Handling of Loops

by Christoph Gladisch

Induction rule:

Base case Steg&ase Us;c\case
= H0) T i>0,H@)=H®i+1) | ViH(i)= ¢
=¢

In order to prove ¢ find a more general formula H (i) such that it can be instantiated and Vi.H (i) = ¢
can be proven. ¢ is often an instance of H (i) so that for some term ¢ it even holds that H(¢) = .

Loop induction. Heuristics for finding an induction hypothesis:
For a formula ¢:

o= {U }{while(c){body})Post

the induction hypothesis H (i) has often the form:

H(i)= {U}{V(i)}(HPre(i) — (while(c){body})Post)

Prefix Postfix

Note the similarity to the original formula. The postfix (while(c){body})Post remains unchanged. Only
the update {V(7)} and the formula HPre(7) have to be choosen appropriately. The prefix {V (i)} (HPre(7)
determins the state before the execution of the loop. {V (i)} assigns program variables to the right state
and HPre(47) puts additional constrains on the state to filter out for instance invalid ranges etc.

HPre(i) has to be choosen such that:

(1) HPre(0) — (¢ =false) the loop terminates and

(2) HPre(0) — Post

Because of (2) HPre(0) and Post are very similar. Sometimes it is that HPre(0) = Post.
(3) HPre(n) describes the state before the execution of the loop.

Figure 5. illustrates the states of the prefix before the loop is entered and for the case when the loop iter-
ates 0 times.

lteration O 1 2 n-2 n-1 n
—>»<body> _s<body> --- —>»<body> _se<body> pgost

{V(n)}(HPre(n) {V(n-1)}(HPre(n-1) {V(2)}(HPre(2) {V(1)}(HPre(1) {V(0)}(HPre(0)

Figure 5. Visualisation of the semantics of the Prefix {V (¢)}(HPre(Z) of the induction hypothesis.

Figure 6. Illustrates what happens at the induction step.

[teration: i i+1

« =« _y<<body> —><body> —y<body> _se<body> --:
{V(i+1)}(HPre(i+1)-> {V(i)}(HPre(i)->
<while(c){body}>post) <while(c){body}>post)
1. ¢ 2. Prove implication
. {V'(i+1)}(HPre(i+1)->
By unwinding <while(c){body}>post)

we iterate one
step further

Figure 6. Induction step

A frequent pattern in the step case:
C=A B=D
C=A,D B,C=D
A—B,C=D
A—-B=C—D

With induction hypothesis pattern:

HPre(i + 1) = HPre(4) {U(%)}(while (c) {body})Post, = {U(i+1)}(while(c){bodyl})Post

C A 5 D
HPre(i + 1) = HPre(4) {U (i)} (while(c){body})Post, HPre(i+ 1) = {U(i + 1) }(while (c) {body})Post

A B Ié] D

HPre(i) — {U(4) }(while(c) {body})Post, HPre(i + 1) = {U(i + 1) }{while (c) {body})Post
A B e} D
HPre(i) — {U(4) }(while(c) {body})Post = HPre(i + 1) — {U(i + 1)} (while (c) {body})Post
A B ke D

Frequent problem after unwinding the loop of the right formula in the induction step:
{i:=z|n:=y}{while(c){. .m=z..})P={i:=x|jm:= z||n:= y }(while(c){. .m=2z. .})P
Solution: Generalise the induction hypothesis in the form:

VM {i:=z|n:=y}{m:= M }(HPre — (while(c){..m=2z..})P)

Classic Invariant rule:
= {U}inv inv,c= |[body]inv inv,~c=-Post
= {U }[while (c) {body}]Post

In KeY without modifies clause:
={U}inv = inv— ([b=c]b— [bodylinv) = inv— —c— Post
= {U }[while(c) {body}]Post

In KeY with modifies clause:
={U}inv TI'={U}{M }(inv— ([b=c]b— [body]inv)) I'={U}{M }(inv— —c— Post)
= {U }[while(c){body}|Post

For every program variable in the modifies clause an update {M} is created that replaces the modifies
program variable by a fresh program variable or in other words by a new skolem function.

