Formal Verification of Software

Dynamic Logic for Java

Bernhard Beckert

— ——

UNIVERSITAT KOBLENZ-LANDAU

Formal Verification of Software - p.1

KeY Supports Java Card as Target Language

What is Java Card?

o Subset of Java

& Sun’s official standard for SMARTCARDS and embedded devices

Formal Verification of Software - p.2

KeY Supports Java Card as Target Language

What is Java Card?

o Subset of Java

& Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?

Formal Verification of Software - p.2

KeY Supports Java Card as Target Language

What is Java Card?

o Subset of Java

& Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?
Good example for real-world object-oriented language

Formal Verification of Software - p.2

KeY Supports Java Card as Target Language

What is Java Card?

o Subset of Java

& Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?
Good example for real-world object-oriented language

Java Card has no
& garbage collection
& dynamical class loading
& multi-threading

& floating-point arithmetic

Formal Verification of Software - p.2

KeY Supports Java Card as Target Language

What is Java Card?

o Subset of Java

& Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?

Good example for real-world object-oriented language

Java Card has no
& garbage collection
& dynamical class loading
& multi-threading

& floating-point arithmetic

Application Area
& security critical

& financial risk
(e.g. exchanging smart cards
IS expensive)

Formal Verification of Software - p.2

Academic vs. Real-world Languages

Problems to address

Pointers / objects attributes

Modelled as non-rigid constants and functions

Formal Verification of Software - p.3

Academic vs. Real-world Languages

Problems to address

Pointers / objects attributes

Modelled as non-rigid constants and functions

Side effects

Expressions in programs have side effects, for example

if ((y=3) + y < 0) .. else ..

Formal Verification of Software - p.3

Academic vs. Real-world Languages

Problems to address

Pointers / objects attributes

Modelled as non-rigid constants and functions

Side effects

Expressions in programs have side effects, for example
if ((y=3) + y < 0) .. else ..

Aliasing

Different names may refer to the same location, for example

0.a,u.ain a state g where g =0 =u

Formal Verification of Software - p.3

Other Issues (Later)

Further supported Java Card features

» method invocation, dynamic binding

Formal Verification of Software - p.4

Other Issues (Later)

Further supported Java Card features
» method invocation, dynamic binding

» polymorphism

Formal Verification of Software - p.4

Other Issues (Later)

Further supported Java Card features
» method invocation, dynamic binding
» polymorphism

» abrupt termination

Formal Verification of Software - p.4

Other Issues (Later)

Further supported Java Card features
» method invocation, dynamic binding
» polymorphism
» abrupt termination

» checking for nullpointer exceptions

Formal Verification of Software - p.4

Other Issues (Later)

Further supported Java Card features
» method invocation, dynamic binding
» polymorphism
» abrupt termination
» checking for nullpointer exceptions

» object creation and initialisation

Formal Verification of Software - p.4

Other Issues (Later)

Further supported Java Card features
» method invocation, dynamic binding
» polymorphism
» abrupt termination
» checking for nullpointer exceptions
» object creation and initialisation

» arrays

Formal Verification of Software - p.4

Other Issues (Later)

Further supported Java Card features
» method invocation, dynamic binding
» polymorphism
» abrupt termination
» checking for nullpointer exceptions
» object creation and initialisation
»> arrays

» finiteness of integer data types

Formal Verification of Software - p.4

Other Issues (Later)

Further supported Java Card features
» method invocation, dynamic binding
» polymorphism
» abrupt termination
» checking for nullpointer exceptions
» object creation and initialisation
»> arrays
» finiteness of integer data types

» transactions

Formal Verification of Software - p.4

Handling Object Attributes

Similar concepts

& Object attributes
s Arrays

& Pointers

Formal Verification of Software - p.5

Handling Object Attributes

Similar concepts

& Object attributes

Non-rigid functions

Attributes are considered to be non-rigid functions on objects

Formal Verification of Software - p.5

Handling Object Attributes

Similar concepts

& Object attributes

Non-rigid functions

Attributes are considered to be non-rigid functions on objects

Extended to program variables

Program variables are considered to be non-rigid constants

Formal Verification of Software - p.5

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assighment
(y=3) + y <0

does not only evaluate to a boolean value, but also assigns a value to y.

Formal Verification of Software - p.6

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assignment
(y=3) + y <0
does not only evaluate to a boolean value, but also assigns a value to y.

Problem: Terms in logic have to be side effect free

Formal Verification of Software - p.6

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assighment
(y=3) + y <0

does not only evaluate to a boolean value, but also assigns a value to y.

Problem: Terms in logic have to be side effect free

Solution:

& Calculus rules realise a stepwise symbolic execution of the

programs (program transformation)

Formal Verification of Software - p.6

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assighment
(y=3) + y <0

does not only evaluate to a boolean value, but also assigns a value to y.

Problem: Terms in logic have to be side effect free

Solution:

& Calculus rules realise a stepwise symbolic execution of the

programs (program transformation)

s Restrict applicability of some rules. For example, if-then-else is

only applicable, if the guard is free of side-effects

Formal Verification of Software - p.6

Rule Application for if-then-else

I F{Ef(y=3) + vy < 0){a} else{S})D,A

Formal Verification of Software — p.7

Rule Application for if-then-else

[- (boolean guard = (y=3) + y < 0; if (guard){a} else{3})P, A
L F{Ef(y=3) + vy < 0){a}else{8})D, A

Formal Verification of Software — p.7

Rule Application for if-then-else

int val0 = (y=23) + y;
I |—< boolean guard = val0 < O; >CI>, A
if (guard){a} else{3}
' - (boolean guard = (y=3) + y < 0; if (guard){a} else{3})®, A
' F{f(y=3) + vy < 0){a}else{S})D,A

Formal Verification of Software — p.7

Rule Application for if-then-else

int vall = y=3;
) |—< int val0 = vall + y >q)7 A

int val0 = (y=3) + y;
>c1>, A

I' = { boolean guard = val0 < O;
if (guard){a} else{3}
I' - (boolean guard = (y=3) + y < 0; if (guard){a} else{})P, A
I' F{Hf(y=3) + v < 0){a} else{3})D,A

Formal Verification of Software — p.7

Rule Application for if-then-else

y =3
int vall = y;

' - P, A
int val0 = vall + y

int vall = y =3,
I |_< int val0 = vall + y >CI>, A

int val0 = (y=3) + y;
I |_< boolean guard = val0 < O; >CI), A
if (guard){a} else{3}
I' - (boolean guard = (y=3) + y < 0; if (guard){a} else{3})d, A
I F{f((y=3) +y < 0){a} else{3}) D, A

Formal Verification of Software — p.7

Assignment in the Classical Version

Classical rule for assignment

DV x = Y - &, AY

(y new variable)
r F (x =1, A

Formal Verification of Software - p.8

Assignment in the Classical Version

Classical rule for assignment

DV x = Y - &, AY

(y new variable)
r F (x =1, A
Problems:

& cannot be handled as substitution

Formal Verification of Software - p.8

Assignment in the Classical Version

Classical rule for assignment

DV x = Y - &, AY

(y new variable)
r F (x =1, A

Problems:

& cannot be handled as substitution

. ?
¢ aliasing:

0.a=3 F (ua=5;)¢

Requires to split the proof for the cases 0 = 1 and 0 # u.

Formal Verification of Software - p.8

The Active Statement in a Program
Example

1:{try{ i=0; j=0; } finally{ k=0; }}
Rf—/ N ~ v

v w

first active command i=0;
non-active prefix T

rest W

Formal Verification of Software - p.9

Updates: Delayed Substitutions

Syntax: Updates are syntactical elements
{loc := val}® or {loc := val}t

where

loc either a
- program variable x
- an attribute o.attr or
- an array access a|i]

val a logical term (no side effects)

Formal Verification of Software - p.10

Updates: Delayed Substitutions

Syntax: Updates are syntactical elements
{loc := val}® or {loc := val}t

where

loc either a
- program variable x
- an attribute o.attr or
- an array access a|i]

val a logical term (no side effects)
Semantic:

o ‘: {ZOC = U&ll}q) iff g’ ‘: ® where g/ _ gval

loc

Formal Verification of Software - p.10

Assignment Rule in KeY

' - {loc:=val}(mr w)P, A
, Where loc, val side effect free

' - (wloc=val;, w)®, A

Formal Verification of Software - p.11

Assignment Rule in KeY

' - {loc:=val}(mr w)P, A
, Where loc, val side effect free

[' - (mloc=val;, w)®, A

Advantages:

& ho renaming as in the classical version

Formal Verification of Software - p.11

Assignment Rule in KeY

' - {loc:=val}(mr w)P, A
, Where loc, val side effect free

[' - (mloc=val;, w)®, A

Advantages:
& ho renaming as in the classical version

s delayed proof branching
' (x=3, x=4;)® or
' - (0.a=3; o.a=4;)d

Formal Verification of Software - p.11

Conditional Terms

Use conditional terms to delay splitting further

,
1.3 Lo _ (P
e £t =t

Sl ?2=t]—e)lf = b2

(s[t;])"F otherwise
\

Formal Verification of Software - p.12

Application of updates U

Application on

program variable
{x:=tty ~ vy
{x:=t}x ~ t

{oa:=tly ~ vy

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{(x:=t}x ~ {fo.a:=t}ua ~ {oa:=tlu?=o0)a— t
{oa:=tly ~ vy

Application stops before modal operators, e.g.

{o.a:=t} (a)® ~ {o0.a:=t} (a)D

Application is shoved over operators to the subformulas (terms)

{fo.a:=t} PAY ~ {o.a:=t}®PN{o.a:=t}¥

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Example

{o.a:=0}0.a.a.b

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Example

{o.a:=0}0.a.ab ~ {o0.a:=o0}o.a.a.b

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Example

{o.a:=0}0.a.a.b ~ ({o.a:=0}0.a.a).b

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Example

{o.a:=0}0.a.a.b ~ (({o.a:=0}0.a? =0).a+— 0).b

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Example

{o.a:=0}0.a.a.b ~ ((0?=0).a— 0).b

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Example

{fo.a:=0}0.a.ab ~ ((0?=0).a— 0).b

Formal Verification of Software - p.13

Application of updates U

Application on Application on attribute

program variable
{x = t}] ~ Y {O.Cl = t} 0.a ~~

{x:=t}x ~ t {o.a:=ttua ~ {oa:=t}u?=o0)a— t

{oaa:=t}y ~ y

Example

{o.a:=0}0.a.ab ~ o0.b

Formal Verification of Software - p.13

Parallel Updates

Computing update followed by update
{ll = 1’1}{12 p— 7’2} = {{ll p— 1”1}, {{ll = 1’1} l 12 p— {ll p— 1’1}7’2}}

X if | = x is a program variable
where u | [=

(Uu).a fl=ua

Results in parallel update: {/, :=v¢, ..., [, :==v,}

Formal Verification of Software - p.14

Parallel Updates

Computing update followed by update

{ll = 1”1}{12 = 7’2} = {{ll = 1”1}, {{ll = 7’1} l 12 = {ll = 7’1}7’2}}

X if | = x is a program variable
where u | [=

(Uu).a fl=ua
Results in parallel update: {/; :==vy, ..., [, :==v,}
Semantics

s All [and v; computed in old state
& All updates done simultaneously

s Ifconflict [;=1I;,v;#v; later update wins

Formal Verification of Software - p.14

Quantifying over Program Variables

Cannot quantify over program variables (non-ridig constants)
Non allowed: Vi:int ((a(i))F)
Non allowed: Vn ({c(n))F)

Formal Verification of Software - p.15

Quantifying over Program Variables

Cannot quantify over program variables (non-ridig constants)
Non allowed: Vi:int ((a(i))F)
Non allowed: Vn ({c(n))F)

Solution

Vn{i:=n}{a(i))F)

Formal Verification of Software - p.15

Abrupt Changes of the Control Flow

Abrupt Termination: Redirection of the control flow by

return, break, continue OF Exceptions

Formal Verification of Software - p.16

Abrupt Changes of the Control Flow

Abrupt Termination: Redirection of the control flow by

return, break, continue OF Exceptions

(try{
a = a/b;
Decomposition Rule
a =a -+ 1;

not applicable
} catch(Exceptione) {...}

finally {...}) ®

Formal Verification of Software - p.16

Abrupt Changes of the Control Flow

Abrupt Termination: Redirection of the control flow by

return, break, continue OF Exceptions

(try{
a = a/b;
Decomposition Rule
a =a -+ 1;

not applicable
} catch(Exceptione) {...}

finally {...}) ®

Solution: The rules work on the first active statement

I+ (7 stmnt’; w)®, A

' - (mwstmnt; w)®, A

Formal Verification of Software - p.16

Catch Thrown Exception

Rule

I' F (try{throwexc; p}

catch (Exception e) {g}

finally{r}) ®, A

Formal Verification of Software — p.17

Catch Thrown Exception

Rule
' F (if (exc instanceof Exception) {
try{e = exc; g} finally{r}

} else { r throw exc; })®, A

I' F (try{throwexc; p}

catch (Exception e) {g}

finally{r}) ®, A

Formal Verification of Software — p.17

	
	KeY Supports Java~Card as Target Language
	Academic vs. Real-world Languages
	Other Issues (Later)
	Handling Object Attributes
	Side Effects: Symbolic Execution Paradigm
	Rule Application for 	exttt {if-then-else}
	Assignment in the Classical Version
	The Active Statement in a Program
	Updates: Delayed Substitutions
	Assignment Rule in KeY
	Conditional Terms
	Application of updates $mathcal {U}$
	Parallel Updates
	Quantifying over Program Variables
	Abrupt Changes of the Control Flow
	Catch Thrown Exception

