
Formal Verification of Software

Dynamic Logic for Java

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Formal Verification of Software – p.1

KeY Supports Java Card as Target Language

What is Java Card?

Subset of Java

Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?
Good example for real-world object-oriented language

Java Card has no

garbage collection

dynamical class loading

multi-threading

floating-point arithmetic

Application Area

security critical

financial risk
(e.g. exchanging smart cards
is expensive)

Formal Verification of Software – p.2

KeY Supports Java Card as Target Language

What is Java Card?

Subset of Java

Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?

Good example for real-world object-oriented language

Java Card has no

garbage collection

dynamical class loading

multi-threading

floating-point arithmetic

Application Area

security critical

financial risk
(e.g. exchanging smart cards
is expensive)

Formal Verification of Software – p.2

KeY Supports Java Card as Target Language

What is Java Card?

Subset of Java

Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?
Good example for real-world object-oriented language

Java Card has no

garbage collection

dynamical class loading

multi-threading

floating-point arithmetic

Application Area

security critical

financial risk
(e.g. exchanging smart cards
is expensive)

Formal Verification of Software – p.2

KeY Supports Java Card as Target Language

What is Java Card?

Subset of Java

Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?
Good example for real-world object-oriented language

Java Card has no

garbage collection

dynamical class loading

multi-threading

floating-point arithmetic

Application Area

security critical

financial risk
(e.g. exchanging smart cards
is expensive)

Formal Verification of Software – p.2

KeY Supports Java Card as Target Language

What is Java Card?

Subset of Java

Sun’s official standard for SMARTCARDS and embedded devices

Why Java Card?
Good example for real-world object-oriented language

Java Card has no

garbage collection

dynamical class loading

multi-threading

floating-point arithmetic

Application Area

security critical

financial risk
(e.g. exchanging smart cards
is expensive)

Formal Verification of Software – p.2

Academic vs. Real-world Languages

Problems to address

Pointers / objects attributes

Modelled as non-rigid constants and functions

Side effects

Expressions in programs have side effects, for example

Aliasing

Different names may refer to the same location, for example

o.a, u.a in a state g where g |= o .
= u

Formal Verification of Software – p.3

Academic vs. Real-world Languages

Problems to address

Pointers / objects attributes

Modelled as non-rigid constants and functions

Side effects

Expressions in programs have side effects, for example

� � � � �� � � � � � 	 �

 � ��
 �

Aliasing

Different names may refer to the same location, for example

o.a, u.a in a state g where g |= o .
= u

Formal Verification of Software – p.3

Academic vs. Real-world Languages

Problems to address

Pointers / objects attributes

Modelled as non-rigid constants and functions

Side effects

Expressions in programs have side effects, for example

� � � � �� � � � � � 	 �

 � ��
 �

Aliasing

Different names may refer to the same location, for example

o.a, u.a in a state g where g |= o .
= u

Formal Verification of Software – p.3

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Other Issues (Later)

Further supported Java Card features

I method invocation, dynamic binding

I polymorphism

I abrupt termination

I checking for nullpointer exceptions

I object creation and initialisation

I arrays

I finiteness of integer data types

I transactions

Formal Verification of Software – p.4

Handling Object Attributes

Similar concepts

Object attributes

Arrays

Pointers

Non-rigid functions

Attributes are considered to be non-rigid functions on objects

Extended to program variables

Program variables are considered to be non-rigid constants

Formal Verification of Software – p.5

Handling Object Attributes

Similar concepts

Object attributes

Arrays

Pointers

Non-rigid functions

Attributes are considered to be non-rigid functions on objects

Extended to program variables

Program variables are considered to be non-rigid constants

Formal Verification of Software – p.5

Handling Object Attributes

Similar concepts

Object attributes

Arrays

Pointers

Non-rigid functions

Attributes are considered to be non-rigid functions on objects

Extended to program variables

Program variables are considered to be non-rigid constants

Formal Verification of Software – p.5

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assignment

� �� � � � � � 	

does not only evaluate to a ��� � � �� � value, but also assigns a value to �.

Problem: Terms in logic have to be side effect free

Solution:

Calculus rules realise a stepwise symbolic execution of the

programs (program transformation)

Restrict applicability of some rules. For example, is

only applicable, if the guard is free of side-effects

Formal Verification of Software – p.6

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assignment

� �� � � � � � 	

does not only evaluate to a ��� � � �� � value, but also assigns a value to �.

Problem: Terms in logic have to be side effect free

Solution:

Calculus rules realise a stepwise symbolic execution of the

programs (program transformation)

Restrict applicability of some rules. For example, is

only applicable, if the guard is free of side-effects

Formal Verification of Software – p.6

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assignment

� �� � � � � � 	

does not only evaluate to a ��� � � �� � value, but also assigns a value to �.

Problem: Terms in logic have to be side effect free

Solution:

Calculus rules realise a stepwise symbolic execution of the

programs (program transformation)

Restrict applicability of some rules. For example, is

only applicable, if the guard is free of side-effects

Formal Verification of Software – p.6

Side Effects: Symbolic Execution Paradigm

Expressions may have side effects, for example a simple assignment

� �� � � � � � 	

does not only evaluate to a ��� � � �� � value, but also assigns a value to �.

Problem: Terms in logic have to be side effect free

Solution:

Calculus rules realise a stepwise symbolic execution of the

programs (program transformation)

Restrict applicability of some rules. For example, � ��� � � � �� � ��
 � is

only applicable, if the guard is free of side-effects

Formal Verification of Software – p.6

Rule Application for � � � � ��� � � � �� �

Γ ` 〈if ((y = 3) + y < 0){α} else{β}〉Φ, ∆

Formal Verification of Software – p.7

Rule Application for � � � � ��� � � � �� �

Γ ` 〈boolean guard = (y = 3) + y < 0; if (guard){α} else{β} 〉Φ, ∆

Γ ` 〈if ((y = 3) + y < 0){α} else{β}〉Φ, ∆

Formal Verification of Software – p.7

Rule Application for � � � � ��� � � � �� �

Γ `

〈 int val0 = (y = 3) + y;

boolean guard = val0 < 0;

if (guard){α} else{β}

〉

Φ, ∆

Γ ` 〈boolean guard = (y = 3) + y < 0; if (guard){α} else{β} 〉Φ, ∆

Γ ` 〈if ((y = 3) + y < 0){α} else{β}〉Φ, ∆

Formal Verification of Software – p.7

Rule Application for � � � � ��� � � � �� �
Γ `

〈 int val1 = y = 3;

int val0 = val1 + y

...

〉

Φ, ∆

Γ `

〈 int val0 = (y = 3) + y;

boolean guard = val0 < 0;

if (guard){α} else{β}

〉

Φ, ∆

Γ ` 〈boolean guard = (y = 3) + y < 0; if (guard){α} else{β} 〉Φ, ∆

Γ ` 〈if ((y = 3) + y < 0){α} else{β}〉Φ, ∆

Formal Verification of Software – p.7

Rule Application for � � � � ��� � � � �� �

Γ `

〈
y = 3;

int val1 = y;

int val0 = val1 + y

...

〉

Φ, ∆

Γ `

〈 int val1 = y = 3;

int val0 = val1 + y

...

〉

Φ, ∆

Γ `

〈 int val0 = (y = 3) + y;

boolean guard = val0 < 0;

if (guard){α} else{β}

〉

Φ, ∆

Γ ` 〈boolean guard = (y = 3) + y < 0; if (guard){α} else{β} 〉Φ, ∆

Γ ` 〈if ((y = 3) + y < 0){α} else{β}〉Φ, ∆

Formal Verification of Software – p.7

Assignment in the Classical Version

Classical rule for assignment

Γx←y, x .
= tx←y ` Φ, ∆x←y

Γ ` 〈x = t〉Φ, ∆
(y new variable)

Problems:

cannot be handled as substitution

aliasing: ?

o.a .
= 3 ` 〈u.a = 5; 〉φ

Requires to split the proof for the cases o = u and o 6= u.

Formal Verification of Software – p.8

Assignment in the Classical Version

Classical rule for assignment

Γx←y, x .
= tx←y ` Φ, ∆x←y

Γ ` 〈x = t〉Φ, ∆
(y new variable)

Problems:

cannot be handled as substitution

aliasing: ?

o.a .
= 3 ` 〈u.a = 5; 〉φ

Requires to split the proof for the cases o = u and o 6= u.

Formal Verification of Software – p.8

Assignment in the Classical Version

Classical rule for assignment

Γx←y, x .
= tx←y ` Φ, ∆x←y

Γ ` 〈x = t〉Φ, ∆
(y new variable)

Problems:

cannot be handled as substitution

aliasing: ?

o.a .
= 3 ` 〈u.a = 5; 〉φ

Requires to split the proof for the cases o = u and o 6= u.

Formal Verification of Software – p.8

The Active Statement in a Program

Example

�"! # �%$ � #

︸ ︷︷ ︸

π

� � 	'& (� 	'&) � � �� � � � # *� 	'&))

︸ ︷︷ ︸

ω

first active command � � 	'&

non-active prefix π

rest ω

Formal Verification of Software – p.9

Updates: Delayed Substitutions

Syntax: Updates are syntactical elements

{loc := val}Φ or {loc := val}t

where

loc either a

- program variable x

- an attribute o.attr or

- an array access a[i]

val a logical term (no side effects)

Semantic:

g |= {loc := val}Φ iff g′ |= Φ where g′ = gval
loc

Formal Verification of Software – p.10

Updates: Delayed Substitutions

Syntax: Updates are syntactical elements

{loc := val}Φ or {loc := val}t

where

loc either a

- program variable x

- an attribute o.attr or

- an array access a[i]

val a logical term (no side effects)

Semantic:

g |= {loc := val}Φ iff g′ |= Φ where g′ = gval
loc

Formal Verification of Software – p.10

Assignment Rule in KeY

Γ ` {loc := val}〈π ω〉Φ, ∆

Γ ` 〈π loc = val; ω〉Φ, ∆
, where loc, val side effect free

Advantages:

no renaming as in the classical version

delayed proof branching

Γ ` 〈x = 3; x = 4; 〉Φ or

Γ ` 〈o.a = 3; o.a = 4; 〉Φ

Formal Verification of Software – p.11

Assignment Rule in KeY

Γ ` {loc := val}〈π ω〉Φ, ∆

Γ ` 〈π loc = val; ω〉Φ, ∆
, where loc, val side effect free

Advantages:

no renaming as in the classical version

delayed proof branching

Γ ` 〈x = 3; x = 4; 〉Φ or

Γ ` 〈o.a = 3; o.a = 4; 〉Φ

Formal Verification of Software – p.11

Assignment Rule in KeY

Γ ` {loc := val}〈π ω〉Φ, ∆

Γ ` 〈π loc = val; ω〉Φ, ∆
, where loc, val side effect free

Advantages:

no renaming as in the classical version

delayed proof branching

Γ ` 〈x = 3; x = 4; 〉Φ or

Γ ` 〈o.a = 3; o.a = 4; 〉Φ

Formal Verification of Software – p.11

Conditional Terms

Use conditional terms to delay splitting further

(s[t1 ? = t2] 7→ e)I,β
=







eI,β tI,β
1 = tI,β

2

(s[t1])I,β otherwise

Formal Verification of Software – p.12

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ;

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ;

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Application stops before modal operators, e.g.

{o.a := t} 〈α〉Φ ; {o.a := t} 〈α〉Φ

Application is shoved over operators to the subformulas (terms)

{o.a := t} Φ∧Ψ ; {o.a := t}Φ∧ {o.a := t}Ψ

Example

{o.a := o}o.a.a.b ;

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b

;

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ; {o.a := o}o.a.a.b

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ; ({o.a := o}o.a.a).b

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ; (({o.a := o}o.a? = o).a 7→ o).b

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ; ((o? = o).a 7→ o).b

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ; ((o? = o).a 7→ o).b

Formal Verification of Software – p.13

Application of updates U

Application on

program variable

{x := t} y ; y

{x := t} x ; t

{o.a := t} y ; y

Application on attribute

{o.a := t} o.a ; t

{o.a := t} u.a ; ({o.a := t}u? = o).a 7→ t

Example

{o.a := o}o.a.a.b ; o.b

Formal Verification of Software – p.13

Parallel Updates

Computing update followed by update

{l1 := r1}{l2 := r2} = {{l1 := r1}, {{l1 := r1} ↓ l2 := {l1 := r1}r2}}

where U ↓ l =







x if l = x is a program variable

(Uu).a if l = u.a

Results in parallel update: {l1 := v1, . . . , ln := vn}

Semantics

All li and vi computed in old state

All updates done simultaneously

If conflict li = lj, vi 6= vj later update wins

Formal Verification of Software – p.14

Parallel Updates

Computing update followed by update

{l1 := r1}{l2 := r2} = {{l1 := r1}, {{l1 := r1} ↓ l2 := {l1 := r1}r2}}

where U ↓ l =







x if l = x is a program variable

(Uu).a if l = u.a

Results in parallel update: {l1 := v1, . . . , ln := vn}

Semantics

All li and vi computed in old state

All updates done simultaneously

If conflict li = lj, vi 6= vj later update wins

Formal Verification of Software – p.14

Quantifying over Program Variables

Cannot quantify over program variables (non-ridig constants)

Non allowed: ∀ i:int (〈α(i)〉F)

Non allowed: ∀n (〈α(n)〉F)

Solution

∀n{i := n}〈α(i)〉F)

Formal Verification of Software – p.15

Quantifying over Program Variables

Cannot quantify over program variables (non-ridig constants)

Non allowed: ∀ i:int (〈α(i)〉F)

Non allowed: ∀n (〈α(n)〉F)

Solution

∀n{i := n}〈α(i)〉F)

Formal Verification of Software – p.15

Abrupt Changes of the Control Flow

Abrupt Termination: Redirection of the control flow by

$ � �,+ $ �.- �$ �� * - / � � � � �+ � or 0"1 / �2 � � � �

〈try{

a = a/b;

a = a + 1;

} catch(Exception e) {...}

finally {...}〉 Φ

Decomposition Rule

not applicable

Solution: The rules work on the first active statement

Γ ` 〈π stmnt′; ω〉Φ, ∆

Γ ` 〈π stmnt; ω〉Φ, ∆

Formal Verification of Software – p.16

Abrupt Changes of the Control Flow

Abrupt Termination: Redirection of the control flow by

$ � �,+ $ �.- �$ �� * - / � � � � �+ � or 0"1 / �2 � � � �

〈try{

a = a/b;

a = a + 1;

} catch(Exception e) {...}

finally {...}〉 Φ

Decomposition Rule

not applicable

Solution: The rules work on the first active statement

Γ ` 〈π stmnt′; ω〉Φ, ∆

Γ ` 〈π stmnt; ω〉Φ, ∆

Formal Verification of Software – p.16

Abrupt Changes of the Control Flow

Abrupt Termination: Redirection of the control flow by

$ � �,+ $ �.- �$ �� * - / � � � � �+ � or 0"1 / �2 � � � �

〈try{

a = a/b;

a = a + 1;

} catch(Exception e) {...}

finally {...}〉 Φ

Decomposition Rule

not applicable

Solution: The rules work on the first active statement

Γ ` 〈π stmnt′; ω〉Φ, ∆

Γ ` 〈π stmnt; ω〉Φ, ∆
Formal Verification of Software – p.16

Catch Thrown Exception

Rule

Γ ` 〈if (exc instanceof Exception) {

try{e = exc; q} finally{r}

} else { r throw exc; }〉Φ, ∆

Γ ` 〈try{ throw exc; p}

catch (Exception e) {q}

finally{r}〉 Φ, ∆

Formal Verification of Software – p.17

Catch Thrown Exception

Rule

Γ ` 〈if (exc instanceof Exception) {

try{e = exc; q} finally{r}

} else { r throw exc; }〉Φ, ∆

Γ ` 〈try{ throw exc; p}

catch (Exception e) {q}

finally{r}〉 Φ, ∆

Formal Verification of Software – p.17

	
	KeY Supports Java~Card as Target Language
	Academic vs. Real-world Languages
	Other Issues (Later)
	Handling Object Attributes
	Side Effects: Symbolic Execution Paradigm
	Rule Application for 	exttt {if-then-else}
	Assignment in the Classical Version
	The Active Statement in a Program
	Updates: Delayed Substitutions
	Assignment Rule in KeY
	Conditional Terms
	Application of updates $mathcal {U}$
	Parallel Updates
	Quantifying over Program Variables
	Abrupt Changes of the Control Flow
	Catch Thrown Exception

