
Chapter 18
Functional Verification and Information Flow
Analysis of an Electronic Voting System

Daniel Grahl and Christoph Scheben

Electronic voting (e-voting) systems which are used in public elections need to fulfill
a broad range of strong requirements concerning both safety and security. Among
those requirements are reliability, robustness, privacy of votes, coercion resistance
and universal verifiability. Bugs in or manipulations of an e-voting system can have
considerable influence on society. Therefore, e-voting systems are an obvious target
for software verification. In addition, it makes an excellent target for a formal analysis
of secure information flow. While the individual ballots must remain confidential, the
public election result depends on these secrets. We will employ the precise analysis
technique introduced in Chapter 13, that readily includes support for this kind of
declassification.

We report on an implementation of an electronic voting system in Java. It is based
on the sElect system by Küsters et al. [2011], but reduced to its essential functionality.
Even though the actual components are clearly modularized, the challenge lies in the
fact that we need to prove a highly nonlocal property: After all voters have cast their
ballots, the server calculates the correct votes for each candidate w.r.t. the original
ballots. This case study proves the preservation of privacy of votes. Altogether the
considered code comprises 8 classes and 13 methods in about 150 lines of code of a
rich fragment of Java. The presentation in this chapter follows the works by Scheben
[2014] and Grahl [2015].

18.1 Electronic Voting

Elections form a part of everyday life that has not (yet) been fully conquered by
computerized systems. This is partly due to the relatively high effort—elections
do not occur often—and partly due to little public trust in e-voting security. The
public discussion of this issue—in Germany at least—has revealed a high demand
for secure systems and in turn a projection of high costs to construct them that lead to
the introduction of electronic voting being suspended. Systems for electronic casting
and tallying of votes that are in the field in other countries (e.g., the Netherlands, the

593

594 18 Verification of an Electronic Voting System

USA) are known to expose severe vulnerabilities. Apart from vote casting, computers
are actually used in other activities related to elections such as voter registration or
seat allocation.

A general goal is that electronic voting is at least as secure as voting with paper
ballots. This includes confidentiality of individual votes. In particular they must not
be attributable to a particular voter. But there is also an integrity issue: the final
election result must reproduce the original voter intention; no vote must be lost,
none must be manipulated. In paper-based elections, this mostly depends on trust
in the election authorities and observers. In electronic voting, the idea is to issue a
receipt to the voter, a so-called audit trail, for casting their ballot. After the votes
have been tallied, the voters can then check on a public bulletin board whether their
vote has actually been counted. This is called verifiability of the vote. To achieve
verifiability and confidentiality of individual ballots/votes at the same time appears
to be contradictory. The proposed solution is cryptography—that allows trails to be
readable only to the voter. Some electronic voting systems also try to rule out voter
coercion (by threatening or bribing). The idea is that trails and bulletin boards are
of a form such that an attacker cannot distinguish the votes even if a coerced voter
is trying to reveal his or her vote. This way, electronic voting may be even more
secure than voting using paper ballots.1 As it requires highest security guarantees,
electronic voting has been frequently designated as a natural target for verification,
e.g., by Clarkson, Chong, and Myers [2008].

18.2 Overview

We consider the sElect system implemented by Küsters et al., to be reduced to its
essential functionality. In this system, a remote voter can cast one single vote for some
candidate. This vote is sent through a secure channel to a tallying server. The secure
channel is used to guarantee that voter clients are properly identified and cannot cast
their vote twice. The server only publishes a result—the sum of all votes for each
candidate—once all voters have cast their vote. The main modification compared
to the original implementation by Küsters et al. is that messages are transmitted
synchronously instead of asynchronously.

As described by Beckert et al. [2012], the goal is to show that no confidential infor-
mation (i.e., votes) are leaked to the public. Obviously, the election result—a public
information—does depend on confidential information. This is a desired situation. In
order to allow this, the strong information flow property needs to be weakened, or
parts of the confidential information need to be declassified. Section 13.5 shows how
such a property can be formalized using Java Dynamic Logic and proven in the KeY
verification system.

1 An important practical aspect of elections is fairness. As argued by Bruns [2008], fairness requires
a profound understanding of verifiability and confidentiality not only to security experts, but to any
eligible voter. This issue is usually not considered with the present, complex systems.

18.2. Overview 595

Secure declassification—in the sense that parts of the secret information is pur-
posely released (which is different from other uses of the term ‘declassification’
denoting the release of any information under certain constraints)—depends to a
certain extent on functional correctness. In an election, the public result is the sum of
the votes that result from secret ballots. In general, this cannot be dealt with using
lightweight static analyses, such as type systems or program dependency graphs,
which are still predominant in the information flow analysis world. Instead, the
problem demands for semantically precise information flow analyses as provided by
the direct formalization of noninterference in dynamic logic (Section 13.5).

18.2.1 Verification of Cryptographic Software

The sElect system uses cryptography and other security mechanisms. From a func-
tional point of view, cryptography is extremely complex and it seems largely infeasi-
ble to reason about it formally. In particular, the usual assumption in cryptography
that an attacker’s deductive power is polynomially bounded—this is called a Dolev/
Yao attacker [Dolev and Yao, 1983]—cannot be reasonably formalized. As a matter of
fact, even encrypted transmission does leak information and therefore strong secrecy
of votes—which can be expressed as noninterference—is not fulfilled: the messages
sent over the network depend on the votes and could theoretically be decrypted by
an adversary with unbounded computational power. As a consequence, information
flow analysis techniques—like the ones presented in Section 13.5—would classify
the sElect system insecure, although it is secure from a cryptographic point of view.

Küsters et al. [2011] proposed a solution to this problem: the authors showed
that the real encryption of the system can be replaced by an implementation of ideal
encryption. Ideal encryption completely decouples the sent message from the secret.
Even an adversary with unbounded computational power cannot decrypt the message.
The receiver can decrypt the message through some extra information sent over a
secret channel which is not observable by adversaries. Küsters et al. showed that
if—in the system with ideal encryption—votes do not interfere with the output to
the public channel, then the system with real encryption guarantees privacy of votes.
Therefore, it is sufficient to analyze the system with ideal encryption.

18.2.2 Verification Approach

Our approach combines functional verification and information flow verification, both
performed with KeY. The properties are specified using the Java Modeling Language
(see Chapter 7), including the extensions introduced in Section 13.4. All involved
components are completely verified for their functional behavior. Additionally, the
proof of confidentiality is based on a dynamic logic formalization of noninterference
and theorem proving as laid out by Scheben [2014, Chapter 9]. The functional

596 18 Verification of an Electronic Voting System

verification lays a foundation for the confidentiality proofs as they use functional
method contracts.

In order to obtain an implementation of the system that is practically verifiable,
we have implemented a simplified system ourselves. In fact, we have implemented
several prototypes one after another, verified each of them, and refined it (and its
specification) to produce the next one. This chapter describes the final implementation
of this series, see [Grahl, 2015, Chap. 9] for the complete scene.

An alternative to the above approach is outlined in Section 18.4.1. It combines
functional correctness proofs in KeY with lightweight static information flow analysis
as proposed by Küsters et al. [2015]. The target program is transformed in such a
way that there is no declassification of information. We then prove in the KeY system
that this transformation preserves the original functional behavior. This allows the
static analyzer JOANA [Hammer, 2009, Graf et al., 2013]—which is sound, but
incomplete—to report the absence of information flow.

18.2.3 System Description

Figure 18.1 shows a UML class diagram of the considered e-voting system. The
implementation comprises, besides the clients (class Voter) and the server, an
interface to the environment and a setup. The main method of the setup models
the e-voting process itself. This is necessary because the security property—that
privacy of votes is preserved up to the result of the election—can only be formulated
with respect to a complete e-voting process rather than only the implementation of
the client and the server alone. This means that we do not have a composition of
distributed components, but a simulation of their interaction in a sequential program.

The basic protocol works as follows: First, voters register their respective client to
the server, obtaining a unique identifier. Then, they can send their vote along with
their identifier (once). Meanwhile, the server waits for a call to either receive one
message (containing a voter identifier and a vote) or to close the election and post the
result. In the former case, it fetches a message from the network. If the identifier is
invalid (i.e., it does not belong to a registered voter) or the (uniquely identified) voter
has already voted, it silently aborts the call. In any other case, the vote is counted for
the respective candidate. In the latter case, the server first checks whether a sufficient
condition to close the election holds,2 and only then a result (i.e., the number of votes
per candidate) is presented. This is illustrated in the sequence diagram in Figure 18.2.

This simplified representation hides many aspects essential to real systems. We
assume both a working identification and that identities cannot be forged. We assume
that the network does not leak any information about the ballot (i.e., voter identifier
and vote). This is meant to be assured through means of cryptography. The network
may leak—and probably will in practice—other information such as networking

2 In the present implementation, this is when all voters have voted.

18.2. Overview 597

Setup
− numOfVoters : int {readOnly}
− numOfCandidates : int {readOnly}
− out : int[]

+main() : void
− publishResult() : void

Voter
− id : int {readOnly}
− vote : int {readOnly}

∼ Voter (id : int, vote : int)
+onSendBallot(server : Server) : void

numberOfVoters

1 Server
+numOfVoters : int {readOnly}
+numOfCandidates : int {readOnly}
− ballotCast : boolean[]
− votesForCandidates : int[]

∼ Server(int n, int m)
+onCollectBallot(msg : Message) : void
+onSendResult() : void
+resultReady() : boolean
+getResult() : int[]

1

1

Message
+id : int {readOnly}
+ballot : int {readOnly}

+Message(id : int, ballot : int)

�use�
�use�

NetworkClient

+send(message : byte[],
server : Server,
port : int) : void

�interface�
Environment

+untrustedOutput(x : int) : void
+untrustedInput() : int
+untrustedInput(x : int) : int

�use�

SMT

+send(msg : Message,
senderID : int,
server : Server) : void

�use�

�use�

�use�

�use�

SMTEnv

+send(messageLength : int,
senderID : int,
recipientID : int,
server : Server,
port : int) : byte[]

�use�

�use�

Figure 18.1 UML class diagram of the e-voting system

credentials. We do not need to assume that the network communication is loss-less
or must not produce spurious messages.

Listing 18.1 shows the implementation of Setup#main(). Essentially, the ad-
versary decides in the loop which client should send its vote next, until the server
signals that the result of the election is ready. More precisely, the adversary is mod-
eled through a call to the method Environment.untrustedInput(), that decides
which client should send its vote. When subsequently the method onSendBallot()
is called on the corresponding Voter object, the client sends its secret vote (stored in
the attribute vote) to the server (synchronously), with the help of ideal encryption. In
its onCollectBallot() method, the server immediately counts the vote—provided
that the voter did not vote before. Finally, the server is asked by a call to the method

598 18 Verification of an Electronic Voting System

create

send(v.id,v.vote)

voted:=
true

onS
endB

allot()

receive()
id:Int,vote:Int

inc(cand(vote))

voted(id):=
true

onR
eceiveB

allot()

onS
endR

esult()
∀

id.voted(id)

a:
s:S

erver
n:N

etw
ork

v:Voter

opt

[¬
voted]

[]

opt

[¬
voted(id)]

[] alt
loop

Figure
18.2

T
he

overallprotocolofthe
e-voting

system
.H

ere,the
actorrepresentthe

nondeterm
inistic

choice
ofevents.

18.3. Specification and Verification 599

1 /*@ normal_behavior
2 @ requires (\forall int j; 0 <= j && j < numberOfVoters;
3 @ !server.ballotCast[j]);
4 @ requires (\forall int i; 0 <= i && i < numberOfCandidates;
5 @ server.votesForCandidates[i]==0);
6 @ ensures (\forall int i; 0 <= i && i < numberOfCandidates;
7 @ server.votesForCandidates[i] ==
8 @ (\num_of int j; 0 <= j && j < numberOfVoters;
9 @ voters[j].vote == i));

10 @ diverges true;
11 @*/
12 public void main () {
13 while (!server.resultReady()) { // possibly infinite loop
14 // let adversary decide send order
15 final int k = Environment.untrustedInput(voters.length);
16 final Voter v = voters[k];
17 v.onSendBallot(server);
18 }
19 publishResult();
20 }

Listing 18.1 Implementation and functional contract for the Setup#main() method

resultReady() whether the result of the election is ready. If so, the loop terminates
and the result is published by a call to the method publishResult().

18.3 Specification and Verification

The overall functional property to prove is that—after all votes have been cast (and
collected by the server)—the server posts the correct number of votes per candidate.
More precisely, the ‘correct number’ corresponds to the sum of votes for each
candidate as on the ballots filled in by the voters. The information flow property to
prove is that no information other than the election result is released.

18.3.1 Specification

The functional contract for the main method is shown in Listing 18.1. In the pre-
conditions, we assume that no voter has cast their vote yet (or more precisely, the
server has not yet marked the vote as cast) and all candidates have zero votes (in
the server). The postcondition states that the number of votes for each candidate
is exactly the number of voters who voted for them. This is expressed using the
generalized quantifier \num_of (see Section 7.2.2) in Line 8. The explicit diverges
clause allows this method to not terminate.

600 18 Verification of an Electronic Voting System

The functional specification is augmented with an information flow contract in
Listing 18.2. The contract states that—under the condition that the server is initialized
correctly—

1. the state of the environment, abstracted by Environment.envState, depends
at most on its initial value as well as on the number of voters (Line 6);

2. The array out itself as well as each of its entries (containing the final result of
the election, Lines 8f.) depend at most on

• the number of candidates,
• the number of voters, and
• for each candidate—the correct sum of all votes for them (Lines 10ff.);

3. at most locations of the server, the environment and the result array are changed;
and

4. the election might not terminate (because the adversary might block votes of
voters forever, Line 16).

The \declassifies keyword is syntactic sugar (see Section 13.4), but stresses that
the array out only depends on a well-considered part of the secret—the correct result
of the election.

1 /*@ normal_behavior
2 @ requires (\forall int j; 0 <= j && j < numberOfVoters;
3 @ !server.ballotCast[j]);
4 @ requires (\forall int i; 0 <= i && i < numberOfCandidates;
5 @ server.votesForCandidates[i]==0);
6 @ determines Environment.envState
7 @ \by Environment.envState, numberOfVoters;
8 @ determines out, (\seq_def int i; 0; out.length; out[i])
9 @ \by numberOfCandidates, numberOfVoters

10 @ \declassifies (\seq_def int i; 0; numberOfCandidates;
11 @ (\num_of int j;
12 @ 0 <= j && j < numberOfVoters;
13 @ voters[j].vote == i));
14 @ assignable Environment.rep, out,
15 @ server.ballotCast[*], server.votesForCandidates[*];
16 @ diverges true;
17 @*/
18 public void main () { . . . }

Listing 18.2 Information flow contract for the main() method

In order to show that main() fulfills its contract, we need a loop invariant (List-
ing 18.3). In the loop invariant, we talk about a bounded sum (indicated by the
keyword \num_of in Line 4) that is defined through a nontrivial induction scheme:
the elements are not added linearly, but only under stuttering and permutation. This
makes it—at least the current machinery—impossible to prove the invariant au-
tomatically. The information flow part of the loop invariant in Lines 12ff. states
that

1. the knowledge of the environment (Environment.envState),

18.3. Specification and Verification 601

1 /*@ maintaining \invariant_for(this);
2 @ maintaining (\forall int i; 0 <= i && i < numberOfCandidates;
3 @ server.votesForCandidates[i] ==
4 @ (\num_of int j; 0 <= j && j < numberOfVoters;
5 @ server.ballotCast[j]
6 @ && voters[j].vote == i));
7 @ maintaining resultReady
8 @ == (\forall int j; 0 <= j && j < numberOfVoters;
9 @ server.ballotCast[j]);

10 @ assignable Environment.rep,
11 @ server.ballotCast[*], server.votesForCandidates[*];
12 @ determines Environment.envState, resultReady, numberOfVoters,
13 @ (\seq_def int i; 0; numberOfVoters;
14 @ server.ballotCast[i])
15 @ \by \itself;
16 @*/

Listing 18.3 Loop invariant for the loop in Setup#main()

2. the fact whether the result of the election is ready,
3. the number of voters, and
4. the information which voter has already voted (stored in the cells of the array

Server#ballotCast)

depend at most on

(a) the initial knowledge of the environment,
(b) whether the result of the election initially was ready,
(c) the initial number of voters, and
(d) the initial information which voter has already voted.

As the field Setup.out is not modified by the loop, it does not need to be mentioned
explicitly in the loop invariant. The fact that the array Setup.out itself as well as
each of its entries depend at most on

• the number of candidates,
• the number of voters, and
• for each candidate the correct sum of all respective votes for them

can be derived from the contract of publishResult() (Listing 18.4) in combination
with the assurance of the loop invariant that the server calculates the result correctly.
Note that the functional knowledge that the server calculates the result correctly is
necessary for proving the declassification. Here, the tight integration of functional
and information flow-verification in our approach pays off.

The preservation of the loop invariant is proved with the help of contracts
for the methods untrustedInput(), onSendBallot() and resultReady().
The method untrustedInput() is declared in the interface Environment (List-
ing 18.5). This interface provides the connection to the environment which is con-
trolled by the attacker. It models all global sources and sinks. The state of the
environment is encapsulated in a (ghost) field of type sequence. As any computable

602 18 Verification of an Electronic Voting System

/*@ normal_behavior
@ requires (\forall int i; 0 <= i && i < numberOfCandidates;
@ server.votesForCandidates[i] ==
@ (\num_of int j; 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@ assignable out;
@ determines out, (\seq_def int i; 0; out.length; out[i])
@ \by numberOfCandidates, numberOfVoters,
@ server.votesForCandidates
@ \declassifies (\seq_def int i; 0; numberOfCandidates;
@ (\num_of int j;
@ 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@*/

private void publishResult () { . . . }

Listing 18.4 Information flow contract of publishResult.

information can be encoded into a sequence of integers, this is a valid abstraction.
Each method of the Environment has a contract which, in essence, guarantees that
the environment cannot access any other part of the e-voting system. More precisely,
each method is required to meet the following restrictions: 1. The final state of the
environment depends at most on its initial state and the parameters of the method.
2. If the method has a result value, then also this result value depends at most on the
initial state of the environment and the parameters of the method. 3. At most the state
of the environment (represented by field envState) is modified. The untrusted input
from the environment needs to be sanitized, but still the main loop may not terminate
as voters are requested to cast their votes for an arbitrary number of times.

The specification of Environment in Listing 18.5 establishes evidence that the
information flow specification and verification approach presented in Chapter 13 can
be used for the specification and verification of interfaces and consequently also for
the specification and verification of open and interactive systems.

The method Voter#onSendBallot() generates a new message containing the
vote of the voter and sends it over the network as shown in Listing 18.6. The net-
work component is modeled by the classes NetworkClient and SMT (for ‘secure
message transfer’). In the implementation, they mainly encapsulate a single mes-
sage. Setup#onSendBallot() has two contracts. Both require that the invariant
of the server holds, and they ensure that the final state of the environment depends
at most on its initial value. They differ in the functional part: the first contract
additionally requires that the voter has not voted yet. In this case, the contract
ensures that the server counted the vote correctly by incrementing the value of
Server#votesForCandidates[vote]. The second contract requires that the voter
did already vote and guarantees in this case that the server does not count the vote
again.

The complete specification (for both functional correctness and information flow
security) of the system consists of approximately 270 lines of JML.

18.3. Specification and Verification 603

public interface Environment {
//@ public static ghost \seq envState;

//@ public static model \locset rep;
//@ public static represents rep = \locset(envState);
//@ accessible rep : \locset(envState);

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState;
@*/

//@ helper
public static int untrustedInput();

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState
@ \by Environment.envState, x;
@*/

//@ helper
public static void untrustedOutput(int x);

/*@ normal_behavior
@ ensures 0 <= \result && \result < x;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState, x;
@*/

//@ helper
public static int untrustedInput(int x);

}

Listing 18.5 Declaration of the interface Environment.

18.3.2 Verification

For the functional verification of this implementation, there are 13 methods to be
considered, with a total of 150 lines of (executable) code and approximately 140 lines
of specification. The specification includes class invariants, method contracts, and
loop invariants. Given our overall experience in formal specification, a 1:1 ratio of
code against specification seems reasonable. Most method contracts can be proven
without much effort. For instance, the proof of the Voter#onSendBallot() method

604 18 Verification of an Electronic Voting System

/*@ normal_behavior
@ requires ! server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures server.votesForCandidates[vote]
@ == \old(server.votesForCandidates[vote])+1;
@ ensures server.ballotCast[id];
@ assignable server.votesForCandidates[vote],
@ server.ballotCast[id], Environment.rep;
@ determines Environment.envState \by \itself;
@ also normal_behavior
@ requires server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures \old(server.votesForCandidates[vote])
@ == server.votesForCandidates[vote];
@ ensures \old(server.ballotCast[id])
@ == server.ballotCast[id];
@ assignable Environment.rep;
@ determines Environment.envState \by \itself;
@*/

public void onSendBallot(Server server) {
Message message = new Message(id, vote);
//@ set message.source = this;
SMT.send(message, id, server);

}

Listing 18.6 Contract of Voter#onSendBallot()

consists of 2,400 proof steps and takes 6s, performed by the KeY prover without
further interaction.3

Mostly due to its unconventional loop condition, the main() method could not
be verified automatically. To prove equality of sums, we had to apply the split_sum
rule several times interactively. This rule rewrites a sum comprehension into two
comprehensions over split ranges. In addition, we have added some rules representing
lemmas dealing with bounded sums to the rule base of KeY; and we have proven
their soundness. The proof for main() finally took about 63,000 proof steps, only
ten of which were applied by hand. The computation time for the automated parts of
the proofs was 580s.4

3 Time measurements have been taken on standard desktop computer (1 processor core, 1.5GHz,
4GiB RAM, Debian/Linux).
4 Please note that it is difficult to give figures for manual proofs. Firstly, the human interaction
is necessary and therefore cannot be compared against computation time. Secondly, the time for
the remaining automated rule application is not reliable as it may include time for rules applied
automatically, but reverted by the user.

18.4. Discussion 605

Information Flow Analysis

The subsequent verification of the information flow properties of the system took
about four days. The final information flow proof consists of 23 subproofs with about
7,800 proof steps including some user interactions. The optimizations described
in Section 13.5.1 have proven to be indispensable for the scalability of the self-
composition approach.

18.4 Discussion

In the course of this chapter, we presented an approach to verify a Java implemen-
tation of an electronic voting system. Analyses of such systems mostly target the
design or the system level. Even a system like the one presented here—which can be
considered small if measured in lines of code—poses a major challenge to formal
verification at code level. Therefore, it is not surprising that the proofs were laborious.

Actually, far more effort than in conducting the interactive proofs needed to be
put into understanding the system and developing an appropriate specification. Apart
from representing the high-level design, an appropriate specification needs to be
correct w.r.t. the program. This in turn requires early proof attempts with prototype
implementations. Our approach to first verify a very basic version and to refine it
later on turned out to be helpful in this regard. It provided clear, reachable milestones.

An interesting point is that the main complexity resides in the synthetic setup
that is used to model a deployed system and not in the components that are actually
used. It is well-known that tools intended for code verification do not perform well
at system level verification. As already noted by Woodcock et al. [2008], verifying
software that was not originally produced for the purpose of verification almost
always constitutes an ill-fated endeavor. While not of the size of system described by
Woodcock et al., we experienced this phenomenon in the (original) sElect system by
Küsters et al. The starting point of our verification was a final piece of software. In
particular, specifications had to be conceived by ourselves, using only the present
source code and informal descriptions of the components’ behavior. Although there
are no guidelines to produce well-verifiable programs, we believe that adherence
to common software engineering guidelines would render formal specification and
verification more feasible.

18.4.1 A Hybrid Approach to Information Flow Analysis

In order to perform an information flow analysis on a ‘more realistic’ implementation
of the sElect system, Küsters et al. [2015] describe a hybrid approach that combines
functional verification in KeY with a lightweight information flow analysis based on
program dependency graphs [Hammer, 2009]. In order to get the JOANA tool [Graf

606 18 Verification of an Electronic Voting System

et al., 2013] to accept declassification, the original program is transformed such that
it does not have any illegal information flow by construction.

This technique is based on a simulation of noninterference in the Java code. The
secret here is only a single bit (stored in the static field Setup.secret). In the setup,
two arrays of voter objects are created according to the environment to simulate two
possible high inputs. The program aborts in case they yield nonequivalent results.
At this point in the program execution, both high inputs are incomparable modulo
the declassified property (i.e., the result of the election). Then one array is chosen,
depending on the secret, to be used in the main loop.

Since the functional property and the actual implementation did not change in
comparison to Section 18.3.2, there are only new verification targets, namely 1. the
Setup() constructor, that establishes the above described setup and 2. the so-called
‘conservative extension’ method, that is called after the election has terminated. The
extension effectively eliminates the declassification through overwriting the result,
as computed by the actual implementation, with a precomputed correct result. The
central goal was to prove that this extension is really ineffective (which is an even
stronger property than conservatism).

Both require significant interaction in proving, while having the automated prover
apply several thousands of rules in between each interactive step. Interestingly,
this is mainly due to the sheer size of the code under investigation, but not to any
particularly pattern that is hard to prove. After all, the proof for main() consists
of over 200,000 proof steps, of which some 100 were applied by hand. The labor
invested in verifying it approximately amounts to three weeks full time.

18.4.2 Related Work

To the best of our knowledge, this is the first time that preservation of privacy of votes
could be shown on the code level for a (simple) e-voting system. Systems like Bingo
Voting [Bohli et al., 2009] Civitas [Clarkson et al., 2008], Helios [Adida, 2008],
or Scantegrity [Chaum et al., 2009]—which are much more elaborate—provide
guarantees on the design level, but it is not clear whether their implementations
preserve these guarantees. Clarkson et al. [2008] mention that their Civitas system
has been checked for information flows with JIF [Myers, 1999], but it is not stated
clearly which properties have been checked.

Bär [2008] specified functional properties of a Java implementation of the Bingo
Voting system with the Java Modeling Language. These specifications have been
partially checked with the (unsound and incomplete) ESC/Java2 tool by Beck [2010].
Kiniry et al. [2006] report on the Dutch KOA remote voting system, that has been
used in the European Parliament election in 2004 for a small group of voters. In order
to specify the (offline) vote counting module with JML and subsequently analyze it
with ESC/Java2, they reimplemented the KOA system in Java.

While using ideal cryptographic functionality in code verification can be seen as
state of the art, there are other approaches that include formal reasoning about cryp-

18.4. Discussion 607

tographic guarantees [Stern, 2003]. Barthe, Grégoire, and Béguelin [2009] present
a framework in which adversaries can be modeled as probabilistic polynomially
bounded while programs. A probabilistic relational Hoare logic—extending Ben-
ton’s logic [2004]—allows one to formally reason about these adversaries, that is
implemented in the EasyCrypt system [Barthe et al., 2013b].

18.4.3 Conclusion

This case study clarified the boundaries to which verification scales with the KeY
prover. Going even further, we performed first experiments with replacing synchro-
nous by asynchronous message transfer. Again, the client and server components can
be verified with reasonable effort, but the setup is largely intractable.

Nevertheless, this case study serves as a benchmark and has pushed forward
several performance improvements in the KeY system. This includes both improve-
ments in the strategy (i.e., moving to a more tractable complexity class) and practical
implementation changes.

The e-voting case study shows that precise information flow verification tech-
niques as the ones presented in Chapter 13 are essential for the verification of
complex information flow properties, in particular for the verification of semantic
declassification. It also shows that the optimizations introduced in Section 13.5.1 are
indispensable for the feasibility of the self-composition approach.

