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Abstract. Automated production systems are usually driven by Pro-
grammable Logic Controllers (PLCs). These systems are long-living – yet
have to adapt to changing requirements over time. This paper presents a
novel method for regression verification of PLC code, which allows one to
prove that a new revision of the plant’s software does not break existing
intended behavior.
Our main contribution is the design, implementation, and evaluation of
a regression verification method for PLC code. We also clarify and define
the notion of program equivalence for reactive PLC code. Core elements
of our method are a translation of PLC code into the SMV input language
for model checkers, the adaptation of the coupling invariants concept to
reactive systems, and the implementation of a toolchain using a model
checker supporting invariant generation.
We have successfully evaluated our approach using the Pick-and-Place
Unit benchmark case study.

Keywords: regression verification, symbolic model checking, automa-
ted production systems, programmable logic controllers (PLC)

1 Introduction

Motivation and Topic. Automated production systems [34], such as industrial
plants and assembly lines, are usually driven by Programmable Logic Controllers
(PLCs). These computing devices are specially tailored to controlling automated
production systems in safety-critical realtime environments. A malfunction may
cause severe damage to the system itself or to the payload, or even harm persons
within the reach of the system.

The topic of this paper is how to formally verify correctness of the software
part of such systems, i.e., the PLC. To be precise, we focus on regression ver-
ification of PLC code – as opposed to proving that the PLC code satisfies a
functional specification or to proving that the whole production system works
correctly. That is, we verify that a version of PLC code after an evolution step
shows the same reactive input/output behavior as the old one – allowing only
desired deviations that are formally specified. The aim of regression verifica-
tion is to formally prove that existing (good) behavior is retained during system
evolution. The old version serves as specification for the new one.

Our approach and contribution. This work contributes to the field of formal
PLC verification by defining a notion of reactive conditional and reactive rela-
tional equivalence together with a proof methodology, also in the presence of
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environment models. Our main contribution is the design, implementation, and
evaluation of a regression verification method for PLC code.

A core element of our verification method is a translation of PLC code into
the SMV input language for model checkers. Using this translation on both the
old and the new software revision, we can construct a formula expressing that
intended behavior is retained. We target PLC code written in the two languages
Structured Text (ST) and Sequential Function Chart (SFC), which are part of
IEC 61131, the industry standard for PLC software [19]; an adaptation to other
languages is easily possible.

A further core element is the use of a model checker supporting invariant
generation. It is an important insight that this allows the automatic generation
of coupling invariants, which are a useful tool for efficient regression verification.
Accordingly, we have adapted the concept of coupling invariants to the world of
reactive systems. And we have implemented our approach in a toolchain using
the model checker nuXmv [9]. It supports techniques for predicate abstraction
and invariant generation by interpolant inspection [7, 24].

As full equivalence of PLC code revisions is not the goal in many cases, we
have defined and implemented extensions where the behavior of the new code
revision may deviate under certain specified conditions and in specified ways.

We have successfully evaluated our approach using the Pick-and-Place Unit,
a benchmark case study for the evolution of automated production systems with
several evolution scenarios [35]. We were able to demonstrate our method’s feasi-
bility for practical evolution scenarios and its ability to uncover regression bugs.

PLCs execute their software in cycles with fixed cycle time. Consequently,
PLC code can only cause timing problems if its execution time exceeds the cycle
time. Otherwise, the code’s exact execution time is irrelevant. Thus, we assume
that the cycle time constraint is ensured by other techniques, and we do not
consider exact execution time in our method.

Advantages of regression verification for PLC code. The main advantage of re-
gression verification is that no functional or behavioral specification is needed
(besides the old code version). In addition, regression verification is particularly
well suited for the application area of software in automated production systems
for the following reasons.

Automated production systems are designed for long deployment phases,
often spanning several decades. But the requirements on production systems
change over time. New types of products are to be manufactured. Systems are
upgraded to increase throughput or to keep up with technological development.
Moreover, flaws in the controlling software or the hardware design may have to be
fixed. Production systems therefore frequently evolve during their lifetime. Thus,
methods and means to safely update their hardware and software – including
their PLCs – are of great importance. One has to ensure that a revision does
not break existing intended behavior.

As opposed to (regression) testing, regression verification provides an equiv-
alence proof for all possible inputs and not just for individual test cases. Also,
while regression testing of PLC software requires either a hardware testbed or
an executable hardware model, this is not needed for regression verification. It
suffices to provide a formal description of how the hardware has changed during
the evolution step (if the hardware has changed at all).

PLC systems can grow rather large, making a (non-regression) correctness
verification challenging for fully automatic verification and bisimuation checkers.
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Fig. 1. Sequential Function Charts for the example. (a) Original SFC, (b) SFC after
revision.

However, typical changes made during an evolution step are small in comparison
to overall system size, so that regression verification is a much easier task.

Structure of this paper. In Section 2, we present a small scenario from our case
study as an introductory example. Then, in Section 3, we define the formal
framework and introduce notions of equivalence between versions of PLC code.
In Section 4, we discuss the use of environment models to avoid false alarms.
The core part of our method, i.e., the translation itself and the toolchain are
described in Section 5. In Section 6, we present the extensive case study that
we used to evaluate our approach. We discuss related work in Section 7 and
draw conclusions in Section 8. Some of the ideas presented in the following are
adaptations of our regression verification method for imperative programs [11]
to the – rather different – world of reactive automated production systems.

2 Introductory Example

As an introductory example, we present a considerably simplified version of a
scenario from the case study described in Sect. 6 (see also Fig. 4). A stationary
crane moves workpieces from a starting point (A) to one of two target points (B)
and (C). In the original version, the plant treats all workpieces in the same way
and transports them from the magazine (A) to the conveyor (B).

A new revision of the PLC software is introduced to differentiate the con-
troller’s behavior according to the type of workpiece. All metallic workpieces are
now first delivered to the stamp (C) where they are treated (signal stamped) and
are only afterwards delivered to (B). All non-metallic workpieces still go directly
to (B). An additional inductive sensor (signal M ) is installed at (A) to detect
whether a workpiece is metallic or not.

Fig. 1 shows sequential function charts (SFCs) for the two versions of the
PLC program. The boxes (called steps) contain actions (blocks of code) and the
transitions between steps are annotated with guards. In each execution cycle,
one step is active and is executed. If at the end of the cycle one of the guards
at an outgoing transition is satisfied, the corresponding successor step is made
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the active step. Otherwise the current step remains active and is repeated in the
next cycle. In the example, the actions assign values to output (Turn,Lift) and
internal variables (metallic, stamped). The guard conditions are Boolean input
variables corresponding to sensor input (A,B,C represent input from sensors for
crane position) and Boolean internal variables (metallic). In the original SFC,
the steps correspond to the actions of moving the crane to the magazine, picking
up the workpiece, moving the crane to the conveyor, and putting down the
workpiece. In the revised SFC, there is a case distinction on metallic, and two
new steps have been added to move metallic pieces to the stamp and dropping
them there. After the workpiece has been stamped, the internal variable metallic
is set to FALSE, and then the step Pickup becomes active, i.e., from there on
the SFC continues in the same way as if a non-metallic workpiece has just been
picked up at (A).

Note that this is a simple example. In general, actions and guards can be
considerably more complex and contain conditional statements and loops.

In case there are metallic workpieces, the behavior of the PLC is obviously
different. But in case that only non-metallic workpieces are ever detected by
sensor (M), the new software version should do the same as the old version. So
this is a scenario for using regression verification to prove conditional equivalence
for the unchanged case.

3 Formalizing Equivalence of PLC Programs

We define a formal framework for the behavior of reactive PLC software together
with adequate notions of equivalence between them.

There are various possibilities for defining system boundaries when model-
ing an automated production system. One can model the whole system or only
individual components. Even when focusing on the PLC, one could still include
models of peripheral hardware components like connecting data buses. However,
our method concentrates on the software that runs on the controller and disre-
gards all effects outside the software for now. Sect. 4 discusses measures to take
the environment into consideration.

PLCs are reactive systems with a cyclic data processing behavior, repeating
the same control procedure indefinitely. A PLC cycle typically consists of the
following steps: (1) read input values, (2) execute task(s), (3) write output values,
(4) wait. As reactive systems, PLCs require a notion of equivalence that involves
traces, which means that if the old and the new revision are presented with the
same sequence of input sensor readings, they must produce the same sequence
of actuator output stimuli.

We call the piece of code that is executed cyclically on the controller a PLC
program. A PLC program P consists of the instructions Π to be executed and
a set of declarations ∆ of input, output and state variables. In the introductory
example in Sect. 2, the declarations of the program contain the Boolean input
(sensor) variables A,B,C and M ; Lift and Turn are output (actuator) variables
(the declarations are not shown in Fig. 1).

The internal state of a PLC program consists of an assignment of values
to its state variables (in the example, the Boolean variable metallic). There is
always an implicit state variable active step storing which of the steps in the
SFC program is active. The declarations ∆ induce an input value space I, an
output value space O, and state space S, each as the Cartesian product of
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the value ranges of the corresponding program variables. In the example, I is
bool × bool × bool × bool . We assume the initial values of state variables to be
determined by their declarations (using default values in case no initial value is
given), i.e., the initial state s0 ∈ S is fixed by ∆.

Definition 1 (Semantics of PLC programs). The semantics ρ(P ) of a PLC
program P is a state transition function ρ(P ) : S × I → S ×O.

The semantics ρ(P ) depends on the instructions in Π. These may read from the
state and the input variables (in S and I) and write to the state variables and
to the output variables (in S and O).

To be able to consider the effects of a PLC program over time, the above
definition needs to be extended to sequences of inputs and outputs. We denote
infinite sequences of elements in I (ω-words) with ī ∈ Iω; their components are
accessed using subscript indices, i.e., ī = 〈i1, i2, . . .〉. The PLC program as a
stateful system needs an initial state s0 from which it is launched. As mentioned
above, s0 is determined by the variable declarations ∆.

Definition 2 (Trace Semantics of PLC Programs). The behavior b(P ) of
a PLC program P with initial state s0 ∈ S is the function b(P ) : Iω → Oω

defined by b(P )(〈i1, i2, . . .〉) = 〈o1, o2, . . .〉 where (sn, on) = ρ(P )
(
(sn−1, in)

)
for

all n ∈ N≥1.

This definition says that starting from the initial state s0, the PLC program is
executed repeatedly, applying in each cycle ρ(P ) to its current state sn−1 and
the input tuple in ∈ I to produce the output tuple on ∈ O and the new state sn.

Trace semantics use the internal state in the definition, but when taking an
outside look at the semantics, it defines input/output behavior and does not
make statements about the internal state space. This is relevant for our initial
definition of equivalence where it is required that two programs produce identical
traces.

Definition 3 (Trace Equivalent PLC Programs). Two PLC programs P,Q
with the same declarations ∆P = ∆Q are called perfectly equivalent if they
produce the same output sequence when presented with the same input sequence,
i.e., b(P )(̄i) = b(Q)(̄i) for all ī ∈ Iω.

They are called conditionally equivalent modulo the condition ϕ : Iω → bool
if they produce the same result for all input sequences that satisfy condition ϕ,
i.e., if ϕ(̄i) then b(P )(̄i) = b(Q)(̄i) for all ī ∈ Iω.

It is intuitively evident that replacing a PLC with a new revision whose pro-
gram is trace equivalent to the original program does not change the observable
behavior of the plant, provided everything else remains unchanged and timing
effects are left aside.

Conditional equivalence relaxes the strict notion of perfect equivalence by
requiring the same output sequence only if a condition ϕ holds. Intuitively this
means that replacing a PLC with a new revision whose program is conditionally
equivalent to the original program modulo ϕ does not change the plant’s behavior
at least for those traces where all sensor signal readings satisfy ϕ.

The example given in Sect. 2 is an example of conditional equivalence: The
modified controller software (Fig. 1) is conditionally equivalent to the origi-
nal version modulo the condition that every encountered workpiece is non-
metallic. This condition can be expressed in Linear Temporal Logic (LTL [26])
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as ϕnon−metallic(̄i) = G¬M recalling that M is the signal from the inductive
metal detection sensor.

Perfect and conditional equivalence use equality to compare input and output
traces. There are many cases, however, where full equality is not required or not
appropriate. Equality of outputs may not be required for outputs relating to
non-critical components of the system. And equality may not be the appropriate
relation if the sensors and/or actuators of the plant have been modified, and thus
the input/output spaces of the program revisions are different. It is therefore
necessary to generalize the equivalence notion. To this end, we introduce binary
relations ∼in and ∼out .

Definition 4 (Relational Equivalence of Controllers). Two PLC programs
P,Q with declarations ∆P resp. ∆Q are called relationally equivalent modulo re-
lations ∼in⊆ IωP ×IωQ and ∼out : OωP ×OωQ if they produce related output sequences
when presented with related input sequences, i.e.,

if ī ∼in ī
′ then b(P )(̄i) ∼out b(Q)(̄i′) for all ī ∈ IωP , ī′ ∈ IωQ.

Note that conditional equivalence can be expressed as relational equivalence
(if IP = IQ and OP = OQ) by choosing ī = ī′ ∧ ϕ(̄i) for the input relation ∼in

and ō = ō′ for the output relation ∼out .
If a revision adds or removes existing variables from the declarations, the

canonical relations to be considered are the conjoined equalities between all sig-
nals shared by both revisions (i.e., the variables in ∆P ∩ ∆Q). This is called
projected equivalence. The introductory example in Sect. 2 is a projected equiv-
alence if the metallic detector is assumed absent in the first version and only
introduced in the second. Another example of relational equivalence is shown in
the case study in Sect. 6.

4 Environment Models to Increase Precision

False alarms can occur if the two revisions of a PLC program behave differently
on inputs that cannot actually occur in the application. For example, the crane
from Sect. 2 can never be in more than one of the positions A,B,C at the same
time. Assuming correct working of the sensors, not more than one of the Boolean
input variables A,B,C can be true at the same time. Thus, it would be irrelevant
if the two program revisions were to react differently in case A and B were
signaled simultaneously but would still be equivalent for all feasible inputs. It
is therefore sensible to add such knowledge on the possible sensor inputs as
assumptions to the process and perform a conditional regression verification. In
the example, it is possible to encode the assumption in form of the LTL condition
G(¬(A ∧B) ∧ ¬(B ∧ C) ∧ ¬(A ∧ C)).

But in more involved cases, it is difficult or error-prone to express properties
of the physical system correctly in form of conditions on the PLC inputs. Then it
is better to use a model of the environment which uses output of PLC program as
input. This restricts the search space, increases precision of regression verification
and avoids false alarms. Fig. 2 depicts a model of the crane restricting the input
space for the variables corresponding to the crane’s position. Besides the three
states for positions A, B, C in which only the corresponding PLC input variable
is true, there are three intermediate states between the positions where none of
variables is true. The crane behavior model shows that when the crane turns to
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Fig. 2. Finite automaton modeling crane position sensor readings.

the right from position A to position B, first variable A is true, then no variable
is true, and then B is true.

By making environment models non-deterministic (like in the example) one
can abstract from details like concrete numbers of waiting cycles.

One evolution scenario of the case study in Sect. 7 describes a case where
the PLC program revisions are only equivalent if an environment model is used.

5 Regression Verification Method and Toolchain

This section reports on how we achieve regression verification for PLC software
by construction of a verification condition from two PLC program revisions, the
equivalence relations ∼in ,∼out , the condition ϕ, and environment models.

The workflow of our method – shown in Fig. 3 – covers several transformation
steps. The resulting verification condition consisting of a transition system and a
property is presented to a model checker that can come back with three possible
results: First, it may report that the verification property holds for the transition
system in which case the two PLC programs are trace equivalent (modulo the
condition, relations, and environment models). Second, it may report a coun-
terexample with a concrete (finite) input trace that leads to the equivalence
violation. There are no “false positives”: Every reported violation uncovers a
case of unequal behavior. However, it may be that the environment is not mod-
eled precisely enough, and that the failure is a false alarm in the sense that it
cannot occur in practice with the real hardware. The variables range over finite
datatypes and the model checking problem is, in theory, decidable. Depending
on the size and complexity of the verification condition, it is still possible that
the model checker runs out of resources (time or memory) and does not come
back with an answer, which is the third possible result.

5.1 From PLC Code to Model Checker Input

The IEC 61131-3 standard [19] defines two textual and three graphical PLC
programming languages. According to the ARC industry advisory group [1], the
use of PLC systems compliant with IEC 61131-3 currently is and will remain
the state of industrial practice for the next five to ten years. We consider input
PLC programs written in the textual language Structured Text (ST) or in the
graphical language Sequential Function Chart (SFC). ST has seen the greatest
increase in adoption [1]. It perhaps best embraces the growing complexity of
PLC programming.

For a uniform treatment of programs regardless of the particular language, we
define an intermediate language into which we translate all incoming programs.
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This language is a sublanguage of ST called ST0. Despite their notational differ-
ences, programs in all 61131-3 programming languages can be represented in ST0

(provided they do not have unbounded loops). PLC programs are time-critical,
and they are required to finish within their cycle time. It is therefore reasonable
to assume that programs do not contain loops with an unbounded number of
iterations.

The language ST0 is essentially the loop- and call-free fragment of ST re-
duced to fewer, more basic datatypes. The only types of statements in ST0 are
assignments and if-then-else conditionals. During normalization to ST0, loops
are fully unwound and function block invocation are inlined. We require that for
all loops a bound for the number of iterations can be statically computed from
the code, so that this unwinding is always possible. Inlining is also feasible since
recursion is not featured in the IEC 61131-3 framework.

To demonstrate our method, we implemented such translations to ST0 for
ST and SFC. The translation from SFC to ST0 is problematic since the standard
leaves many semantical issues unanswered. We resolved this issue by following
the formal semantics for SFCs given in [4] when translating SFC to ST0.

The normalized code in ST0 is symbolically executed to derive a state transi-
tion system as model checker input. Näıve implementations of symbolic execution
or other verification condition generation algorithms like weakest precondition
calculus may produce program representations whose size is exponential in that
of the original program. This is due to an explicit enumeration of all possible
paths through the program. Since ST0 programs that result from translating SFC
code involve many consecutive and nested if-statements to encode the original
state machine, the number of paths through the program is huge and explicitly
enumerating them is infeasible. For example, the last scenario (Ev14) of our
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case study (Sect. 6) yields some 13 billion paths, such that the resulting proof
obligation would not fit into the available memory.

Instead we produce a smaller program representation by not explicitly enu-
merating all paths but following the concept of Φ-nodes (known from static
single assignment [10]) to merge the effects of the branches of an if-statement.
This approach is also similar to the weakest-precondition-calculus optimization
presented in [12].

During symbolic execution, a symbolic variable map V : Vars∆ → Terms∆
is modified, which assigns to all declared variables their current symbolic value
(a term). Stmt∆ denotes the set of all ST0-statements, and tV is the symbolic
evaluation of an expression t in the symbolic variable assignment V.

Definition 5 (Symbolic Execution). Symbolic execution of ST0 code is the
operator se : (Vars∆ → Terms∆)× Stmt∆ → (Vars∆ → Terms∆) with

se(V, v := t) := V[v := tV ]
se(V, S;T ) := se(se(V, S), T )

se(V, if c then S else T ) := Φ(cV , se(V, S), se(V, T ))

where the map Φ(c,V1,V2) : Vars∆ → Terms∆ is, for all v ∈ Vars∆, defined by:

Φ(c,V1,V2)(v) :=

{
V1(v) if V1(v) = V2(v)
if c then V1(v) else V2(v) otherwise

Essentially, this transformation moves the conditions of if-then-else statements
into the variable assignment in form of if-then-else expressions. While this proce-
dure cannot guarantee that the result is not exponentially larger than the input,
our experiences show that the results are acceptable in practice.

The state transition system for a program P is computed as follows: The
operator se is applied to the instructions Π of P with the identity mapping id∆
as the starting point, resulting in the symbolic variable map se(Π, id∆). The
symbolic assignments in this map provide the state transition definitions for the
state variables and the output terms for the output variables.

5.2 Encoding Regression Verification

The proof obligation handed to the symbolic model checker consists of a state
transition system and a property that is to be proved an invariant for it. The
state transition system is a composition of the two systems that result from
translating the two PLC program revisions P and Q and the models for the
environment as introduced in Sect. 4.

All variables of the input spaces IP and IQ make up the input variables of
the combined model. If ∆P and ∆Q share common input variables, these can
also be shared in the combined model, thus reducing the input state space size
for model checking.

If the sensor readings are constrained by an environment model, the input
signals of that model are input signals of the entire state transition system while
input signals of the PLC programs corresponding to sensor readings are taken
from the outputs of the environment model. In the example environment model
for the crane positions (Fig. 2), the PLC program takes the three inputs A,B,C
from position sensors, while the composed verification model merely takes as
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input the indeterministic choice whether to remain in the current model state
or whether to move on a step. This has two effects: (1) The input space size is
reduced and (2) the modeling is more precise.

The condition ϕ from Def. 3 and the input and output relations ∼in ,∼out

from Def. 4 make up the invariant that is part of the model checking proof
obligation. In the current version of our toolchain, we require that the condition ϕ
can be expressed in LTL by a formula of the form Gψ, where ψ is a propositional
formula over the input variables in IP without modal operators. That is, it must
be possible to express the desired condition on the input sequence as a property
of individual inputs. Correspondingly, we require that the relations ∼in ,∼out

can be expressed by LTL formulas ∼in = G τin resp. ∼out = G τout , where τin
and τout are propositional formulas over the variables in IP ∪ IQ resp. OP ∪OQ.
We then employ a fresh internal state variable pre : bool to model the temporal
condition within the invariant as follows:

init(pre) := true (1)
next(pre) := pre ∧ ψ ∧ τin (2)
invariant pre → τout (3)

The variable pre is initialized to true (1) and is invalidated (2) as soon as input
values violate either the condition (ψ) or the input relation (τin). If the guarded
invariant (3) holds for the transition system, then the equivalence of the two
programs is guaranteed. What in fact is proved using the auxiliary variable pre
is the LTL property (¬ψ∨¬τin) R τout stating that the output relation τout must
hold at least as long as neither the condition ψ nor the relation τin have been
violated (R is the “release” operator of LTL). This entails relational equivalence
between P and Q.

All relations and conditions occurring in our case study fall into the restricted
category of specifications described above. Although this is not implemented at
the moment, other classes of LTL constraints can be used in our method by
encoding them as invariants along the lines of [27].

5.3 Coupling Invariants

Modern model checkers allow the application of state abstraction methods (like
IC3) to find proofs for safety properties more efficiently. Regression verification
using symbolic model checkers with such abstractions is particularly promising,
since the two software revisions are closely related if the newer one results from
the adaptation of the older one to a new application scenario. In such cases, it
is likely that the old and the new version of the program have a similar – yet
not necessary equal – encoding of their state spaces.

The upcoming abstraction theorem allows us to reason about safety proper-
ties of two PLC programs P and Q using an invariant Inv : SP × SQ → bool
over their state spaces SP and SQ. Such a predicate, building a bridge between
the state spaces, is called a coupling predicate.

Theorem 1 (Coupling Invariant Abstraction). We consider two PLC pro-
grams P and Q with common input space I, common output space O, and state
spaces SP and SQ. Let s0 ∈ SP and s′0 ∈ SQ be the initial states.

Then, P and Q are (perfectly) trace equivalent if and only if there exists a
coupling predicate Inv : SP × SQ → bool such that, for all states s ∈ SP , s′ ∈ SQ
and inputs i ∈ I,
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1. Inv(s0, s′0) holds,
2. Inv(s, s′) implies Inv(t, t′),
3. Inv(s, s′) implies o = o′,

where (t, o) = ρ(P )(s, i) and (t′, o′) = ρ(Q)(s′, i).

Similar theorems can be formulated for PLC programs that are relationally
equivalent.

The more similar the state space encodings of the old and the new program
version are, the closer the coupling predicate is to equality on the state spaces.
This becomes evident when a PLC program P is verified against itself. In this
case, the equality relation itself can be used as coupling predicate and satisfies
the conditions in Theorem 1 regardless of what P computes.

Development of PLC programs is often an incremental process, i.e., the new
revision results from a modification of the code in the old version. Often, parts
of the state are not affected by the changes (and behave like in the old revision)
whereas other parts are affected. An inductive invariant implying equivalence
then comprises equality between the unmodified state variables, and a more
general coupling invariant must be generated only for the affected variables.

The regression verification method using invariants is complete, but the user
of the verification tool would have to find and formalize all coupling invariants
which can be large and unintuitive. Instead, we rely upon the capabilities of state-
of-the-art symbolic model checkers to automatically infer inductive invariants.
In our case, the required system invariant (3) (which usually is not inductive
itself) is used as a starting point for an interpolant-based search for a stronger
inductive invariant that implies the one given in the problem specification.

We show in our case study that even with large state spaces, this state
abstraction mechanism allows us to prove equivalence of non-trivial programs.
The model checker nuXmv is capable of coming up with the required coupling
predicates using Incremental Construction of Inductive Clauses for Indubitable
Correctness (IC3) [7,24]. If this invariant generation mechanism is switched off,
the tool relies on more traditional symbolic model checking techniques. Then,
even the smaller ones of the problems in the case study could not be solved.

In cases where the search for an inductive invariant takes too long, parts of
the coupling invariant can be specified manually (within (3)) – the workload for
the invariant generation can thus be shared between user and model checker.

6 Case Study

We have evaluated our approach by applying it to the benchmark evolution
scenarios of the Pick-and-Place Unit (PPU), which is illustrated in Fig. 4. The
PPU is an open case study for the machine manufacturing domain [35]. Despite
being a bench-scale, academic demonstration case, the PPU is complex enough
to demonstrate selected challenges that arise during engineering of automated
production systems. To explore evolution in this context, sixteen scenarios (i.e.,
variants of the PPU) covering different aspects of evolution have been defined [22,
36]. There are both pure software changes as well as changes that incorporate
adaptations to the mechanics and automation hardware of the PPU.

For all of the scenarios developed for the PPU, both the structure and the
behavior of the PPU are documented using the Systems Modeling Language
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Fig. 4. Schematic of the hardware setup of the PPU case study [35].

(SysML) [35]. Also, IEC 61131-3 automation software code for the PLC is avail-
able for each evolution scenario – implemented in CODESYS2, an industrial
development tool for automation software executable on PLCs. The PPU has
22 digital input, 13 digital output, and 3 analogue output signals and defines a
number of simple discrete event automation tasks [33].

In the following, we discuss three evolution scenarios from the PPU and show
how they can be subject to regression verification. More details can be found
in [38]; see Table 1 for the time required for verification.

Conditional equivalence. The evolution scenario Ev3 in [35] has been used as the
introductory example in Sect. 2 in a much simplified version. In the full scenario,
the new stamping hardware for metallic products brings with it a new emergency
stop button E2 (triggering the same emergency logic as the existing button E1)
and a new start switch S3 (complementing S1 and S2 already present). Only
after all start switches have been pressed, the plant starts processing workpieces.
Trace equivalence between the two revisions of this evolution step can only be
shown for traces where these new components do not influence the flow of signals
already present in the old software. This is the case if (1) no metallic workpiece
is ever detected at M . (2) button E2 is only pressed if simultaneously E1 is also
pressed, and (3) S3 is not activated after the other switches S1 and S2 have been
pressed. The LTL formula over the corresponding input variables for conditional
equivalence of the PLC programs is

G(¬M ∧ (E2 → E1) ∧ (S1 ∧ S2 → S3))

Using this condition, equivalence can indeed be proved by our toolchain.

Relational equivalence. In evolution step Ev14, the three position sensors at A,
B and C are replaced by a single angle transmitter that continuously reports
the angular position of the crane (in degrees). The observational behavior is to
remain the same after the evolution. The input spaces for the PLC programs
differ such that the equivalence that can be established must be relational.

In correspondence with the hardware setup (see Fig. 4) and the requirements
of the production system, we model the relation that binds the old Boolean
position inputs A,B,C to the new angular input α as

G((A↔ 0 ≤ α ≤ 5) ∧ (B ↔ 90 ≤ α ≤ 95) ∧ (C ↔ 180 ≤ α ≤ 185)) .
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In the thus defined input relation ∼in each position switch corresponds to a
5◦ interval in the angular input space. This also shows that relations in our
approach can be more complex than just a biunique mapping between values.

Using an environment model. In evolution scenario Ev6, the hardware remains
unmodified, but the software is changed to optimize the handling of non-metallic
workpieces (see [35] for details). The PLC programs before and after the opti-
mization should be equivalent for traces where only metallic or only non-metallic
workpieces are detected, but the programs are not equivalent. An inspection of
the code reveals that a condition within an SFC has been reformulated. As a
first guess one could assume that the two conditions are equivalent and use this
as condition for the conditional equivalence proof. Indeed, the equivalence proof
succeeds using that assumption (Ev6+A for both cases, Ev6+Am for metallic
and Ev6+Anm for non-metallic pieces only). However, using an ad-hoc assump-
tion about the input state is not satisfactory even if it could be justified by a
manual inspection. Instead, a more intuitive and convincing item, an environ-
ment model of the crane (essentially the one shown in Fig. 2) can be added,
using which the PLC programs are proven equivalent with (Ev6+AEM) and
even without the assumption (Ev6+EM).

Results. Using our method and toolchain, automatic regression verification was
successful for all scenarios from the PPU case study.

Table 1 shows statistics for our experiments with the PPU. The evolution
scenarios were verified using nuXmv version 1.0.1 on an Intel Dual-Core with
2.7 GHz and 4 GB RAM running OpenSUSE 12.2.

Not all evolution scenarios include a modification of the software. The sce-
narios for which the equivalence verification is trivial have been omitted from
the table. The verification times for the same problem on the same machine may
vary considerably in multiple runs due to random choices in the symbolic model
checker which have a great impact on the verification time.

The regression verification method can not only be used for verifying equiva-
lence of PLC programs up to intended differences, but unintentional differences
between programs can also be found using our approach. The evaluation of our
approach revealed a few unintentional regressions in the PPU. In four cases, new
intermediate code blocks are added into SFCs that cause a regression by delay-
ing the system answer one cycle for each workpiece. Since the cycle time is very
short in the PPU (4 ms), the discrepancy between the programs was not found
by testing. Moreover, regression verification discovered that a fix for a safety
violation was not applied to an earlier version in the PPU evolution sequence.
It is possible that the crane tries to grab a workpiece while it is still in motion
which might under very unfortunate circumstances cause damages.

7 Related Work

The verification of PLC programs w.r.t. temporal logic specifications (for safety,
liveness, and time properties) has been subject of a number of publications al-
ready. The paper [40] gives an overview of the field, and the survey [21] discusses
transformation processes for program languages to verifiable models. Various
translations from IEC 6113-3 languages into the input languages of model check-
ers have been presented: Brinksma et al. [8] present a translation of SFCs into
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Table 1. Results of the experiments. scenario is the name of the evolution scenario
in [35], in is the size of the sensor input space in bits, state the size of the state space
in bits, min/max show the minimum and maximum time needed for verification using
nuXmv in seconds (s), minutes (m) or hours (h). +EM indicates that an environment
model has been used.

scenario in state min max scenario in state min max

Ev1 10 140 4 s 8 s Ev6+EM 11 299 2 m 21 m
Ev1+EM 12 146 7 s 12 s Ev8 20 289 13.7 m 20.9 m
Ev2 11 141 4 s 8 s Ev9 20 305 50.5 m 1.3 h
Ev3 19 246 9 s 17 s Ev10 23 365 13 s 24 s
Ev6+A 19 284 15.1 m 155.4 h Ev11 28 576 3.5 h 6.3 h
Ev6+Am 19 284 8.9 m 9.1 h Ev12 34 860 22.2 h 56.4 h
Ev6+Anm 19 284 18.1 m 13 h Ev13 34 1225 21.9 h 21.9 h
Ev6+AEM 11 299 25.7 m 104.1 h Ev14 47 1663 22.1 h 22.1 h

Promela input for the SPIN model checker [17]; De Smet et al. [28] translate
all languages within IEC 61131-3 into input for the symbolic model checker Ca-
dence-SMV [25]; and Bauer et al. [3] translate SFCs into timed automata to be
used with UPPAAL [5]. This model checker is also used to verify properties of
continuous function charts (CFC) in [37]. In [4, 6] a unifying semantics for SFC
is given where the ambiguities of the standard are addressed in a formal fashion.

Süflow and Drechsler [30] present a framework to verify that the same pro-
gram behaves equivalently on different PLC platforms; a scenario closely related
to ours. The authors employ a SAT solver to verify the arising proof conditions.

Strichman and Godlin [13–15,29] coined the term regression verification and
presented a verification methodology based on replacing function calls by unin-
terpreted function symbols within a bounded software model checking framework
for C programs. In [13] they define “reactive equivalence,” which is closely re-
lated to our notion of perfect trace equivalence. In earlier work [11], we presented
an automated approach to regression verification based on invariant generation
using Horn clauses. Many other approaches [2, 16, 31, 32, 39] exist to regression
verification for imperative programming languages.

Equivalence checking is an established issue for the verification of hardware
circuits. In sequential equivalence checking the perfect trace equivalence between
clocked circuits is analysed; see [18] or [20] for an overview. Lu and Cheng [23]
present an approach based on inferred invariants, conditional or relational equiv-
alence are not considered.

8 Conclusion and Future Work

We have presented a method and toolchain for the automatic regression verifica-
tion of PLC software by means of a symbolic model checker. In this process, the
old software revision serves as specification for the new one. Conditions can be
specified under which systems must behave equivalently, relations can be speci-
fied how the equivalence is to be understood, and models of environment can be
added to make the process more precise.

Evaluation proved our method to be applicable to non-trivial PPC software.
Automatic regression verification was successful for all scenarios from the PPU
case study. The evaluation also showed that the use of Φ-nodes in the translation
from PPU code to model checking input as well as the automatic generation of
coupling invariants is indispensable for non-trivial programs.
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Currently, our toolchain supports notions that compare PLC behavior cycle
by cycle. Future work will allow for conditions and relations to relate variables of
different cycles. Another interesting path of investigation is the use of abstrac-
tions to factor out parts of PLCs that have not been touched by evolution and
need not be proved equivalent.
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and P. Göhner. Challenges for software engineering in automation. Journal of
Software Engineering and Applications, 7(5), May 2014.

35. B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann. Researching evolution in
industrial plant automation: Scenarios and documentation of the pick and place
unit. Technical Report TUM-AIS-TR-01-14-02, TUM, 2014.

36. B. Vogel-Heuser, C. Legat, J. Folmer, and S. Rösch. Challenges of parallel evo-
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