) = ff

– I(⊥) = ⊥
– If f is relational, then I( f ) : BaseSet → {tt ,ff }
– I(Boole) = {tt ,ff }
– ¬, ∧, ∨, →, ↔, = are interpreted as usual
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The Reserve of a State

Reserve

Consists of the elements that are “unknown” in a state

An element a is in the reserve if:

If f is relational, then I( f )(a) = ff

If f is not relational, then I( f )(a) = ⊥

For no function symbol f is a in the domain of I( f )

Definition

The reserve of a state must be infinite
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Extended States

Variable assignment

A function

β : Var → BaseSet

(boolean variables are assigned tt or ff )

Extended state

A pair

(X, β)

consisting of a state X and a variable assignment β
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Evaluation of Terms

Given: Extended state (X, β)

Evaluation of terms

The evaluation of terms in an extended states is defined by:

(X, β)(x) = β(x) for variables x

(X, β) f (s1, ..., sn) = I( f )((X, β)(s1), . . . , (X, β)(sn))

where I is the interpretation function of X

Notation

f X for I( f )

tX for (X, β)(t) if t is a ground term
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Example: Trees

Vocabulary

nodes : unary, boolean: the class of nodes

(type/universe)

strings : unary, boolean: the class of strings

parent : unary: the parent node

firstChild : unary: the first child node

nextSibling : unary: the first sibling

label : unary: node label

c : constant: the current node
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Example: Trees

Terms

parent(parent(c))

label (firstChild (c))

parent(firstChild (c)) = c

nodes(x) → parent(x) = parent(nextSibling(x))

(x is a variable)
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Isomorphism of States

Isomorphism

A bijection ζ from X to Y is an isomorphism if:

– for all symbols f
– all a1, . . . , an ∈ BaseSet(X)

ζ( f X(a1, . . . , an)) = f Y(ζ(a1), . . . , ζ(an))

Equivalent condition:

f X(a1, . . . , an) = b iff f Y(ζ(a1), . . . , ζ(an)) = ζ(b)
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Isomorphism of States

Lemma (Isomorphism)

Isomorphic states are indistinguishable by ground terms:

ζ(tX) = tY for all ground terms t

(t = s)X
= tt iff (t = s)Y

= tt for all ground terms s, t

Justification for postulate

If ζ is an isomorphism from a state X onto a state Y,
then ζ is also an isomorphism from τ (X) onto τ (Y)

Algorithm must have the same behaviour for indistinguishable states

Isomorphic states are different representations of
the same abstract state!
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Isomorphism of States: Example

Vocabulary

constants (dynamic): a, b, count

unary functions (dynamic): f , g

static functions: 1,+

Algorithm

par
if a = b then count := count + 1

else skip
endif
a := f (a)
b := g(b)

endpar

Initial State

count = 0
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State Updates

Locations

A location is a pair

( f ,~a)

with

– f an n-ary function symbol
– ~a ⊂ BaseSet an n-tuple

Examples

(parent , 〈a〉), (firstChild , 〈a〉), (nextSibling , 〈a〉), (c, 〈〉)

are locations (a is an element from BaseSetTree)
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State Updates

Updates

An update is a triple

( f ,~a, b)

with

– ( f ,~a) a location
– f not static
– b ∈ BaseSet
– if f is relational, then b ∈ {tt ,ff }

Trivial update

An update is trivial if f X(~a) = b

B. Beckert: Formal Specification of Software – p.22



State Updates

Updates

An update is a triple

( f ,~a, b)

with

– ( f ,~a) a location
– f not static
– b ∈ BaseSet
– if f is relational, then b ∈ {tt ,ff }

Trivial update

An update is trivial if f X(~a) = b

B. Beckert: Formal Specification of Software – p.22



State Updates: Consistency

Clash

Two updates

( f1,~a1, b1) ( f2,~a2, b2)

clash if

( f1,~a1) = ( f2,~a2) but b1 6= b2

Example

These two updates clash: (nodes , a, tt) (nodes , a,ff )

Consistent set of updates

A set of updates is consistent if it does not contain clashing updates
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State Updates: Execution

Executing an update

An update is executed by changing the value of f X(~a) to b

Executing a set of updates

A consistent set of updates is executed by
simultaneously executing all updates in the set

An inconsistent set of updates is executed by doing nothing

Notation

The result of executing a set ∆ of updates in a state X is denoted with

X + ∆
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State Updates: Uniqueness

Lemma (State Update Uniqueness)

X, Y states with

– the same vocabulary
– the same base set

Then there is exactly one consistent set ∆ of non-trivial updates
such that

Y = X + ∆

Notation

We write ∆(X) for the set of updates such that

τ (X) = X + ∆(X)
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The Bounded Exploration Postulate

There is a finite set T of ground terms for such that for all states X, Y:

If

tX
= tY for all t ∈ T

then

∆(X) = ∆(Y)

Bounded exploration witness

If such a set T is closed under the sub-term relation,
it is called a bounded exploration witness
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Bounded Exploration: Example

Algorithm given by

if p(c) then c := s(c)

Bounded exploration witness

{ c, s(c), p(c) }
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Bounded Exploration: Counter Examples

“Algorithms” not satisfying the bounded exploration postulate

for all x, y with edge(x, y)∧ reachable(x) ∧¬reachable(y)
do

reachable(y) := true
enddo

Bounded change is not enough

if ∀x∃y edge(x, y) then
hasIsolatedPoints := false

else
hasIsolatedPoints := true

endif
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Accessibility Lemma

Lemma (Accessibility Lemma)

Given a bounded exploration witness T

If

( f , 〈a1, . . . , an〉, a0) ∈ ∆(X)

then there are terms t0, . . . , tn ∈ T such that

tX
i = ai for 0 ≤ i ≤ n

Corollary

There is a finite limit on the size of ∆(X),
which does not depend on X
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Update Rules

An update rule has the form

f (s1, . . . , sn) := t

where

– f is a function symbol of arity n
– s1, . . . , sn, t and t are ground terms

Executing an update rule

An update rule R is executed in state X by executing the update set

R(X) = { ( f , 〈sX
1 , . . . , sX

n 〉, tX)}
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Update Rules: Computability and Complexity

Note

The interpretation gX of function symbols g occurring in an update rule

f (s1, . . . , sn) := t

in the si or in t can be

an “external” static function defined in the initial state

of high computational complexity

even non-computable

This allows to describe algorithms on arbitrary levels of abstraction
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Block Rules

A block rule has the form

par
R1
R2...
Rk

endpar

where R1, . . . , Rk are rules (k ≥ 0)

Executing a block rule

A block rule R is executed in state X by executing the update set

R(X) = R1(X) ∪ . . .∪ Rk(X)
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Empty Block

The empty block is written as

skip

B. Beckert: Formal Specification of Software – p.33



State Update Representation Lemma

Consequence of the Accessibility Lemma

Lemma (State Update Representation)

For every state X, there is a block rule RX such that

RX(X) = ∆(X)

Note

In general

RX(Y) 6= ∆(Y)
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T-Similar States

T-similarity

Given a bounded exploration witness T

States X, Y are T-similar if for all t1, t2 ∈ T:

tX
1 = tX

2 iff tY
1 = tY

2

Note

T-similar states X, Y are “isomorphic” on TX resp. TY

Lemma (T-similarity)

There is a finite number of states X1, . . . , Xm such that

every state is T-similar to one of the Xi
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Conditional State Update Representation Lemma

Lemma (T-similarity Representation)

There is a relational term φX such that

φX is true in Y iff Y is T-similar to X

Lemma (Conditional State Update Representation)

If X, Y are T-similar, then

RX(Y) = ∆(Y)
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If Rule

An if rule has the form

if cnd then R1
else R2

endif

where R1, R2 are rules and cnd is a relational term

Executing an if rule

An if rule R is executed in state X by executing the update set

R(X) =







R1(X) if condX
= tt

R2(X) otherwise
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Main Theorem

Theorem

For every algorithm there is a rule R such that

R(X) = ∆(X) for all states X

Proof

An example for such a rule is

if φX1 then RX1

else if φX2 then RX2...
else if φXm then RXm

endif . . .endif
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Abstract State Machine Representing an Algorithm

An abstract state machine representing an algorithm consists of

the rule (program) R such that

R(X) = ∆(X) for all states X

the set of states of the algorithm

the set of initial states of the algorithm

Note

The interpretation of static functions is “built into” the initial states
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ASM Applications

Abstract Algorithms
Lamport’s Bakery Algorithm

Architectures
Pipelining in the ARM2 RISC Microprocessor
Hennessey and Patterson DLX pipelined microprocessor

Benchmark Examples
Production Cell Control Problem
Steam Boiler Problem

Compiler Correctness
Compiling Occam to Transputer code

Databases
Formalization of Database Recovery
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ASM Applications

Distributed Systems
Communicating evolving algebras

Hardware
Specification of the DEC-Alpha Processor Family

Java
Semantics of Java
Defining the Java Virtual Machine
Investigating Java Concurrency

Logic & Computability
Linear Time Hierarchy Theorems for ASMs

Mechanical Verification
Model Checking Support for the ASM
Mechanical verification of the correctness proof in WAM Case Study
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ASM Applications

(Other) Models of Computation
Investigating the formal relation between
– ASMs and Predicate Transition Nets
– ASM and Schönhage Storage Modification Machines

Montages
A version of ASMs for specifying static and dynamic semantics of
programming languages
Combines graphical and textual elements to yield specifications
similar in structure, length, and complexity to those in
common language manuals

Natural Languages
Mathematical Models of Language
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ASM Applications

Programming Languages
Operational semantics of
Prolog, Parlog, C, C++, COBOL, Occam, Oberon

Real-time Systems
Railway crossing system

Security
Formal analysis of the Kerberos Authentication System

VHDL
Semantical analysis of VHDL-AMS
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Features of ASMs Revisited

Universality: ASMs can be represent all sequential algorithms

Precision: ASMs use classical mathematical structures
that are well-understood

Faithfulness: ASMs require a minimal amount of notational coding

Understandability: ASMs use an extremely simple syntax,
which can be read as a form of pseudo-code

Executablity: ASMs can be tested by executing them

Scalability: ASMs can describe a system/algorithm
on different levels of abstraction

Generality: ASMs have been shown to be useful in
many different application domains
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