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Abstract—With recent trends in manufacturing automation,
such as Industry 4.0, control software in automated production
systems becomes more and more complex and volatile, complicat-
ing and increasing importance of quality assurance. Test tables
are a widely used and generally accepted means to intuitively
specify test cases for automation software. However, each table
only specifies a single software trace, whereas the actual software
behavior may cover multiple similar traces not covered by the
table.

Within this work, we present a generalization concept for
test tables allowing for bounded and unbounded repetition of
steps, “don’t-care” values, as well as calculations with ear-
lier observed values. We provide a verification mechanism for
checking conformance of an IEC 61131-3 PLC software with a
generalized test table, making use of a state-of-the-art model
checker. Our notation is inspired by widely-used paradigms
found in spreadsheet applications. By an empirical study with
mechanical engineering students, we show that the notation
matches user expectations. A real-world example extracted from
an industrial automation plant illustrates our approach.

I. INTRODUCTION

Automated production systems (aPS), like industrial manufac-
turing plants, often need to adapt to changed requirements, and
are thus subject to constant evolution—which also affects the
software [2]. Recent trends in manufacturing automation, such
as Industry 4.0 and Cyber Physical Production Systems (CPPS),
exacerbate this problem drastically. Volatility of the aPSs and
their environment increases tremendously, permitting flexible
changes of the system and interacting systems dynamically
during runtime. Since aPS are often safety-critical systems
where faults can cause severe damage to the system, the
payload, or persons within the reach of the system, effective
software quality assurance measures during evolution are of
utmost importance. Because of the changing environment of
the systems, exactly corresponding to specifications becomes
imperative to allow for safe interaction and predictable changes.

In today’s industrial practice, software quality is achieved
by dynamic verification and validation, either through manual
step-by-step testing or by running automatically generated test
cases [3].

The main weakness of traditional testing is that one test
case covers only a single, particular run of the aPS software;
many scenarios remain uninvestigated during testing. Full test
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coverage can rarely be achieved. Systematic testing is good for
detecting typical and expected faults, but unpredictable and rare
malfunctions (which also can have severe consequences) are
less likely to be discovered using testing. In contrast to testing,
formal verification achieves full coverage by mathematically
proving the correctness of an implementation with respect to its
formal specification. Moreover, for quickly evolving systems
like aPS, a benefit of verification is that during development
of a new function block, potential faults can be removed early
on.

In engineering of aPS—besides safety issues—formal meth-
ods are not commonly applied, yet. As analyzed by Pakonen
et al. in [4], one reason for this is that adequate formal
specifications are not easily obtained and require a deep
understanding of the underlying formal concepts. This makes
the application of formal methods often unduly labor-intensive.

This work aims for combining the comprehensibility of test
cases with the coverage of formal verification by providing an
understandable—yet powerful—extension to a widespread test
case notation technique: Test tables are widely used by our
industry partners in machine and plant manufacturing to specify
test cases for aPS software [5]. Each table consists of a sequence
of sensor inputs with their expected software responses, and its
rows are a natural way to denote the successive steps of input
and output needed for a reactive system like aPS software.

To lower the threshold of applying formal verification—
in particular for coming up with formal specifications—we
propose an approach making use of existing concrete test
tables as a starting point when writing formal specifications.
The degree of generalization and the choice of advanced
specification features are individually decided by the engineer.
This allows for a gradual progress from specification-by-
example to a fully systematic specification. The extensions
proposed support both dynamic and static verification.

Test tables are commonly written using spreadsheet software
and executed within test automation tools like the CODESYS
Test Manager. The specification of the system under test has
a mandatory aspect of time as the system behaves differently
for different sequences.

The main contribution of this paper is the concept of
generalized test tables, which allow for describing an entire
family of test cases instead of a single test case. For ensuring
the practical applicability of generalized test tables, the concept
was developed and evaluated together with two companies from



Fig. 1: The GUI for generalized test tables shows the source
code, the generalized test tables, and corresponding counter
example or generated concrete test tables within a timing
diagram.

the domain of food and pharma plant manufacturing and from
both PLC hardware and software manufacturing. Moreover, we
provide a graphical tool1 for the verification of Structured Text
against generalized test tables (Fig. 1). All the tests described
by a generalized test table can be checked simultaneously.

Furthermore, generalized test tables exhibit two important
properties: (1) They are a natural extension of the well-known
concept of test tables, which are an expressive, natural, and
intuitive means for a test design easily understandable by
engineers. (2) They are effectively formally verifiable using
state-of-the-art model checking tools. Generalized test tables
can also serve as a basis for the generation of concrete test
tables that can be used to complement formal verification with
testing.

The generalizations we consider in this paper are the
following:
Abstraction. Instead of concrete values, cells in test ta-

bles contain constraint expressions such as “X > 0” or
“X + 1 = 4”. Any value satisfying the constraint is a
possible cell entry.

References to other cells. Cells in tables can contain a refer-
ence to values encountered in other cells.

Generalization of row durations. A table row may be repeated
for more than one cycle; the number of repetitions is
specified by an interval constraint.

Apart from being more expressive, generalized test tables
have the additional benefit that they can be specified to be
less sensitive to changes in system design. They allow for
specifying schematic conditions like “after between 10 and
20 waiting cycles” or “when observing a value that is greater
than the input given in the previous cycle” whereas concrete
test cases would impose a choice of concrete instances in such
cases. In the light of software evolution, it is important to

1https://formal.iti.kit.edu/stvs

note that a generalized table may still be valid after a software
update, whereas its concrete instances are generally not.

Vogel-Heuser et al. has shown in [6] that faults mostly occur
on lower software architecture levels. Subsequently, errors
must often be handled on the atomic or basic module layer.
Hence, we demonstrate the feasibility of our specification and
verification approach on an atomic function block and on one
example composed of multiple function blocks, both from an
industrial context.

To substantiate the claim that the notation following
paradigms found in spreadsheet applications, is intuitively
understandable and useful, we present the results of an
empirical survey consulting mechanical engineering students.

Overview. The remainder of this paper is structured as
follows: Sect. II introduces the concept of generalized test
tables intuitively and formally. We present a case study on the
verification of industrial code against generalized test tables in
Sect. III. An empirical study (Sect. IV) evaluates our approach
with respect to its applicability and comprehensibility. Finally,
the related work (Sect. V) and Sect. VI concludes the paper.

II. GENERALIZED TEST TABLES

In this section, we introduce the concept of generalized test
tables. Generalized test tables are an extension of traditional,
non-generalized tables (in the following, non-generalized tables
are called concrete tables).

A. Concrete Test Tables
A concrete test table describes a single test case for a reactive

system (e.g., a PLC function block). The rows of a concrete
table correspond to the successive steps performed by the
system under test. The columns correspond to the system’s
variables. These are partitioned into input variables and output
variables. In addition, there is a special column resp. variable
named DURATION.

The reactive systems we consider are executed cyclically,
where each cycle is one step in the test. Cycles consume a
fixed period of time, the cycle time. In each cycle, the concrete
input values contained in the table row corresponding to that
step are the stimuli for the system; and the system is expected
to react with the output values contained in the same row. If
the observed system response is different from the expectation
for one or more of the rows in the test table, then the system
violates the test case. The value of DURATION determines how
long the system is to remain in the step, in particular how
many cycles the input values are provided. DURATION is given
as a number of cycles (it can also be given as a time constraint,
which is transformed into cycles by division with the system’s
specific cycle time).

Note, that a table row with a duration of n is equivalent to
repeating that same row n times with a duration of 1.

Fig. 2 shows an example for a simple concrete table.
The table has three input variables A,B,C and three output
variables X,Y, Z, and describes a test case of 10 cycles (as the
durations of the three rows add up to 10). In this example, all
variables are of type integer; whereas in general, other types,
such as boolean variables, are also possible.



Inputs Outputs
# A B C X Y Z DURATION

0 1 1 2 0 0 5 1
1 0 3 3 6 6 5 7
2 1 4 2 2 8 5 2

Fig. 2: Example for a concrete test table.

Abbrev. Constraint

n X = n
< n X < n (same for >,≤,≥, 6=)
[m,n] X ≥ m ∧X ≤ n
– X = X (don’t care)

Fig. 3: Constraint abbreviations (X is the name of the variable
that the cell corresponds to; n,m are arbitrary expressions of
type integer).

B. From Concrete to Generalized Test Tables

Generalizing a test table and its specified test case is done
by substituting concrete values in the table’s cells by constraint
expressions. Intuitively, a system satisfies a generalized test
table if it responds to input values, that adhere to the input
constraints, with output values, that adhere to the output
constraints. This generalized the meaning of concrete test cases
were the constraints are unique values. Thus, a generalized
test table specifies a—possibly infinite—set of test cases. A
detailed explanation of the semantics of generalized test table
is given in Sect. II-D.

In the following, we explain three generalization concepts:
(1) abstraction using constraint expressions (which is the
basis of generalization), (2) using references to other cells
in constraint expressions, and (3) using generalization in the
duration columns of tables.

Abstraction using constraints. Instead of concrete val-
ues, we allow cells to contain constraints such as “X > 0”,
“X + 1 = 4”, or “X > 3 ∧X < 10.” Besides the name of the
variable that the cell corresponds to (e.g., X), the expressions
can be built using all operators of the appropriate type (+, ∗
etc.), constant values (0, 1, 2, . . .), and predicates such as
=, >,≥ etc. In addition, logical operators (∧,∨, etc.) can
be used to combine several atomic constraints.

For convenience, we allow abbreviations (see Fig. 3): “X <
n” can be written as “< n” and “X = n” simply as “n”.
Moreover, we allow interval constraints [n,m], which stand
for “X ≥ n ∧X ≤ m.” Finally, “–” is the constraint satisfied
by all values (“don’t care”). Abbreviations can be combined
conjunctively using commas; the expression “[n,m]” is, e.g.,
equivalent to “≥ n,≤ m”.

References to other cells. A reactive system’s behavior
depends both on the current and the previous input stimuli.
Therefore, the expected values in the cells of a generalized
test table are not independent of each other. We may want
to specify that, e.g., for the value of input A being n, the

value of output X is n + 1. For that purpose, we introduce
two additional syntactical concepts to be used in constraints:
global variables and references to other cells.

Global variables, denoted by lower-case letters, can be used
in all constraints in any place where an expression of the
corresponding type is expected. The value of a variable v is
globally the same in all cells, in which v occurs. Thus, we
can write v in a cell with input A (short for A = v) and v+1
in a cell with output X (short for X = v + 1) to express that
the value of output X is equal to v + 1 for the input A being
of value v. Besides being the same in all cells, the value of a
global variable is only restricted by the constraints, in which it
occurs. Thus, for example, X = v is equivalent to “don’t care”
if v does not occur in any other cell.

In addition to global variables, we allow references to other
cells using the form “X[−n]” and “X[n]”, where X is a
variable name and n is a concrete number. X[−n] refers to
the value of X n cycles before the current cycle, while X[n]
refers to X evaluated n cycle in the future (as we evaluate
generalized test tables statically, future references are possible).
For references to other variables in the current cycle, we just
write “X” as an abbreviation for “X[0]”.

Thus, we can write “A + 1” in an X-cell to express that
the output X is by one greater than the input A. To express
that the value of Y increases by one in each cycle, we write
Y [−1] + 1 in each Y -cell except for the first one.

References to other cycles are always relative to the current
cycle—they are not given w.r.t. the start or end of the table.
Absolute references to particular cells can be expressed using
global variables.

Generalization in the duration column. The DURATION
variable defines the number of cycles for which a row is
repeated. As a further generalization concept, we allow the
concrete values in the DURATION column to be replaced by
constraints. However, in contrast to the columns for input
and output variables, we only allow the DURATION column to
contain constraints describing intervals; and they must not refer
to other cells. Thus, constraints of the form “[n,m]” and “≥ n”
are the only possibilities. We use “∗” as a special “don’t care”
symbol for the duration column; it is equivalent to “≥ 0”.

C. Example: A Simple Generalized Test Table

Fig. 4 shows an example of a simple generalized test table,
incorporating the generalization concepts described above. Note
that the concrete table depicted in Fig. 2 is one of the possible
instances of the generalized test table given in Fig. 4, achieved

Inputs Outputs

# A B C X Y Z DURATION

0 1 1 2 0 0 – 1

1 – p p 2∗p X Z[−1] >5

2 – p+1 – [0,p] >Y [−1] 2∗Z>Y ∗

Fig. 4: Example for a generalized test table.



by instantiating the global variable p with the value 3. The
instantiated generalized test table for p = 3 still covers more
than one conrete test case.

The first row expresses a cycle, which is executed once.
It provides three concrete input values for the sensor inputs
A,B,C, and expects the outputs X,Y to both be equal to 0,
whereas the output value for Z can be of arbitrary value.

The input values for the second row are applied repeatedly
for strictly more than five scan cycles (there is no upper bound).
The input A is a “don’t care” value, i.e., it can potentially be
different for each cycle. The input values for B and C may
also be arbitrary; however, they are bound to be equal to the
global variable p. Hence, the values of B and C are the same
in each of the cycles of the second table row. The output value
of X is required to be identical to 2∗p, i.e., twice the value of
the input values for B,C. Moreover, Y is also required to be
equal to 2 ∗ p, enforced by the reference to the X-cell. Finally,
the value of input Z is equal to the one of the first row, as is
ensured by the back-reference Z[−1], requiring the value in
each cycle to be the same as that of the previous one.

For the third row—which does not correspond to the third
cycle, but at least to the eighth cycle, as the second row is
repeated at least six times—the inputs for A,C are arbitrary
and B is equal to p+1. The output value for X is an arbitrary
one between 0 and p. The output Y contains a back reference
to Y from the previous cycle. Thus, in the first cyle of the
third row, Y is greater than 2 ∗ p (as Y = 2 ∗ p from the
second row’s last cycle). The value of Y must then increase in
each further cycle. The value of Z must be more than half the
value for Y in order to satisfy the constraint 2 ∗ Z > Y . The
third row may be repeated arbitrarily often, as indicated by the
symbol ∗ in column DURATION. Note, that no real system is
able to fulfill the last row for an arbitrarily large number of
steps, since the enforcement of strict monotonicity in Y must
lead to an integer overflow at some point.

D. Semantics

A generalized test table can be unrolled to a family of test
tables with only value 1 in the duration column. To this end,
each row is repeated a number of times according to the origin
duration constraint. In general, the set of unrolled tables may
be infinite, containing test tables of arbitrary (but finite) length.
A system fails if there exists a run and a number n ∈ N, such
that all unrolled test tables which satisfy the input constraints
for the first n cycles fail the first n output constraints. A system
passes the test cases described by a generalized test table iff
the system does not fail it.

This definition may seem unnecessarily complicated, but
it is not: There are two aspects we need to consider. First,
a generalized test tables covers only those situations where
the sequence of input stimuli is described in the generalized
test case. All uncovered input stimuli can not reveal a failure.
Second, there may be multiple unrolled test cases for one
generalized test table, that match the input stimuli of a run.
In this case, only one unrolled test case needs to match the
system response to let the run pass the generalized test table.

Through the evaluation on prefixes with length n, we prevent
two cases: (a) We can apply the prefixes of a test case until
length n if the n+ 1th input constraint is contradictory, and
(b) if the run matches the shortest unrolled test case of length
n, it can not fail on longer unrolled test cases, even the run is
longer than n.

For example, consider a very simple generalized table with
just one row. In that row, there is one input variable fixed to
have the constant value 1 and one output variable specified
with a constraint [1, 2]. Then, the value pairs 1/1 and 1/2
are the possible concrete instances. The intuition of the test
is that the system may answer 1 or 2 to the input 1. With a
naive definition, where the concrete system behavior must pass
all concrete tests, an observable behavior of 1/1 would pass
the test 1/1 but fail the test 1/2. On the other hand, using
the more complex definition given above, the behavior 1/1
satisfies the generalized test table as it passes the test case
for 1/1. Also, the behavior 2/3 passes the test as the input 2
does not occur in the concrete tests. However, the behavior
1/3 does not satisfy the generalized table, which corresponds
to the intuition.

We give a deeper description of the formal semantics in [1].

III. APPLICATION EXAMPLE

In this section we exemplarily show how generalized test
tables can be used to increase test coverage for an industrial
piece of code. The approach’s feasibility is shown by analyzing
(1) a typical function block from an industrial context and (2) an
application scenario which combines this block with a second
one. According to Vogel-Heuser et al. [6], software faults are
mainly caused on these levels of system design: the atomic
and the basic level.

Function of the Software. Interpolation blocks which map
actual sensor values to a defined range of physical values in
software provide one of the most commonly needed functions in
software for automated systems. The function block examined
here can be operated in two different modes: Before the actual
operation, the calibration function (mode “Teach”) expects two
independent reference points to learn the linear relationship
between sensor and physical values. In practice, these points are
provided by the application engineer who manually calibrates
the system by supplying default work pieces to the system.
After calibration, the mapping function (mode “Op”) performs
linear interpolation where it translates a sensor reading into
the physical value according to the learned data.

A schematic view of the function block is shown in Fig. 5.
Besides the mode selector (Mode) and the sensor value
input (X), the block has two additional inputs needed during
calibration: (TPy) is used as the physical reference value during
teaching and (TPSet) indicates that teaching is in progress
if set to 1. The block’s single output is the physical value
(Y). In normal operation, after two reference points (x1, y1)
and (x2, y2) have been learned, the input value X results in
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Fig. 5: Schematic view of the investigated function block with
a state machine describing its operation.

Inputs Outputs
# TPy TPSet Mode X Y DURATION

1 60 0 Op 0 0 10
2 60 0 Teach 1.2 0 10
3 60 1 Teach 1.2 0 1
4 2108 0 Teach 4.0 0 10
5 2108 1 Teach 4.0 0 1
6 0 0 Teach 0 0 1
7 0 0 Op 28 .438 1
8 0 0 Op 316 3.65 1
9 0 0 Op 3132 4.20 1

Fig. 6: Concrete test table of analog sensor function block

an output value Y = L(x1, y1, x2, y2, X) which the linear
regression between the two points defined as

L(x1, y1, x2, y2, X) =def y1 +
y2 − y1
x2 − x1

(X − x1) . (1)

If the two reference points make interpolation impossible
(e.g., if x1 = x2), the function block enters an error state. If
no reference point is presented for more than TOUT cycles
while in teaching mode, the block also goes into the error state.
Before finishing calibration or if the function block is in the
error state, the output Y is always 0. Fig. 5 includes a state
chart for the block which contains the normal operation state,
the error state and the teaching state which is subdivided into
four substates s1 to s4.

A concrete test table. One concrete test case for this
block is shown in Fig. 6. It covers the calibration and normal
operation. The block is brought into teaching mode and two
reference points (60, 1.2) and (2108, 4.0) are used for block
calibration from step 2 to 5. Afterwards the normal operation
of the block is tested in steps 7–9 which send inputs (X) of 28,
316, and 3132. The expected physical values (Y) are 0.438,
3.650, 4.200 according to linear interpolation. The software
fails this test case if it does not produce the expected output
in one ore more steps.

Generalization. This test case can be generalized by the
means introduced in Sect. II-B to increase the test coverage.
The resulting generalized table does not only cover the few
concrete test values mentioned in the concrete table but includes
all possible input sequences, thus comprises infinitely many
test cases. If the software can be formally verified to adhere to
the generalized test table, this is a more far-reaching validation
result than running concrete tests.

Inputs Outputs
# TPy TPSet Mode X Y DURATION

1 – – Op – 0 *
2 – 0 Teach – 0 [1, TOUT]
3 y1 1 Teach x1 0 1
4 – 0 Teach – 0 [1, TOUT]
5 y2 1 Teach x2, 6= x1 0 1
6 – – Teach – 0 1
7 – – Op – L *

Fig. 7: Generalized test table of analog sensor function block,
where L is the linear regression , see (1).

The generalization of the concrete test begins in step 1 where
prior to calibration, Y is always 0. In step 2, the mode is set to
“Teach” (entering s1 in Fig. 5), and in step 3, the first teaching
point (x1, y1) is provided to the block as described (s2). In
step 5, the second point (x2, y2) is sent to the system (s3).
Steps 2, 4 and 6 are waiting phases between the teach points.
The waiting time is not fixed and only limited by the maximum
waiting time TOUT. After calibration, the block is set back to
normal mode in step 7 where an arbitrary sensor value X is
sent to the function block. The expected output is the linear
interpolation value according to (1). This last step is repeated
indefinitely often.

This generalized test table represents infinitely many individ-
ual finite test cases for all possible reference points and queries.
However, it is still not a complete behavioral specification for
the block. The sequence of steps is fixed and does not cover
all cases. Fig. 7 only represents the normal operation. All
situations where the block is to go to the error state are not
covered (e.g., if three reference points are given or if more
than TOUT waiting cycles have occurred).

Verification process. To verify that the function block
conforms to the specification given by the generalized test
table, we encoded both the software and the test table as state
transition systems and submitted them to a state-of-the-art
model checker. To encode the examined software block in
model checker logic, we reuse toolchain we presented in [7].
Like the software, the generalized test table is converted into
a (non-deterministic) state transition system. Each step in the
table correponds to one state in the system.

The proof for an industrial implementation against the table
in Fig. 7 takes 8:50 minutes (median, n = 5) with nuXmv [8]
(Version: 1.1.1) and IC3 on an Intel Core i7 860 with 2.80 GHz.
We needed some restriction on the value domain of some
variables. We used fixed-point number instead of floating-point
numbers, with a precision three fractional digits. We limited the
range teaching points values [0, 5], set the waiting times TOUT
and the margin to 1000. Any other variable, especially the
sensor values X are only restricted by the given type domain
(16 bit). The scalability of our approach mainly depends on
the performance of the model checker. The generation of the
logical representation is polynomially bounded in size of the
generalized test table and the length of the given program. We



Inputs Outputs
# TPy TPSet Mode X Y’ Y W DURATION

7 – – Op – < M,= Y L 0 1
8 – – Op – ≥M,= Y L 0 [0,Ton]
9 – – Op – < M,= Y L 0 1
10 – – Op – ≥M,= Y L 0 Ton
11 – – Op – ≥M,= Y L 1 *
12 – – Op – < M,= Y L 1 [0,Toff ]
14 – – Op – < M,= Y L 1 Toff
13 – – Op – ≥M,= Y L 1 1
15 – – Op – < M,= Y L 0 *

Fig. 8: Extension of the generalized test table in Fig. 7 of a
warning message

provide the verification artifacts on the companion web page2.
Expandability. We analyzed a scenario with interconnected

function blocks to evaluate the expandability of the approach
on a basic software level. The verified interpolation block
is integrated in a function block composed of four blocks:
the interpolation block, a timer-off block (TOF), a timer-on
block (TON) and a SR flipflop (see Fig. 9). The goal of the
composed function block is that a warning is triggered, when
the interpolated value is above a margin M for a certain time
Ton . The warning is revoked only if the sensor value falls
below the margin for another certain time Toff . The example
is based on industrial code of an aPS. The generalized test
table of Fig. 8 is an extension of the specification in Fig. 7,
adding 9 steps and two columns: the input variable Y’ for
specifying the margin value M and the output warning (W).
Steps 7–9 verify the behavior of the software in the case the
interpolated value is above the margin for less than the time
Ton . According to the specification, a warning must not be
issued. The second case (steps 10 and 11) enforces a warning
if the margin is exceeded for period longer than Ton . Steps
12–15 verify the that the warning is reset once the interpolated
value falls below M again.

We verified the industrial software under the same conditions
as above and created three different scenarios. In the first
scenario, we used the steps 7–9 to ensure, that no warning is
given, if Y ′ does not exceed the margin M for Ton cycles.
The proof takes 15:37 minutes (median, n = 5). In the second
scenario, we check the signaling behavior of warning, given
the protocol given in the rows 9–14 (13:32 minutes, median
n = 5). For the third scenario, we validate the error case of
both teaching points have sames x value (x1 = x2). As a result
the Y should remain 0 and no warning is given. The model
checker takes 46.77 seconds (median, n = 32), without any
restrictions on value domain of the teaching points. Like TOUT
in the previous example, we set Ton and Toff to 5 and the
margin is 1000.

IV. EMPIRICAL STUDY

To assess how comprehensible the generalized table notation
is for engineers, we conducted a survey with 22 students in
the mechanical engineering department at TUM. The students

2https://formal.iti.kit.edu/indin17

Fig. 9: Composed function block

have taken PLC coding courses, but were not experienced
in practice. The questionnaire comprised four parts which
had to be answered within 20 minutes. The concept of table
generalization, its notations (see Sect. II) and the motivation
for this survey were explained in the first part. In the second
part, a basic function block description, a Timer-off function
(TOF), was given together with a concrete test table and a
generalized test table for comparison. To evaluate the clarity
and understandability of the notation, the students were asked to
decide whether the generalized table covered several different
behavior descriptions. The third part provided a detailed
description of an interpolation block, similar to the one of
Sect. III but more complex due to additional physical values. A
concrete test table was given and the participants were required
to come up with a corresponding generalized test table for this
given function block. This part was developed for measuring
accessibility and comprehensibility of the notation for users
without expert knowledge. Lastly in part 4, we asked the
participants to rate the usability (i.e., simplicity) and usefulness
(i.e., effectiveness) on a scale from one (positive) to ten
(negative) for some examples using different expression types
(global variables, “don’t-care”, comparisons, and references,
as explained in Sect. II-B). Apart from the questionnaire sheet,
no additional information or explanation was given during
the survey. In spite of the considerable time restriction, 81%
of the respondents were able to answer the questions on the
simpler generalized tables correctly and 60% were correct on
the most difficult one. These figures indicate that the concept
of generalized test tables is easy to apprehend. As far as the
different notational extensions are concerned, global variables,
“don’t-care” values and intervals were used correctly by 80% of
the participants while references to other cells and constraints in
form of general formulas were used correctly by less than 40%.
Fig. 10 shows the survey result for part 4. Dots and crosses
indicate average for the usefulness and simplicity for four
different kinds of extension. Even though a larger number of
subjects would be required for more general results, the positive
result of this survey with students suggests that the concept
of generalized test tables could be beneficial and accessible,
and these degree of usability will be more for professional
engineers.

V. RELATED WORK IN APS VERIFICATION

Software quality assurance methods aim to support develop-
ers in identifying software faults and to fix them efficiently. In
the field of factory automation, research for software quality
assurance is prevalently directed towards model-based testing

https://formal.iti.kit.edu/indin17
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Fig. 10: The result of the survey on the comprehensibility of
generalized test tables

and formal verification. Both testing and formal verification
allow the developer to diagnose system faults and fix them.
While formal verification covers a wide range of scenarios and
unexpected events, testing validates system behavior within
pre-defined scenarios and an expected scope of events, i.e., it
does not go beyond the specified test cases. However, testing is
the established means in production industry regarding quality
assurance and enjoys broader industry acceptance [2]. Formal
verification, on the other side, proves software correctness
with respect to its specification by exhaustively exploring all
reachable states within the model [9], [10]. As formal verifi-
cation reaches a much higher coverage, automatic verification
can already be applied earlier in the design phase [11]. The
established formal verification technique of model checking
has been used in several approaches in verification of PLC code
[12], [13], [14]. Other methods focus on combining testing with
formal methods in order to increase the test coverage. Buzhin-
sky et al. [15] use a formal model for Net Condition/Event
Systems in order to generate and execute test cases. According
to Pakonen et al. [4], formal methods are –besides safety issues–
not widely used in production industry. Challenges are the state
space explosion, the necessary knowledge in formal description
languages for writing formal specifications, and a potentially
high modelling effort. Duschl et al. [16] analyse the error types
which can appear in code written in other modeling languages
such as UML and SysML or IEC 61131-3 Function Block
Diagrams (FBD). They conducted a precise analysis of error
causes and concluded the most common reason for faults to
be an inadequate understanding of used notations. As a means
to reduce the complexity of formal specifications and hence
overcome the barrier to establish formal methods in PLC-based
production industry, several interviews with experts on quality
assurance and experts on formal methods were conducted.
They indentified the following six important requirements on
specification language in two categories:

• Formal methods:
R1: Formalization of the specification
R2: Transformation into temporal logics such as CTL

• Industrial applicability:
R3: Consideration of timing aspects (continuous or dis-

crete)
R4: Well-known language in industry of aPS
R5: Reuse of existing testing data
R6: Possibility of Automated verification

However, most similarly-targeted verification approaches rely
on manually formalized mathematical artefacts or unfamiliar
notations, e.g., petri nets [17]. Thus, petri nets do neither
confirm to R4, nor to R3 which also considers timing aspects.
Translation methods from the Sequential Function Chart (SFC)
into formalized automata are also introduced in [13], [18],
and [19]. A review on user-friendly formal specification
languages is given in [20] and [4]. One proposed specification
is a natural pattern language which combines several keywords
to a natural sentence. This method is also used by PLCverif
[21], [22], a tool for PLC code verification. The goal of this tool
is to hide the unfamiliar formal methods and provide a platform
for model generation, model abstraction and specification
description in natural language instead. The tool supports the
IEC 61131-3 language Structured Text (ST). With this approach,
patterns must be defined new which is not in line with R5.
In a second step, In [20] Pang et al. review visual formalisms
such as UML and Timing diagrams. In addition, investigations
on the generation of test cases from formal specifications in
UML models are proposed in [23], [24], and [25]. UML is a
wide-spread modelling language, for which many approaches
are given [2]. Disadvantages are the complex handling of UML
models and a gap of UML-models in aPS testing (cf. R5).
Timing diagrams as modelling and specification languages in
production industry have been evaluated for generating test
cases [26], [5] as well as a means for formal specification [27],
[28]. Their benefit has been demonstrated in existing industrial
know-how and in the consideration of time. However, test cases
in the form of timing diagrams are rarely used. A main reason
is that available data cannot be reused that it focusses only on
one scenario.

Darvas et al. present AND/OR tables for describing simple
specification descriptions in [29]. Their advantage is that hardly
any knowledge from the specification domain is required. Test
cases as such often already exist in production industry and
are usually written in the form of tables. Timing behavior is
not mentioned in this approach (R3).

Hence, many considerd specification languages such as CTL,
Petri Net, UML, Pattern Language, Timing Diagrams and
concrete test tables are transferable to CTL logic (R1) and
enable a formal description (R2). Thus, also an automation of
the verification process (R6) is possible. But no specification
languages complies with all requirements.

Test tables as a means for specification cover all six
requirements R1-R6. The gap lies within the missing flexibility
for covering a number of test cases. To the best of our
knowledge, there is no approach which reuses existing test
tables as a means for formal specification. This publication
provides generalized test tables as an extension to test tables
by allowing for notions of abstraction to cover a wide range
of behavioral cases including flexible timing specifications.

VI. CONCLUSION

Formal verification is not yet an established validation
technique in the field of aPS because of a barrier imposed by
the requirement to formulate formal specifications. Yet, this



technique becomes increasingly interesting regarding recent
developments such as Industry 4.0, with its increasingly
flexible, cooperating systems, requiring close compliance with
specifications and robustness.

In this paper, we presented generalized test table which are an
understandable approach to provide such formal specifications
of complex behavior of reactive systems. (Concrete) test tables
are state of the art for validation in industry. The approach
presented here makes test tables more general and thus allows
them to cover many test cases at once. Three generalization fea-
tures were introduced: abstraction, references, and generalized
durations. Generalized test tables are particularly well-suited
for evolving software systems: Concrete test tables require
fixed values in all cells such that they are likely to become
invalidated if, e.g., an extra wait cycle is introduced. The
symbolic nature of the input/output specification in generalized
tables is more flexible and thus more resilient to system changes
during system evolution.

We demonstrated that proving the conformity of a software
system against a generalized test table is feasible and reasonable
fast by means of an example extracted from an industrial piece
of code. Even though we showed the usability assessment, a
study with more number of field engineers will be conducted
in the near future to achieve more general usability results.

Moreover, our concept is extendable and can be adopted to
the needs of software engineers and software evolution.
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