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3.1 Introduction

In the previous chapter, we have introduced JFOL a variant of classical first-order
logic tailored for reasoning about (single) states of Java programs (Section 2.4). Now,
we extend this logic such that we can reason about the behavior of programs, which
requires to consider not just one but several program states. As a trivial example,
consider the Java statement x++. We want to be able to express that this statement,
when started in a state where x is zero, terminates in a state where x is one.

We use an instance of dynamic logic (DL) [Harel, 1984, Harel et al., 2000, Kozen
and Tiuryn, 1990, Pratt, 1977] for this purpose, which we will call JavaDL. The
principle of dynamic logic is the formulation of assertions about program behavior
by integrating programs and formulas within a single language. To this end, the
modalities 〈p〉 and [p] can be used in formulas, where p can be any sequence of legal
program statements (i.e., DL is a multi-modal logic). These operators refer to the
final state of p and can be placed in front of any formula. The formula 〈p〉φ expresses
that the program p terminates in a state in which φ holds, while [p]φ does not demand
termination and expresses that, if p terminates, then φ holds in the final state. For
example, “when started in a state where x is zero, x++ terminates in a state where x
is one” can in DL be expressed as x .

= 0→ 〈x++〉(x .
= 1).

Nondeterministic programs can have more than one final state; but here, since
we consider Java programs to be deterministic, there is exactly one final state (if p
terminates normally, i.e., does not terminate abruptly due to an uncaught exception) or
there is no final state (if p does not terminate or terminates abruptly). “Deterministic”
here means that a program, for the same initial state and the same inputs, always
has the same behavior—in particular, the same final state (if it terminates) and the
same outputs. Assuming Java to be deterministic is justified as we do not consider
concurrency, which is the main source of nondeterminism in Java.

In exact terms, the programming language supported by JavaDL, as defined in this
chapter, is not full Java. It lacks features like concurrency, floating-point arithmetic,
and dynamic class loading, but retains the essentials of object-orientation. In fact,
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JavaDL supports all features that occur in both Java Card (version 2.2.2 or 3.0.x,
classic edition)—a Java dialect for smart cards—and Java (version 1.4). Beyond Java
Card features, JavaDL supports Java’s dynamic object creation and initialization,
assertions, the primitive types char and long, strings, multi-dimensional arrays,
the enhanced for-loop, and more. Extending JavaDL to cover Java Card-specific
extensions like transactions is the topic of Chapter 10.

Deduction in DL, and in particular in JavaDL is based on symbolic program
execution and simple program transformations and is, thus, close to a programmer’s
understanding of Java (see Section 3.5.6).

Dynamic Logic and Hoare Logic

Dynamic logic can be seen as an extension of Hoare logic. The DL formula
φ → [p]ψ is similar to the Hoare triple {φ}p{ψ}. But in contrast to Hoare logic,
the set of formulas of DL is closed under the usual logical operators: In Hoare
logic, the formulas φ and ψ are pure first-order formulas, whereas in DL they
can contain programs. Using a program in φ , for example, it is easy to specify
that an input data structure is not cyclic, which is impossible in pure first-order
logic.

A version of KeY that, for teaching purposes, supports a variant of Hoare
logic, is described in Chapter 17.

Structure of this Chapter

We first define syntax and semantics of JavaDL in Sections 3.2 and 3.3, respectively.
In Section 3.4, we add another type of modal operators to JavaDL, called updates,
that (like programs) can be used to describe state changes. Then, in Sections 3.5–3.7,
we present the JavaDL calculus, which is used in the KeY system for verifying Java
programs. Section 3.5 gives an overview, Section 3.6 describes the basic rules of
the calculus, and Section 3.7 gives an introduction to the rules for unbounded loops
and replacing method invocations by specifications. These latter rules use program
abstraction, which is described in more detail in Chapter 9.

3.2 Syntax of JavaDL

In this section, we define the syntax—and later in the chapter, semantics—of JavaDL
for a given Java program Prg. By Java program we mean, as usual, a set of source
files containing a set of class definitions. We assume that Prg can be compiled without
errors.
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It is worth noting that while the syntax and semantics of the logic are tied to a fixed
and completely known program, the calculus is “modular” and does not have this
restriction. Individual methods are soundly verified without the rest of the program
being taken into particular consideration—unless the user deliberately chooses to
forego modularity.

3.2.1 Type Hierarchies

The minimal type hierarchy TJ for JFOL was already introduced in Section 2.4.1. A
JavaDL type hierarchy for a given Java program Prg is any hierarchy T = (TSym,v)
that contains TJ as a subhierarchy (see Figure 2.3 on page 38). That is, it contains
(at least) the class and interface types from Prg in addition to the types Any, boolean,
int, Null, LocSet, Field, Heap, ⊥, >.

We map the finite-width Java integer types byte, short, int, etc. to the un-
bounded JavaDL type int ∈ TSym. This mapping does not necessarily mean that
integer overflows are ignored. Instead, the handling of overflow depends on the
semantics and rules for reasoning about the arithmetical operators of Java, which
are configurable in KeY. The KeY system allows the user to choose between several
different ways of reasoning about the Java integers: (i) ignoring integer overflows,
(ii) checking that no integer overflows can occur, and (iii) using the actual modulo
semantics of Java. The details can be found in Section 5.4 and, ultimately, in [Beckert
and Schlager, 2004, 2005].

Note that Java Card and KeY do not support the Java floating-point types float
and double, so there are also no corresponding types in TJ .

3.2.2 Signatures

In JavaDL, symbols can be either rigid or nonrigid. The intuition is that the inter-
pretation of nonrigid symbols can be changed by the program, while rigid symbols
maintain their interpretation throughout program execution. The class of nullary non-
rigid function symbols has a particular importance—we will refer to such symbols
as program variables.

Definition 3.1. Let T be a JavaDL type hierarchy for a Java program Prg. A JavaDL
signature w.r.t. T is a tuple

Σ = (FSym,PSym,VSym,ProgVSym)

where

• (FSym,PSym,VSym) is a JFOL signature, i.e., Σ includes the vocabulary
from ΣJ (see Figure 2.4);
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• the set ProgVSym of nullary nonrigid function symbols, which we call program
variables, contains all local variables a declared in Prg, where the type of
a :A ∈ ProgVSym is given by the declared Java type T as follows:

– A = T if T is a reference type,
– A = boolean if T = boolean,
– A = int if T ∈ {byte,short,int,long,char}.

• ProgVSym contains an infinite number of symbols of every typing.
• ProgVSym contains the “special” program variable

heap :Heap ∈ ProgVSym .

There is an important difference between logical variables in VSym and program
variables in ProgVSym: logical variables can be universally or existentially quanti-
fied but never occur in programs, while program variables can occur in programs but
cannot be quantified.

3.2.3 Syntax of JavaDL Program Fragments

The programs p occurring in modal operators 〈p〉 and [p] in JavaDL formulas are
written in Java, or, more precisely, in the intersection between Java and Java Card.
Thus, for full formal rigor, the definitions of JavaDL would have to include definitions
of the syntax and semantics of this subset of Java. However, this is beyond the scope
of this text. Instead, Definition 3.2 below defines the admissible programs p rather
informally, by referring to the Java language specification (JLS) [Gosling et al.,
2013].

Definition 3.2 (Legal program fragments). Let Prg be a Java program. A legal
program fragment p in the context of Prg is a sequence of Java statements, where
there are local variables a1, . . . ,an ∈ ProgVSym of Java types T1, . . . ,Tn such that
extending Prg with an additional class

class C {
static void m(T1 a1, . . ., Tn an) throws Throwable { p }

}
yields a legal program according to the rules of the Java language specification (with
certain deviations outlined below).

The purpose of the parameter declarations T1 a1, . . . , Tn an of m is to bind
free occurrences of the program variables a1, . . . ,an in p, i.e., occurrences not
bound by a declaration within p itself. For example, in the legal program fragment
“int a = b;” there is a free occurrence of the program variable b ∈ ProgVSym.
The throws Throwable clause is included to accommodate any uncaught checked
exceptions originating from p.
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The deviations from the program legality in the sense of the JLS, include the
following syntactical extensions:

• p may contain method frames in addition to normal Java statements. A method
frame is a statement of the form

method-frame(result=r,source=m(T1,...,Tn)@T,this=t):{ body }

where (a) r is a local variable (in case of a void method result=r is omitted),
(b) m(T1,...,Tn)@T is a class and method context (method m with given
signature of class T ), (c) t is an expression free of side-effects and without
method calls, and (d) body is a legal program fragment in the context of Prg.
The semantics of a method frame is that, inside body (but outside of any nested
method frames that might be contained in body), the visibility rules for the
given class and method context m(T1,...,Tn)@T are applicable, keyword this
evaluates to the value of t, and the meaning of a return statement is to assign
the returned value to r and to then exit the method frame.

• p may contain method body statements

retvar=target.m(t1,...,tn)@T;

where

– target.m(t1, . . . , tn) is a method invocation expression,
– the type T points to a class declared in Prg,
– the result of the method is assigned to retvar after return (if the method is

not void).

Intuitively, a method body statement is a shorthand notation for the precisely
identified implementation of method m(. . .) in class T (in other words, for the
unambiguously resolved corresponding method invocation). In contrast to a
normal method call where the implementation to be taken is determined by
dynamic binding, a method body statement is a call to a method declared in a
type that is precisely identified by the method body statement.

Typically, method body statements are already contained in initial proof obliga-
tions for functional contracts (Definition 8.4), while method frames are only created
during symbolic execution.

We also deviate from the JLS by relaxing its requirements in certain aspects,
among them:

• Outside method frames, p may refer to fields, methods, and classes that are not
visible in C. Inside a method frame, KeY follows the visibility rules of the JLS,
except that when resolving a method invocation by inlining, the inlined code
may refer to classes not visible in the calling method.

• We do not require definite assignment. In Java, the value of a local variable or a
final field must have a definitely assigned value when any access of its value
occurs [Gosling et al., 2013, Section 16]. In JavaDL we allow sequences of
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statements that violate this condition (the variable then has a well-defined but
unknown value).

• We do not ban unreachable statements [Gosling et al., 2013, Section 14.21]. For
example, we consider

throw new RuntimeException(); int i = 0;

a legal program fragment.

3.2.4 Syntax of JavaDL Terms and Formulas

JavaDL terms are defined in the same way as FOL terms (Definition 2.3). However,
the resulting set of terms is a strict superset of the terms of FOL, as the definitions of
terms and formulas are mutually recursive, and JavaDL admits formulas that contain
the modal operators 〈p〉 and [p] and are, thus, not part of FOL.

Definition 3.3 (Terms and Formulas of JavaDL). Let Prg be a Java program,
T a type hierarchy for Prg, and Σ a signature w.r.t. T .

The set DLTrmA of JavaDL terms of type A, for A 6=⊥, and the set DLFml of
JavaDL formulas are defined as in first-order logic (Definitions 2.3 and 2.4, page 24)
except for the following differences:

• The signature Σ now refers to the JavaDL signature.
• The mutual recursive references to TrmX and Fml are now to DLTrmX and

DLFml, respectively.
• The following fourth clause is added to the definition of formulas:

4. 〈p〉φ , [p]φ ∈ DLFml for all legal program fragments p.

A term or formula is called rigid if it does not contain any occurrences of program
variables.

We use the shorthand notation o.a for selectA(heap,o,a), where the declared
type of attribute a is A. Similarly, a[i] is shorthand for selectA(heap,a,arr(i)). These
notations are also used by the KeY pretty printer; see Section 16.2.

Definition 3.4. The definition of the sets var of variables and fv of free variables in a
term or formula is extended to JavaDL by adding the following clauses to the FOL
version of their definition (Definition 2.5):

• var(a) = /0, fv(a) = /0 for a ∈ ProgVSym
• var(〈p〉φ) = var(φ), fv(〈p〉φ) = fv(φ) for φ ∈ DLFml
• var([p]φ) = var(φ), fv([p]φ) = fv(φ) for φ ∈ DLFml
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3.3 Semantics

To define the syntax of JavaDL, we have extended first-order logic with program
variables and program modalities. On the semantic level, the difference is that JavaDL
formulas are not evaluated in a single first-order structure but in a so-called Kripke
structure, which is a collection of first-order structures.

3.3.1 Kripke Structures

Different first-order structures within a Kripke structure assign different values to
program variables. Accordingly, they are called program states or simply states. We
demand that states in the same Kripke structure differ only in the interpretation of the
nonrigid symbols (i.e., the program variables). Two different Kripke structures, on
the other hand, may differ in the choice of domain or interpretation of the predicate
and (rigid) function symbols.

Definition 3.5 (JavaDL Kripke structure). Let Prg be a Java program, T a type
hierarchy for Prg and Σ a signature w.r.t. T . A JavaDL Kripke structure for Σ is a
tuple

K = (S ,ρ)

consisting of

• an infinite set S of first-order structures over Σ (Definition 2.13), which we will
call states, such that:

– Any two states s1,s2 ∈S coincide in their domain and in the interpretation
of predicate and function symbols.

– S is closed under the above property, i.e., any FOL structure coinciding
with the states in S in the domain and the interpretation of the predicate
and function symbols is also in S .

• a function ρ that associates with every legal program fragment p a transition
relation ρ(p)⊆S ×S such that (s1,s2) ∈ ρ(p) iff p, when started in s1, ter-
minates normally in s2 (i.e., not by throwing an exception). (We consider Java
programs to be deterministic, so for all legal program fragments p and all s1 ∈S ,
there is at most one s2 such that (s1,s2) ∈ ρ(p).)

Here, we do not give a formal definition of the transition relation ρ and, thus, no
formalization of the semantics of Java. Instead, we treat the function ρ as a black
box that captures the behavior of the legal program fragments p and is informally
described by the Java Language Specification [Gosling et al., 2013]. We do, however,
explicitly formalize the behavior of Java programs on the level of the calculus, in the
form of symbolic execution rules (Section 3.6).

The fact that all states of a JavaDL Kripke structure K share a common domain
is sometimes referred to as the constant domain assumption. This simplifies, for
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example, reasoning about quantifiers in the presence of modal operators and updates.
On the other hand, the Java programs appearing in formulas may allocate new objects
(i.e., elements of DObject) that did not exist previously. This apparent contradiction
is resolved with the help of the special field created: given a heap h ∈ DHeap and an
object o ∈ DObject, the object o is considered “created” in h in the sense of Java if
and only if created is set to true for this object in h, i.e., if h

(
o, I(created)

)
= tt. An

allocation statement in a program is understood as choosing a previously noncreated
object in DObject, and setting its created field to true in the heap. The alternative of
abandoning the constant domain assumption has been investigated by Ahrendt et al.
[2009b].

3.3.2 Semantics of JavaDL Terms and Formulas

Similar to the first-order case, we inductively define the semantics of JavaDL terms
and formulas. Since program variables can have different meanings in different states,
the valuation function is parameterized with a Kripke structure K and a state s
in K .

The semantics of terms and formulas without modalities matches that of first-order
logic.

Definition 3.6 (Semantics of JavaDL terms and formulas). Let Prg be a Java
program, T a type hierarchy for Prg, Σ a signature w.r.t. T , K = (S ,ρ) a Kripke
structure for Σ , s ∈S a state, and β : VSym→ D a variable assignment.

For every JavaDL term t ∈ DLTrmA, we define its evaluation by

valK ,s,β (t) = vals,β (t) ,

where vals,β is defined as in the first-order case (Definition 2.15).
For every JavaDL formula φ ∈ Fml, we define when φ is considered to be true with

respect to K ,s,β , which is denoted with (K ,s,β ) |= φ , by Clauses 1–9 as shown
in the definition of the semantics of FOL formulas (Definition 2.16)—with M = s
and (K ,s,β ) replaced for (M,β )—-in combination with the two new clauses:

10 (K ,s,β ) |= [p]φ iff there is no s′ with (s,s′) ∈ ρ(p) or
(K ,s′,β ) |= φ for s′ with (s,s′) ∈ ρ(p)

11 (K ,s,β ) |= 〈p〉φ iff there is an s′ with (s,s′) ∈ ρ(p) and
(K ,s′,β ) |= φ for s′ with (s,s′) ∈ ρ(p)

As said above, we consider Java programs to be deterministic, such that there is at
most one s′ with (s,s′) ∈ ρ(p) for each s ∈S .

Finally, we define what it means for a JavaDL formula to be satisfiable, respec-
tively valid. A first-order formula is satisfiable (respectively valid) if it holds in some
(all) model(s) for some (all) variable assignment(s). Similarly, a JavaDL formula is
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satisfiable (respectively valid) if it holds in some (all) state(s) of some (all) Kripke
structure(s) K for some (all) variable assignment(s).

Definition 3.7. Let Prg be a Java program, T a type hierarchy for Prg, Σ a signature
w.r.t. T , and φ ∈ Fml a formula.

φ is satisfiable if there is a Kripke structure K = (S ,ρ), a state s ∈S and a
variable assignment β such that (K ,s,β ) |= φ .

φ is logically valid, denoted by |= φ , if (K ,s,β ) |= φ for all Kripke struc-
tures K = (S ,ρ), all states s ∈S , and all variable assignments β .

3.4 Describing Transitions between States: Updates

3.4.1 Syntax and Semantics of JavaDL Updates

JavaDL extends classical logic with another syntactical category besides modal
operators with program fragments, namely updates. Like program fragments, updates
denote state changes. The difference between updates and program fragments is that
updates are a simpler and more restricted concept. For example, updates always
terminate, and the expressions occurring in updates never have side effects.

Definition 3.8 (Updates). Let Prg be a Java program, T a type hierarchy for Prg,
and Σ a signature for T . The set Upd of updates is inductively defined by:

• (a := t) ∈ Upd for each program variable symbol a : A ∈ ProgVSym and each
term t ∈ DLTrmA′ such that A′ v A.

• skip ∈ Upd.
• (u1 ||u2) ∈ Upd for all updates u1,u2 ∈ Upd.
• ({u1} u2) ∈ Upd for all updates u1,u2 ∈ Upd.

An expression of the form {u}, where u ∈ Upd, is called an update application.

Intuitively, an elementary update a := t assigns the value of the term t to the
program variable a. The empty update that does not change anything is denoted by
skip. A parallel update u1 ||u2 executes the subupdates u1 and u2 in parallel (as
parallel composition is associative, e.g., (u1 ‖(u2 ‖u3)) can be written as u1 ‖u2 ‖u3).
The semantics of {u} x, i.e., prefixing an expression x with an update application, is
that x is to be evaluated in the state produced by the update u (the expression x can
be a term, a formula, or another update). The precise definition of the semantics of
updates is given in Definition 3.11 below.

We extend the definition of occurring and free variables to include updates, which
is straightforward.

Definition 3.9. In extension of Definitions 2.5 and 3.4:
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var(a := t) = var(t) fv(a := t) = fv(t)
var(skip) = /0 fv(skip) = /0
var(u1 ||u2) = var(u1)∪ var(u2) fv(u1 ||u2) = fv(u1)∪ fv(u2)
var({u} x) = var(u)∪ var(x) fv({u} x) = fv(u)∪ fv(x)

for a ∈ ProgVSym, t ∈ DLTrm> u,u1,u2 ∈ Upd, x ∈ DLTrm>∪DLFml∪Upd.

To include updates, we extend the definitions of terms and formulas of JavaDL
(Definition 3.3) with additional clauses:

Definition 3.10 (Terms and formulas of JavaDL with updates). The definition
of terms (Definition 3.3 and Definition 2.3) is extended with a fourth clause:

4. {u} t ∈ DLTrmA for all updates u ∈ Upd and all terms t ∈ DLTrmA.

The definition of formulas (Definition 3.3) is extended with a fifth clause:

5. {u} φ ∈ DLFml for all formulas φ ∈ DLFml and updates u ∈ Upd.

Updates transform one state into another. The meaning of {u}t, where u is an
update and t is a term, a formula, or an update, is that t is evaluated in the state
produced by u. Note the last-win semantics of parallel updates u1 ‖u2: if there is a
“clash,” where u1 and u2 attempt to assign conflicting values to a program variable,
then the value written by u2 prevails.

Definition 3.11 (Semantics of JavaDL updates). Let Prg be a Java program, T a
type hierarchy for Prg, Σ a signature for T , K a Kripke structure for Σ , s ∈S a
state, and β : VSym→ D a variable assignment.

The valuation function valK ,s,β : Upd→ (S →S ) is defined as follows:

valK ,s,β (a := t)(s′)(b) =

{
valK ,s,β (t) if b= a
s′(b) otherwise

for all s′ ∈S , b ∈ ProgVSym
valK ,s,β (skip)(s

′) = s′ for all s′ ∈S

valK ,s,β (u1 ||u2)(s′) = valK ,s,β (u2)(valK ,s,β (u1)(s′)) for all s′ ∈S

valK ,s,β ({u1} u2) = valK ,s′,β (u2) where s′ = valK ,s,β (u1)(s)

Moreover, the definition of the semantics of JavaDL terms and formulas (Defini-
tion 3.6) is extended for terms with the clause

valK ,s,β ({u} t) = valK ,s′,β (t) where s′ = valK ,s,β (u)(s)

and it is extended for formulas with the clause

(K ,s,β ) |= valK ,s,β ({u} φ) iff (K ,s′,β ) |= φ where s′ = valK ,s,β (u)(s)
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Table 3.1 Simplification rules for updates

{. . . ‖a := t1 ‖ . . . ‖a := t2 ‖ . . .} t dropUpdate1

 {. . . ‖skip‖ . . . ‖a := t2 ‖ . . .} t

where t ∈ DLTrmA∪DLFml∪Upd

{. . . ‖a := t ′ ‖ . . .} t {. . . ‖skip‖ . . .} t dropUpdate2

where t ∈ DLTrmA∪DLFml∪Upd, a 6∈ fpv(t)

{u} {u′} t {u‖{u} u′} t seqToPar

where t ∈ DLTrmA∪DLFml∪Upd

{u ||skip} t {u} t where t ∈ DLTrmA∪DLFml∪Upd parallelWithSkip1

{skip ||u} t {u} t where t ∈ DLTrmA∪DLFml∪Upd parallelWithSkip2

{skip} t t where t ∈ DLTrmA∪DLFml∪Upd applySkip

{u} x x where x ∈ VSym∪{true, false} applyOnRigid1

{u} f (t1, . . . , tn) f ({u}t1, . . . ,{u}tn) where f ∈ FSym∪PSym applyOnRigid2

{u} (if φ then t1 else t2) if {u} φ then {u} t1 else {u} t2 applyOnRigid3

{u} ¬φ  ¬{u} φ applyOnRigid4

{u} (φ1 •φ2) {u} φ1 •{u} φ2 where • ∈ {∧,∨,→,↔} applyOnRigid5

{u}QAx;φ  QAx;{u} φ where Q ∈ {∀,∃}, x 6∈ fv(u) applyOnRigid6

{u} (a := t) a := {u} t applyOnRigid7

{u} (u1 ‖u2) ({u} u1)‖({u} u2) applyOnRigid8

{a := t} a t applyOnTarget

3.4.2 Update Simplification Rules

The part of the JavaDL calculus that deals with simplification of updates is shown in
Table 3.1.

The dropUpdate1 rule simplifies away an ineffective elementary subupdate of a
larger parallel update: if there is an update to the same program variable a further to
the right of the parallel composition, then this second elementary update overrides
the first due to the last-win semantics of parallel updates (Definition 3.11).

The dropUpdate2 rule allows dropping an elementary update a := t ′ where the
term, formula, or update in scope of the update cannot depend on the value of
the program variable a, because it does not contain any free occurrences of a.
A free occurrence of a program variable is any occurrence, except for an oc-
currence inside a program fragment p that is bound by a declaration within p.
In addition to explicit occurrences, we consider program fragments p to always
contain an implicit free occurrence of the program variable heap. The function
fpv :DLTrmA∪DLFml∪Upd→ 2ProgVSym is defined accordingly. For example, we
have fpv([int a = b;](b .

= c)) = {b,c,heap}. Java’s rules for definite assignment
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[Gosling et al., 2013, Chapter 16] ensure that within a program fragment p, a declared
program variable (such as a in the example) is always written before being read, and
that the behavior of p thus cannot depend on its initial value.

The seqToPar rule converts a cascade of two update applications—which corre-
sponds to sequential execution of the two updates—into the application of a single
parallel update. Due to the last-win semantics for parallel updates, this is possible by
applying the first update to the second, and replacing the sequential composition by
parallel composition.

The rules parallelWithSkipi and applySkip remove the effect-less skip update
from parallel updates or apply it as identity to any term, formula, or update.

The remaining rules are responsible for applying updates to terms, formulas and
(other) updates as substitutions. The various applyOnRigid rules propagate an update
to the subterms below a (rigid) operator. Ultimately, the update can either be simpli-
fied away with dropUpdate2, or it remains as an elementary update a := t applied to
the target program variable a itself. In the latter case, the term t is substituted for a
by the applyOnTarget rule.

The only case not covered by the rules in Table 3.1 is that of applying an update
to a modal operator, as in {u} [p]φ or {u} 〈p〉φ . For these formulas, the program p
must first be eliminated using the symbolic execution rules. Only afterwards can the
resulting update be applied to φ .

3.5 The Calculus for JavaDL

The calculus for JavaDL follows the same basic logical principles as the calculus
for first-order logic (FOL) introduced in Chapter 2. We do thus not repeat them here
but only explain extensions and restrictions in comparison to the FOL case. The
remaining bulk of this chapter is concerned with explaining in detail how the JavaDL
calculus formalizes symbolic execution of Java programs.

3.5.1 JavaDL Rule Schemata and First-Order Rules

Since first-order logic (FOL) is part of JavaDL, all the axioms and rule schemata of
the first-order calculus introduced in Chapter 2 are also part of the JavaDL and its
calculus. This inclusion pertains, inter alia, Figure 2.1 (classical first-order rules),
Figure 2.2 (equality rules), Figure 2.5 (integer axioms and rules), and Figure 2.8
(axioms about types). As a consequence, these rules can be applied to JavaDL
sequents—even if the formulas to which they are applied are not purely first-order.

Compared to Section 2.2.2 on FOL calculus, we do simplify and generalize the
rule schema notation in two ways, though. First, we leave out the explicit context
(in form of formula sets Γ and ∆ ), which is added on-the-fly during rule application.
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Second, we extend the notion of context in that, when writing a rule schema, an
update that is common to all premisses can be left out as well.

Definition 3.12. If
φ 1

1 , . . . ,φ
1
m1

=⇒ ψ1
1 , . . . ,ψ

1
n1

...
φ k

1 , . . . ,φ
k
mk

=⇒ ψk
1 , . . . ,ψ

k
nk

φ1, . . . ,φm =⇒ ψ1, . . . ,ψn

is an instance of a rule schema, then

Γ , U φ 1
1 , . . . ,U φ 1

m1
=⇒U ψ1

1 , . . . ,U ψ1
n1
, ∆

...
Γ , U φ k

1 , . . . ,U φ k
mk

=⇒U ψk
1 , . . . ,U ψk

nk
, ∆

Γ , U φ1, . . . ,U φm =⇒U ψ1, . . . ,U ψn, ∆

is an inference rule of our DL calculus, where U is the application of an arbitrary
syntactic update (it may be empty), and Γ ,∆ are finite sets of context formulas.

If, however, the symbol (∗) is added to the rule schema, the context Γ ,∆ ,U must
be empty, i.e., only instances of the schema itself are inference rules. Later in the
book we will present a few rules, e.g., the loop invariant rule (Section 3.7.2), where
the context cannot be omitted.

Example 3.13. Consider, for example, the rule impRight, which made a first appear-
ance in Figure 2.1 on page 28. In the just introduced notation, the rule schema for
this rule takes the following form:

impRight
φ =⇒ ψ

=⇒ φ → ψ

When this schema is instantiated for JavaDL, a context consisting of Γ ,∆ and an
update U can be added, and the schema variables φ ,ψ can be instantiated with
formulas that are not purely first-order. For example, the following is an instance of
impRight:

x .
= 1, {x := 0}(x .

= y) =⇒{x := 0}〈m();〉(y .
= 0)

x .
= 1 =⇒{x := 0}(x .

= y→ 〈m();〉(y .
= 0))

where Γ = (x .
= 1), ∆ is empty, and the context update is U = {x := 0}.

Due to the presence of modalities and program variables, which do not exist in
purely first-order formulas, different parts of a formula may have to be evaluated in
different states. Therefore, the application of some first-order rules that rely on the
identity of terms in different parts of a formula need to be restricted. That affects
rules for universal quantification and equality rules.
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3.5.1.1 Restriction of Rules for Universal Quantification

The rules for universal quantification have the following form:

allLeft
∀x.φ , [x/t](φ) =⇒
∀x.φ =⇒

exRight
=⇒∃x.φ , [x/t](φ)

=⇒∃x.φ
where t ∈ DLTrmA′ is a rigid ground term

whose type A′ is a subtype of the type A of x

In the first-order case, the term t that is instantiated for the quantified variable x can
be an arbitrary ground term. In JavaDL, however, we have to add the restriction that
t is a rigid ground term (Definition 3.3). The reason is that, though an arbitrary value
can be instantiated for x as it is universally quantified, all occurrences of x must have
the same value in each individual instantiation.

Example 3.14. The formula ∀x.(x .
= 0→ 〈i++;〉(x .

= 0)) is logically valid, but in-
stantiating the variable x with the nonrigid program variable i is wrong as it leads to
the unsatisfiable formula i .

= 0→ 〈i++;〉(i .
= 0)).

In practice, it is often very useful to instantiate a universally quantified variable x
with the value of a nonrigid term t. That, however, is not easily possible as a quantified
variable, which is a rigid term, must not be instantiated with a nonrigid term. To
solve that problem, one can add the logically valid formula ∃y.(y .

= t) to the left of
the sequent, Skolemize that formula, which yields csk

.
= t, and then instantiate x with

the rigid constant csk.
Rules for existential quantification do not have to be restricted because they

introduce rigid Skolem constants anyway.

3.5.1.2 Restriction of Rules for Equalities

The equality rules (Figure 2.2) are part of the JavaDL calculus but an equality t1
.
= t2

may only be used for rewriting if

• both t1 and t2 are rigid terms (Definition 3.3), or
• the equality t1

.
= t2 and the occurrence of ti that is being replaced are (a) not in

the scope of two different program modalities and (b-1) not in the scope of two
different updates or (b-2) in the scope of syntactically identical updates (in fact,
it is also sufficient if the two updates are only semantically identical, i.e., have
the same effect). This same-update-level property is explained in more detail in
Section 4.3.1.

Example 3.15. The sequent

x .
= v+1 =⇒{v := 2}(x .

= 3)

is satisfiable, but not valid. According to the above restriction on the equality rule,
the equality x .

= v+1 must not be applied to the occurrence of x on the right side of
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the sequent: (a) The terms are nonrigid; and (b) while the equation is not in the scope
of any update, the occurrence of x is below an update.

The example demonstrates that this restriction is crucial for soundness of the
calculus as, if we allow the equality to be applied, this would lead to the valid sequent

x .
= v+1 =⇒{v := 2}(v+1 .

= 3) .

Thus, we would have turned an invalid into a valid sequent.
In the sequent

{v := 2}(x .
= v+1) =⇒{v := 2}(x .

= 3) ,

however, both the equality and the term being replaced occur in the scope of identical
updates and, thus, the equality rule can be applied.

3.5.2 Nonprogram Rules for Modalities

The JavaDL calculus contains some rules that apply to modal operators and, thus,
are not first-order rules but that are neither related to a particular Java construct.

The most important representatives of this rule class are the following two rules
for handling empty modalities:

emptyDiamond
=⇒ φ

=⇒ 〈〉φ
emptyBox

=⇒ φ

=⇒ [ ]φ

The rule

diamondToBox
=⇒ [p]φ =⇒ 〈p〉true

=⇒ 〈p〉φ

relates the diamond modality to the box modality. It allows one to split a total
correctness proof into a partial correctness proof and a separate proof for termination.
Note, that this rule is only sound for deterministic programming languages like Java.

3.5.3 Soundness and Completeness of the Calculus

3.5.3.1 Soundness

The most important property of the JavaDL calculus is soundness, i.e., only valid
formulas are derivable.

Proposition 3.16 (Soundness). If a sequent Γ =⇒ ∆ is derivable in the JavaDL
calculus (Definition 2.10), then it is valid, i.e., the formula

∧
Γ →

∨
∆ is logically

valid (Definition 3.7).
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It is easy to show that the whole calculus is sound if and only if all its rules are
sound. That is, if the premisses of any rule application are valid sequents, then the
conclusion is valid as well.

Given the soundness of the existing core rules of the JavaDL calculus, the user
can add new rules, whose soundness must then be proven w.r.t. the existing rules (see
Section 4.4).

Validating the Soundness of the JavaDL Calculus

So far, we have no intention of formally proving the soundness of the JavaDL
calculus, i.e., the core rules that are not user-defined (the soundness of user-
defined rules can be verified within the KeY system, see Section 4.4). Doing
so would first require a formal specification of the Java language. No official
formal semantics of Java is available though. Furthermore, proving soundness
of the calculus requires the use of a higher-order theorem proving tool, and it
is a tedious task due to the high number of rules. Resources saved on a formal
soundness proof were instead spent on further improvement of the KeY system.
We refer to [Beckert and Klebanov, 2006] for a discussion of this policy and
further arguments in its favor. On the other hand, the KeY project performs
cross-verification against other Java formalizations to ensure the faithfulness of
the calculus.

One such effort compares the KeY calculus with the Bali semantics [von
Oheimb, 2001], which is a Java Hoare logic formalized in Isabelle/HOL. KeY
rules are translated manually into Bali rules. These are then shown sound with
respect to the rules of the standard Bali calculus. The published result [Trentel-
man, 2005] describes in detail the examination of the rules for local variable
assignment, field assignment, and array assignment.

Another validation was carried out by Ahrendt et al. [2005]. A reference Java
semantics from [Farzan et al., 2004] was used, which is formalized in Rewriting
Logic [Meseguer and Rosu, 2004] and mechanized in the input language of the
MAUDE system. This semantics is an executable specification, which together
with MAUDE provides a Java interpreter. Considering the nature of this semantics,
we concentrated on using it to verify our program transformation rules. These
are rules that decompose complex expressions, take care of the evaluation order,
etc. (about 45% of the KeY calculus). For the cross-verification, the MAUDE
semantics was “lifted” in order to cope with schematic programs like the ones
appearing in calculus rules. The rewriting theory was further extended with
means to generate valid initial states for the involved program fragments, and to
check the final states for equivalence. The result is used in automated validation
runs, which is beneficial, since the calculus is constantly extended with new
features.

Furthermore, the KeY calculus has been tested against the compiler test suite
Jacks (part of the Java compiler Jikes). The suite is a collection of intricate
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programs covering many difficult features of the Java language. These programs
are symbolically executed with the KeY calculus and the output is compared
to the reference provided by the suite. To what extent testing of verification
systems is able to provide evidence for the correctness of the rule base has been
examined in [Beckert et al., 2013].

3.5.3.2 Relative Completeness

Ideally, one would like a program verification calculus to be able to prove all state-
ments about programs that are true, which means that all valid sequents should be
derivable. That, however, is impossible because JavaDL includes first-order arith-
metic, which is already inherently incomplete as established by Gödel’s Incomplete-
ness Theorem [Gödel, 1931] (see the box on page 40). Another, equivalent, argument
is that a complete calculus for JavaDL would yield a decision procedure for the
Halting Problem, which is well-known to be undecidable. Thus, a logic like JavaDL
cannot ever have a calculus that is both sound and complete.

Still, it is possible to define a notion of relative completeness [Cook, 1978], which
intuitively states that the calculus is complete “up to” the inherent incompleteness
in its first-order part. A relatively complete calculus contains all the rules that are
necessary to prove valid program properties. It only may fail to prove such valid
formulas whose proof would require the derivation of a nonprovable first-order
property (being purely first-order, its provability would be independent of the program
part of the calculus).

Proposition 3.17 (Relative Completeness). If a sequent Γ =⇒ ∆ is valid, i.e., the
formula

∧
Γ →

∨
∆ is logically valid (Definition 3.7), then there is a finite set ΓFOL

of logically valid first-order formulas such that the sequent

ΓFOL,Γ =⇒ ∆

is derivable in the JavaDL calculus.

The standard technique for proving that a program verification calculus is relatively
complete [Harel, 1979] hinges on a central lemma expressing that for all JavaDL
formulas there is an equivalent purely first-order formula.

A completeness proof for the object-oriented dynamic logic ODL [Beckert and
Platzer, 2006], which captures the essence of JavaDL, is given by Platzer [2004].
ODL captures the essence of JavaDL, consolidating its foundational principles into a
concise logic. The ODL programming language is a While language extended with
an object type system, object creation, and nonrigid symbols that can be used to
represent program variables and object attributes. However, it does not include the
many other language features, built-in operators, etc. of Java.
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3.5.4 Schema Variables for Program Constructs

The schema variables used in rule schemata are all assigned a kind that determines
which class of concrete syntactic elements they represent. In the following sections,
we often do not explicitly mention the kinds of schema variables but use the name of
the variables to indicate their kind. Table 3.2 gives the correspondence between names
of schema variables that represent pieces of Java code and their kinds. In addition,
we use the schema variables φ ,ψ to represent formulas and Γ ,∆ to represent sets of
formulas. Schema variables of corresponding kinds occur also in the taclets used to
implement rules in the KeY system (see Section 4.2).

Table 3.2 Correspondence between names of schema variables and their kinds

π nonactive prefix of Java code (Section 3.5.5)
ω “rest” of Java code after the active statement (Section 3.5.5)
p, q Java code (arbitrary sequence of statements)
e arbitrary Java expression
se simple expression, i.e., any expression whose evaluation, a priori, does not have

any side-effects. It is defined as one of the following:
(a) a local variable
(b) this.a, i.e., an access to an instance attribute via the target expression

this (or, equivalently, no target expression)
(c) an access to a static attribute of the form t.a, where the target expression t

is a type name or a simple expression
(d) a literal
(e) a compile-time constant
(f) an instanceof expression with a simple expression as the first argument
(g) a this reference
(h) expressions of types LocSet (location sets), Seq (finite sequences) etc.,

provided that their subexpressions are simple expressions (e.g., union(r,s)
is a simple expression if r,s are simple).

An access to an instance attribute o.a is not simple because a
NullPointerException may be thrown

nse nonsimple expression, i.e., any expression that is not simple (see above)
lhs simple expression that can appear on the left-hand-side of an assignment. This

amounts to the items (a)–(c) from above
v, v0, . . . local program variables
a attribute
l label
args argument tuple, i.e., a tuple of expressions
cs sequence of catch clauses
mname name of a method
T type expression
C name of a class or interface

If a schema variable T representing a type expression is indexed with the name of
another schema variable, say e, then it only matches the Java type of the expression
with which e is instantiated. For example, “Tw v = w” matches the Java code
“int i = j” if and only if the type of j is int (and not, e.g., byte).
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3.5.5 The Active Statement in a Modality

The rules of our calculus operate on the first active statement p in a modality 〈πpω〉
or [πpω]. The nonactive prefix π consists of an arbitrary sequence of opening
braces “{”, labels, beginnings “try{” of try-catch-finally blocks, and begin-
nings “method-frame(. . .){” of method invocation blocks. The prefix is needed
to (i) keep track of the blocks that the (first) active command is part of, such that
the abruptly terminating statements throw, return, break, and continue can be
handled appropriately; and (ii) to correctly resolve field and method bindings.

The postfix ω denotes the “rest” of the program, i.e., everything except the
nonactive prefix and the part of the program the rule operates on (in particular,
ω contains closing braces corresponding to the opening braces in π). For example, if
a rule is applied to the following Java block operating on its first active command
i=0;, then the nonactive prefix π and the “rest” ω are the indicated parts of the
block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

No Rule for Sequential Composition

In versions of dynamic logic for simple programming languages, where no
prefixes are needed, any formula of the form 〈pq〉φ can be replaced by 〈p〉〈q〉φ .
In our calculus, decomposing of 〈πpqω〉φ into 〈πp〉〈qω〉φ is not possible (un-
less the prefix π is empty) because πp is not a valid program; and the formula
〈πpω〉〈πqω〉φ cannot be used either because its semantics is in general different
from that of 〈πpqω〉φ .

3.5.6 The Essence of Symbolic Execution

Our calculus works by reducing the question of a formula’s validity to the question
of the validity of several simpler formulas. Since JavaDL formulas contain programs,
the JavaDL calculus has rules that reduce the meaning of programs to the meaning
of simpler programs. For this reduction we employ the technique of symbolic execu-
tion [King, 1976]. Symbolic execution in JavaDL resembles playing an accordion:
you make the program longer (though simpler) before you can make it shorter.

For example, to find out whether the sequent1

=⇒ 〈o.next.prev=o;〉o.next.prev .
= o

1 The expression o.next.prev is shorthand for selectA(heap,selectA(heap,o,next),prev); see
Section 3.2.4 and 16.2.
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is valid, we symbolically execute the Java code in the diamond modality. At first, the
calculus rules transform it into an equivalent but longer—albeit in a sense simpler—
sequence of statements:

=⇒ 〈ListEl v; v=o.next; v.prev=o;〉o.next.prev .
= o .

This way, we have reduced the reasoning about the expression o.next.prev=o to
reasoning about several simpler expressions. We call this process unfolding, and it
works by introducing fresh local variables to store intermediate computation results.

Now, when analyzing the first of the simpler assignments (after removing the
variable declaration), one has to consider the possibility that evaluating the expression
o.next may produce a side effect if o is null (in that case an exception is thrown).
However, it is not possible to unfold o.next any further. Something else has to be
done, namely a case distinction. This results in the following two new goals:

o 6 .= null=⇒{v := o.next}〈v.prev=o;〉o.next.prev .
= o

o .
= null=⇒ 〈throw new NullPointerException();〉o.next.prev .

= o

Thus, we can state the essence of symbolic execution: the Java code in the formulas
is step-wise unfolded and replaced by case distinctions and syntactic updates.

Of course, it is not a coincidence that these two ingredients (case distinctions and
updates) correspond to two of the three basic programming constructs. The third
basic construct are loops. These cannot in general be treated by symbolic execution,
since using symbolic values (as opposed to concrete values), the number of loop
iterations is unbounded. Symbolically executing a loop, which is called “unwinding,”
is useful and even necessary, but unwinding cannot eliminate a loop in the general
case. To treat arbitrary loops, one needs to use induction or loop invariants (see
Section 3.7.2). (A different method for treating certain loops of a simple, uniform
structure is described in [Gedell and Hähnle, 2006].)

Method invocations can be symbolically executed, replacing a method call by
the method’s implementation. However, it is often useful to instead use a method’s
contract so that it is only symbolically executed once—during the proof that the
method satisfies its contract—instead of executing it for each invocation.

3.5.7 Components of the Calculus

Our JavaDL calculus has several major components, which are described throughout
this book. However, since the calculus, as implemented in the KeY system, consists
of hundreds of rules, we cannot list them all in this book. Instead, we give typical
examples for the different rule types and classes.

The major components of the JavaDL calculus are:

1. Nonprogram rules, i.e., rules that are not related to particular program constructs.
This component contains first-order rules (see Chapter 2), which include rules
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for reasoning about heaps; rules for data-types, such as integers, sequences and
strings (see Chapter 5); rules for modalities (e.g., rules for empty modalities);
and the induction rule.

2. Update simplification rules (see Section 3.4.2).
3. Rules for symbolic execution of programs. These rules work towards reduc-

ing/simplifying the program and replacing it by a combination of case distinc-
tions (proof branches) and sequences of updates. These rules always (and only)
apply to the first active statement. Note that a “simpler” program may be syntac-
tically longer; it is simpler in the sense that expressions are not as deeply nested
or have less side-effects.
When presenting these rules, we usually only give the rule versions for the
diamond modality 〈·〉. The rules for box modality [·] are mostly the same—
notable exceptions are the rules for handling abrupt termination (Section 3.6.7)
and the loop invariant rule that, in fact, belongs to the next component.

4. Rules for program abstraction and modularization. This component contains the
loop invariant rule for reasoning about loops for which no fixed upper bound on
the number of iterations exists and the rules that replace a method invocation by
the method’s contract (Section 3.7, see also Chapter 9).

Component 3 is the core for handling Java programs occurring in formulas. These
rules can be applied automatically, and they can do everything needed for handling
programs except evaluating loops and using method specifications.

The overall strategy for proving a formula containing a program is to use the rules
in Component 3, interspersed with applications of rules in Component 4 for handling
loops and methods, to step-wise eliminate the program and replace it by updates and
case distinctions. After each step, Component 2 is used to simplify/eliminate updates.
The final result of this process are sequents containing pure first-order formulas.
These are then handled by Component 1.

The symbolic execution process is, for the most part, done automatically by the
KeY system. Usually, only handling loops and methods may require user interaction.
Also, for solving the first-order problems that are left at the end of the symbolic
execution process, the KeY system often needs support from the user (or from the
decision procedures integrated into KeY, see Chapter 15).

3.6 Rules for Symbolic Execution of Java Programs

3.6.1 The Basic Assignment Rule

In Java—like in other object-oriented programming languages—different object
variables can refer to the same object. This phenomenon, called aliasing, causes
serious difficulties for handling assignments in a calculus (a similar problem occurs
with syntactically different array indices that may refer to the same array element).
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For example, whether or not the formula o1.a .
= 1 still holds after the execution of

the assignment “o2.a = 2;” depends on whether or not o1 and o2 refer to the same
object. Therefore, Java assignments cannot be symbolically executed by syntactic
substitution, as done, for instance, in classical Hoare Logic. Solving this problem
naively—by doing a case split—is inefficient and leads to heavy branching of the
proof tree.

In the JavaDL calculus we use a different solution. It is based on the concept of
updates, which can be seen as “semantic substitutions.” Evaluating {loc := value}φ
in a state is equivalent to evaluating φ in a modified state where loc evaluates
to value, i.e., loc has been “semantically substituted” with value (see Section 3.4 for
a discussion and a comparison of updates to assignments and substitutions).

The KeY system uses special simplification rules to compute the result of applying
an update to terms and formulas that do not contain programs (see Section 3.4.2).
Computing the effect of an update to a formula 〈p〉φ is delayed until p has been
symbolically executed using other rules of the calculus. Thus, case distinctions
are not only delayed but can often be avoided altogether, since (a) updates can be
simplified before their effect has to be computed, and (b) their effect is computed
when a maximal amount of information is available (namely after the symbolic
execution of the whole program).

The basic assignment rule thus takes the following simple form:

assignment
=⇒{loc := value}〈π ω〉φ
=⇒ 〈π loc = value; ω〉φ

That is, it just turns the assignment into an update. Of course, this does not solve the
problem of computing the effect of the assignment. This problem is postponed and
solved later by the rules for simplifying updates.

Furthermore—and this is important—this “trivial” assignment rule is correct only
if the expressions loc and value satisfy certain restrictions. The rule is only applicable
if neither the evaluation of loc nor that of value can cause any side effects. Otherwise,
other rules have to be applied first to analyze loc and value. For example, those other
rules would replace the formula 〈x = ++i;〉φ with 〈i = i+1; x = i;〉φ , before
the assignment rule can be applied to derive first {i := i+1}〈x = i;〉φ and then
{i := i+1}{x := i}〈〉φ .

3.6.2 Rules for Handling General Assignments

In the following we use the notion (program) location to refer to local program
variables, instance or static fields and array elements.

There are four classes of rules in the JavaDL calculus for treating general assign-
ment expressions (that may have side-effects). These classes—corresponding to steps
in the evaluation of an assignment—are induced by the evaluation order rules of
Java:
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1. Unfolding the left-hand side of the assignment.
2. Saving the location.
3. Unfolding the right-hand side of the assignment.
4. Generating an update.

Of particular importance is the fact that though the right-hand side of an assignment
can change the variables appearing on the left-hand side, it cannot change the location
scheduled for assignment, which is saved before the right-hand side is evaluated.

3.6.2.1 Step 1: Unfolding the Left-Hand Side

In this first step, the left-hand side of an assignment is unfolded if it is a nonsimple
expression, i.e., if its evaluation may have side-effects. One of the following rules is
applied depending on the form of the left-hand side expression. In general, these rules
work by introducing a new local variable v0, to which the value of a subexpression is
assigned.

If the left-hand side of the assignment is a nonatomic field access—which is to
say it has the form nse.a, where nse is a nonsimple expression—then the following
rule is used:

assignmentUnfoldLeft
=⇒ 〈π Tnse v0=nse; v0.a=e; ω〉φ

=⇒ 〈π nse.a=e; ω〉φ

Applying this rule yields an equivalent but simpler program, in the sense that the two
new assignments have simpler left-hand sides, namely a local variable or an atomic
field access.

Unsurprisingly, in the case of arrays, two rules are needed, since both the array
reference and the index have to be treated. First, the array reference is analyzed:

assignmentUnfoldLeftArrayReference

=⇒ 〈π Tnse v0 = nse; v0[e]=e0; ω〉φ
=⇒ 〈π nse[e]=e0; ω〉φ

Then, the rule for analyzing the array index can be applied:

assignmentUnfoldLeftArrayIndex

=⇒ 〈π Tv va = v; Tnse v0 = nse; va[v0]=e; ω〉φ
=⇒ 〈π v[nse]=e; ω〉φ

3.6.2.2 Step 2: Saving the Location

After the left-hand side has been unfolded completely (i.e., has the form v, v.a or
v[se]), the right-hand side has to be analyzed. But before doing this, we have to
memorize the location designated by the left-hand side. The reason is that the location
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affected by the assignment remains fixed even if evaluating the right-hand side of
the assignment has a side effect changing the location to which the left-hand side
points. For example, if i .

= 0, then a[i] = ++i; has to update the location a[0]
even though evaluating the right-hand side of the assignment changes the value of i
to 1.

Since there is no universal “location” or “address-of” operator in Java, this memo-
rizing looks different for different kinds of expressions appearing on the left. The
choice here is between field and array accesses. For local variables, the memorizing
step is not necessary, since the “location value” of a variable is syntactically defined
and cannot be changed by evaluating the right-hand side.

We will start with the rule variant where a field access is on the left. It takes the
following form; the components of the premiss are explained in Table 3.3:

assignmentSaveLocation

=⇒ 〈π memorize; unfoldr; update; ω〉φ
=⇒ 〈π v.a=nse; ω〉φ

Table 3.3 Components of rule assignmentSaveLocation for field accesses v.a=nse

memorize Tv v0 = v;

unfoldr Tnse v1 = nse; set up Step 3

update v0.a = v1; set up Step 4

There is a very similar rule for the case where the left-hand side is an array access,
i.e., the assignment has the form v[se]=nse. The components of the premiss for that
case are shown in Table 3.4.

Table 3.4 Components of rule assignmentSaveLocation for array accesses v[se]=nse

memorize Tv v0 = v; Tse v1 = se;

unfoldr Tnse v2 = nse; set up Step 3

update v0[v1] = v2; set up Step 4
a This includes an implicit test that v is not null when v.length is analyzed.

3.6.2.3 Step 3: Unfolding the Right-Hand Side

In the next step, after the location that is changed by the assignment has been
memorized, we can analyze and unfold the right-hand side of the expression. There
are several rules for this, depending on the form of the right-hand side. As an example,
we give the rule for the case where the right-hand side is a field access nse.a with a
nonsimple object reference nse:
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assignmentUnfoldRight

=⇒ 〈π Tnse v0 = nse; v = v0.a; ω〉φ
=⇒ 〈π v = nse.a; ω〉φ

The case when the right-hand side is a method call is discussed in the section on
method calls (Section 3.6.5).

3.6.2.4 Step 4: Generate an Update

The fourth and final step of treating assignments is to turn them into an update. If
both the left- and the right-hand side of the assignment are simple expressions, the
basic assignment rule applies:

assignment
=⇒{lhs := se∗}〈π ω〉φ
=⇒ 〈π lhs = se; ω〉φ

The value se∗ appearing in the update is not identical to the se in the program because
creating the update requires replacing any Java operators in the program expression
se by their JavaDL counterparts in order to obtain a proper logical term. For ex-
ample, the Java division operator / is replaced by the function symbol javaDivInt
(or javaDivLong depending on the promoted type of its arguments). These function
symbols are then further replaced according to the chosen integer semantics (see
Section 5.4). The KeY system performs this conversion automatically to construct se∗

from se. The complete list of predefined JavaDL operators is given in Appendix B.
If there is an atomic field access v.a either on the left or on the right of the

assignment, no further unfolding can be done and the possibility has to be con-
sidered here that the object reference may be null—which would result in a
NullPointerException. Depending on whether the field access is on the left
or on the right of the assignment one of the following rules applies:

assignment

v 6 .= null=⇒{v0 := selectA(heap, v, Class::$a)}〈π ω〉φ
v .
= null=⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v0 = v.a; ω〉φ

assignment

v 6 .= null=⇒{heap := store(heap, v, Class::$a, se∗)}〈π ω〉φ
v .
= null=⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v.a = se; ω〉φ

In the rules you may have noticed that the field a is referred to by its unique field
constant Class::$a. This field constant unambiguously refers to the field named a
of type A declared in the class Class (where Class is the fully qualified name).
Determining Class can be nontrivial, in particular in the presence of field hiding.
Hiding occurs when derived classes declare fields with the same name as in the
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superclass. Inside a program the exact field reference can be determined from the
short name a using the static type of the target expression and the program context,
in which the reference appears. Since logical terms do not have a program context,
hidden fields have to be immediately disambiguated by the assignment rule.

The KeY system’s pretty-printer tries to improve readability of these terms by
displaying the shorthand v.a for selectA(heap,o,a), whenever the select expression
is in a defined normalform and no hiding occurs (for a thorough description of pretty
printing see Section 16.2). In the following, we use this shorthand notation unless
there is a danger of confusion.

For array access, we have to consider the possibility of an ArrayIndexOutOf-
BoundsException in addition to that of a NullPointerException. Thus, the rule
for array access on the right of the assignment takes the following form (there is a
slightly more complicated rule for array access on the left as it needs to account for
ArrayStoreExceptions):

assignment

v 6 .= null, se∗ ≥ 0, se∗ < v.length=⇒
{v0 := selectA(heap,v,arr(se∗))}〈π ω〉φ

v .
= null=⇒
〈π throw new NullPointerException(); ω〉φ

v 6 .= null, (se∗ < 0 ∨ se∗ ≥ v.length) =⇒
〈π throw new ArrayIndexOutOfBoundsException(); ω〉φ

=⇒ 〈π v0 = v[se]; ω〉φ

Please note that, if possible, KeY’s pretty-printer uses the shorthand notation v[se∗]
for selectA(heap,v,arr(se∗)); see Section 16.2.

The JVM throws exceptions such as the ArrayIndexOutOfBoundsException
and the NullPointerException to signal an error condition during program execu-
tion. The assignment rules shown above faithfully model this behavior by introducing
explicit throw statements during symbolic execution for those cases where the JVM
would throw an exception.

However, the KeY system actually contains three user-selectable calculus varia-
tions for reasoning about such exceptions. The three variations are: ban, allow, and
ignore (see Section 15.2.3 for an explanation of how to select different rule sets).
The variation of assignment shown above is allow—it is both sound and complete.
The variation ban requires to prove that no JVM-thrown exceptions can occur—it is
sound but incomplete, as programs relying on catching such exceptions cannot be
proved correct. The upside of ban is smaller proof size, as less symbolic execution
is necessary. The third calculus variation is ignore; it makes the assumption that all
operations succeed and neither checks for nor generates JVM-thrown exceptions.
This variation is yet more efficient but neither sound nor complete.

A variability similar in spirit can be observed in the part of the calculus for
reasoning about integer arithmetic (see Section 5.4.3).

Example 3.18. Consider the JavaDL formula
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pre→ 〈i = 0; try { o.a = null; i = 1; }
catch(Exception e) {}

〉post

The following table shows the differences in provability of this formula for different
combinations of pre and post and different choices for exception handling in the
calculus:

provable
pre post allow ban ignore
o .
= null i .

= 0 Yes No No
o .
= null i .

= 1 No No Yes
o 6 .= null i .

= 0 No No No
o 6 .= null i .

= 1 Yes Yes Yes

3.6.3 Rules for Conditionals

Most if-else statements have a nonsimple expression (i.e., one with potential side-
effects) as their condition. In this case, we unfold it in the usual manner first. This is
achieved by the rule

ifElseUnfold

=⇒ 〈π boolean v = nse; if (v) p else q ω〉φ
=⇒ 〈π if (nse) p else q ω〉φ

where v is a fresh Boolean variable.
After dealing with the nonsimple condition, we will eventually get back to the

if-else statement, this time with the condition being a variable and, thus, a simple
expression. Now it is time to take on the case distinction inherent in the statement.
That can be done using the following rule:

ifElseSplit

se∗ .
= TRUE =⇒ 〈π p ω〉φ

se∗ .
= FALSE =⇒ 〈π q ω〉φ

=⇒ 〈π if (se) p else q ω〉φ

While perfectly functional, this rule has several drawbacks. First, it unconditionally
splits the proof, even in the presence of additional information. However, the program
or the sequent may contain the explicit knowledge that the condition is true (or false).
In that case, we want to avoid the proof split altogether. Second, after the split, the
condition se appears on both branches, and we then have to reason about the same
expression twice.

A different solution is the following rule that translates a program with an if-else
statement into a conditional formula:
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ifElse
=⇒ if(se∗ .

= TRUE) then 〈π p ω〉φ else 〈π q ω〉φ
=⇒ 〈π if (se) p else q ω〉φ

Note that the if-then-else in the premiss of this rule is a logical and not a program
language construct (Definition 3.3).

The ifElse rule solves the problems of the ifElseSplit rule described above. The
condition se only has to be considered once. And if additional information about its
truth value is available, splitting the proof can be avoided. If no such information is
available, however, it is still possible to replace the propositional if-then-else operator
with its definition, resulting in

((se∗ .
= TRUE)→ 〈π p ω〉φ) ∧ ((se∗ 6 .= TRUE)→ 〈π q ω〉φ)

and carry out a case distinction in the usual manner.
A problem that the above rule does not eliminate is the duplication of the code

part ω . Its double appearance in the premiss means that we may have to reason about
the same piece of code twice. Leino [2005] proposes a solution for this problem
within a verification condition generator system. However, to preserve the advantages
of a symbolic execution, the KeY system here sacrifices some efficiency for the sake
of usability. And, fortunately, this issue is hardly ever limiting in practice.

The rule for the switch statement, which also is conditional and leads to case
distinctions in proofs, is not shown here. It transforms a switch statement into a
sequence of if statements.

3.6.4 Unwinding Loops

The following rule “unwinds” while loops.2 Its application is the prerequisite for
symbolically executing the loop body. Unfortunately, just unwinding a loop repeat-
edly is only sufficient for its verification if the number of loop iterations has a known
upper bound. And it is only practical if that number is small (as otherwise the proof
gets too big).

If the number of loop iterations is not bounded, the loop has to be verified using
(a) induction or (b) an invariant rule (see Sections 3.7.2 and 9.4.2). If induction is
used, the unwind rule is also needed as the loop has to be unwound once in the step
case of the induction.

In case the loop body does not contain break or continue statements (which is
the standard case), the following simple version of the unwind rule can be applied:

loopUnwind
=⇒ 〈π if (e) { p while (e) p } ω〉φ

=⇒ 〈π while (e) p ω〉φ

2 Occurrences of for loops, enhanced for loops, and do-while loops are transformed into while
loops by means of dedicated rules.
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Otherwise, in the general case where break and/or continue occur, the following
more complex rule version has to be used:

loopUnwind

=⇒ 〈π if (e) l′:{ l′′:{ p′ } l1:. . .ln:while (e) { p } } ω〉φ
=⇒ 〈π l1:. . .ln:while (e) { p } ω〉φ

where

• l′ and l′′ are new labels,
• p′ is the result of (simultaneously) replacing in p

– every “break li” (for 1≤ i≤ n) and every “break” (with no label) that has
the while loop as its target by “break l′,” and

– every “continue li” (for 1≤ i≤ n) and every “continue” (with no label)
that has the while loop as its target by “break l′′.”

(The target of a break or continue statement with no label is the loop that
immediately encloses it.)

The label list l1:. . .ln: usually has only one element or is empty, but in general a
loop can have more than one label.

In the “unwound” instance p′ of the loop body p, the label l′ is the new target for
break statements and l′′ is the new target for continue statements, which both had
the while loop as target before. This results in the desired behavior: break abruptly
terminates the whole loop, while continue abruptly terminates the current instance
of the loop body.

A continue (with or without label) is never handled directly by a JavaDL rule,
because it can only occur in loops, where it is always transformed into a break
statement by the loop rules.

3.6.5 Replacing Method Calls by their Implementation

Symbolic execution deals with method invocations by syntactically replacing the call
by the called implementation (verification via contracts is described in Section 3.7.1).
To obtain an efficient calculus we have conservatively extended the programming
language (see Section 3.2.3) with two additional constructs: a method body statement,
which allows us to precisely identify an implementation, and a method-frame block,
which records the receiver of the invocation result and marks the boundaries of the
inlined implementation.



78 3 Dynamic Logic for Java

3.6.5.1 Evaluation of Method Invocation Expressions

The process of evaluating a method invocation expression (method call) within our
JavaDL calculus consists of the following steps:

1. Identifying the appropriate method.
2. Computing the target reference.
3. Evaluating the arguments.
4. Locating the implementation (or throwing a NullPointerException).
5. Creating the method frame.
6. Handling the return statement.

Since method invocation expressions can take many different shapes, the calculus
contains a number of slightly differing rules for every step. Also, not every step is
necessary for every method invocation.

3.6.5.2 Step 1: Identify the Appropriate Method

The first step is to identify the appropriate method to invoke. This involves determin-
ing the right method signature and the class where the search for an implementation
should begin. Usually, this process is performed by the compiler according to the
(quite complicated) rules of the Java language specification and considering only
static information such as type conformance and accessibility modifiers. These rules
have to be considered as a background part of our logic, which we will not describe
here though, but refer to the Java language specification instead. In the KeY system
this process is performed internally (it does not require an application of a calculus
rule), and the implementation relies on the Recoder metaprogramming framework to
achieve the desired effect (Recoder is available at recoder.sourceforge.net).

For our purposes, we discern three different method invocation modes:

Instance or “virtual” mode. This is the most common mode. The target expression
references an object (it may be an implicit this reference), and the method is not
declared static or private. This invocation mode requires dynamic binding.

Static mode. In this case, no dynamic binding is required. The method to invoke is
determined in accordance with the declared static type of the target expression and
not the dynamic type of the object to which this expression may point. The static
mode applies to all invocations of methods declared static. The target expression
in this case can be either a class name or an object referencing expression (which
is evaluated and then discarded). The static mode is also used for instance methods
declared private (in which case the evaluated target reference is not discarded
but used to identify the object on which to invoke the method).

Super mode. This mode is used to access the methods of the immediate superclass.
The target expression in this case is the keyword super. The super mode bypasses
any overriding declaration in the class that contains the method invocation.

http://recoder.sourceforge.net
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Below, we present the rules for every step in a method invocation. We concentrate
on the virtual invocation mode and discuss other modes only where significant
differences occur.

3.6.5.3 Step 2: Computing the Target Reference

The following rule applies if the target expression of the method invocation is not a
simple expression and may have side-effects. In this case, the method invocation gets
unfolded so that the target expression can be evaluated first.

methodCallUnfoldTarget

=⇒ 〈π Tnse v0 = nse; lhs = v0.mname(args); ω〉φ
=⇒ 〈π lhs = nse.mname(args); ω〉φ

This step is not performed if the target expression is the keyword super or a class
name. For an invocation of a static method via a reference expression, this step is
performed, but the result is discarded later on.

3.6.5.4 Step 3: Evaluating the Arguments

If a method invocation has arguments that need to be evaluated, i.e., if at least one of
the arguments is not a simple expression, then the arguments have to be evaluated
before control is transferred to the method body. This is achieved by the following
rule:

methodCallUnfoldArguments

=⇒ 〈π Te1 a1=e1; ...; Ten an=en;
lhs = se.mname(a1,...,an);

ω〉φ
=⇒ 〈π lhs = se.mname(e1,...,en); ω〉φ

The rule unfolds the arguments using fresh variables in the usual manner.
In the instance invocation mode, the target expression se must be simple (otherwise

the rules from Step 2 apply). Furthermore, argument evaluation has to happen even if
the target reference is null, which is not checked until the next step.

3.6.5.5 Step 4: Locating the Implementation

This step has two purposes in our calculus: to bind the argument values to the formal
parameters and to simulate dynamic binding (for instance invocations). Both are
achieved with the following rule:
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methodCall

se 6 .= null=⇒ 〈π Tlhs v0; paramDecl; ifCascade; lhs = v0; ω〉φ
se .

= null=⇒ 〈π throw new NullPointerException(); ω〉φ
=⇒ 〈π lhs = se.mname(se1,. . .,sen); ω〉φ

The code piece paramDecl introduces and initializes new local variables that later
replace the formal parameters of the method. That is, paramDecl abbreviates

Tse1 p1 = se1; . . . Tsen pn = sen;

The code schema ifCascade simulates dynamic binding. Using the signature of
mname, we extract the set of classes that implement this particular method from the
given Java program. Due to the possibility of method overriding, there can be more
than one class implementing a particular method. At runtime, an implementation is
picked based on the dynamic type of the target object—a process known as dynamic
binding. In our calculus, we have to do a case distinction as the dynamic type is in
general not known. We employ a sequence of nested if statements that discriminate
on the type of the target object, cast the callee variable to the static type in which the
method implementation is found, and refer to the distinct method implementations
via method body statements (see Section 3.2.3). Thus, ifCascade abbreviates:

if (se instanceof C1) {
C1 target = (C1)se; v0 = target.mname(p1,. . .,pn)@C1;

} else if (se instanceof C2) {
C2 target = (C2)se; v0 = target.mname(p1,. . .,pn)@C2;

...
} else if (se instanceof Ck−1) {

Ck−1 target = (Ck−1)se; v0 = target.mname(p1,. . .,pn)@Ck−1;
else {

Ck target = (Ck)se; v0 = target.mname(p1,. . .,pn)@Ck;
}

The order of the if statements is a bottom-up latitudinal search over all classes
C1, . . . ,Ck of the class inheritance tree that implement mname(. . .). In other words,
the more specialized classes appear closer to the top of the cascade. Formally, if i < j
then C j 6vCi.

If the invocation mode is static or super no ifCascade is created. The single
appropriate method body statement takes its place. Furthermore, the check whether
se is null is omitted in these modes, though not for private methods.

Please note that this step in method invocation and its associated rule forfeit
modular correctness: The rule is only sound if the constructed if-cascade is complete,
which requires all relevant methods to be known at the time of rule application (see
Section 9.1.3).
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3.6.5.6 Step 5: Creating the Method Frame

In this step, the method body statement v0=se.mname(. . .)@Class is replaced by the
implementation of mname from the class Class and the implementation is enclosed
in a method frame:

methodBodyExpand

=⇒ 〈π method-frame(result->lhs,
source=mname(T1, . . . ,Tn)@Class,
this=se

) : { body } ω〉φ
〈π lhs=se.mname(v1,. . .,vn)@Class; ω〉φ =⇒

in the implementation body the formal parameters of types T1, . . . ,Tn of mname are
syntactically replaced by v1, . . . ,vn.

3.6.5.7 Step 6: Handling the return Statement

The final stage of handling a method invocation, after the method body has been
symbolically executed, involves committing the return value (if any) and transferring
control back to the caller. We postpone the description of treating method termination
resulting from an exception (as well as the intricate interaction between a return
statement and a finally block) until the following section on abrupt termination.

The basic rule for the return statement is:

methodCallReturn

=⇒ 〈π method-frame(...):{ v=se; } ω〉φ
=⇒ 〈π method-frame(result->v, ...) : { return se; p } ω〉φ

We assume that the return value has already undergone the usual unfolding analysis,
and is now a simple expression se. Now, we need to assign it to the right variable v
within the invoking code. This variable is specified in the head of the method frame.
A corresponding assignment is created and v disappears from the method frame. Any
trailing code p is also discarded.

After the assignment of the return value is symbolically executed, we are left with
an empty method frame, which can now be removed altogether. This is achieved with
the rule

methodCallEmpty
=⇒ 〈π ω〉φ

=⇒ 〈π method-frame(. . .) : { } ω〉φ

In case the method is void or if the invoking code simply does not assign the
value of the method invocation to any variable, this fact is reflected by the variable v
missing from the method frame. Then, slightly simpler versions of the return rule are
used, which do not create an assignment.
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3.6.5.8 Example for Handling a Method Invocation

Consider the example program from Figure 3.1. The method nextId() returns for a
given integer value id some next available value. In the Base class this method is
implemented to return id+1. The class SubA inherits and retains this implementation.
The class SubB overrides the method to return id+2, which is done by increasing the
result of the implementation in Base by one.

Base

start()
int nextId(int)

SubA

SubB

int nextId(int)

public class Base {
public int nextId(int i) {

return ++i;
}

}

public class SubA extends Base {
}

public class SubB extends Base {
public int nextId(int i) {

return super.nextId(i)+1;
}

}

Figure 3.1 An example program with method overriding

We now show step by step how the following code, which invokes the method
nextId() on an object of type SubB, is symbolically executed:

Java
Base o = new SubB();
res = o.nextId(i);

Java

First, the instance creation is handled, after which we are left with the actual method
call. The effect of the instance creation is reflected in the updates attached to the
formula, which we do not show here. Since the target reference o is already simple at
this point, we skip Step 2. The same applies to the arguments of the method call and
Step 3. We proceed with Step 4, applying the rule methodCall. This gives us two
branches. One corresponds to the case where o is null, which can be discharged
using the knowledge that o points to a freshly created object. The other branch
assumes that o is not null and contains a formula with the following Java code (in
the following, program part A is transformed into A′, B into B′ etc.):
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Java
int j; {

int i_1 = i;
if (o instanceof SubB) {

SubB target = (SubB)o;
j=target.nextId(i_1)@SubB;

} else {
Base target = (Base)o;
j=target.nextId(i_1)@Base;

}
}
res=j;

Java

A

After dealing with the variable declarations, we reach the if-cascade simulating
dynamic binding. In this case we happen to know the dynamic type of the object
referenced by o. This eliminates the choice and leaves us with assigning o to a
variable of the same static type where the implementation is been found, and finally,
the method body statement pointing to the implementation from SubB:

Java
SubB target = (SubB)o;
j=target.nextId(i_1)@SubB;
res=j;

Java

A’

After executing the variable declaration of target and assigning it the value of o
(the cast succeeds because of the if-statement guard in the previous step), it is time
for Step 5: unfolding the method body statement and creating a method frame. This
is achieved by the rule methodBodyExpand:

Java
method-frame(result->j,source=nextId(int)@SubB,this=target):{

return super.nextId(i_1)+1;
}
res=j;

Java

A”

B

The method implementation has been inlined above. We start to execute it symbol-
ically, unfolding the expression in the return statement in the usual manner, which
gives us after some steps:
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Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

int j_2 = super.nextId(i_1);
j_1=j_2+1;
return j_1;

}
res=j;

Java

B’C

The active statement is now again a method invocation, this time with the super
keyword. The method invocation process starts again from scratch. Steps 2 and 3 can
be omitted for the same reasons as above. Step 4 gives us the following code. Note
that there is no if-cascade, since no dynamic binding needs to be performed.

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

int j_3; {
int i_2 = i_1;
j_3=target.nextId(i_2)@Base;

}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

C’

Now it is necessary to remove the declarations and perform the assignments to
reach the method body statement j_3=target.nextId(i_2)@Base;. Then, this
statement can be unpacked (Step 5), and we obtain two nested method frames. The
second method frame retains the value of this, while the implementation source is
now taken from the superclass:
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Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(result->j_3,
source=nextId(int)@Base, this=target) : {

return ++i_2;
}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

C”

D

The return expression is unfolded until we arrive at a simple expression. The
actual return value is recorded in the updates attached to the formula. The code in
the formula then is:

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(result->j_3,
source=nextId(int)@Base, this=target) : {

return j_4;
}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

E

D’

Now we can perform Step 6 (rule methodCallReturn), which replaces the return
statement of the inner method frame with the assignment to the variable j_3. We
know that j_3 is the receiver of the return value, since it was identified as such by
the method frame (this information is removed with the rule application).
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Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(source=nextId(int)@Base, this=target) : {
j_3=j_4;

}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

E’

The assignment j_3=j_4; can be executed as usual, generating an update, and
we obtain an empty method frame.

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(source=nextId(int)@Base, this=target):{
}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

E”

The empty frame can be removed with the rule methodCallEmpty, completing
Step 6. The invocation depth has now decreased again. We obtain the program:

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

From here, the execution continues in an analogous manner. The outer method
frame is eventually removed as well.
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3.6.6 Instance Creation and Initialization

In this section we cover the process of instance creation and initialization. We do not
go into details of array creation and initialization, since it is sufficiently similar.

3.6.6.1 Instance Creation and the Constant Domain Assumption

JavaDL, like many modal logics, operates under the technically useful constant
domain semantics (all program states have the same universe). This means, however,
that all instances that are ever created in a program have to exist a priori. To resolve
this seeming paradox, we introduce implicit fields that allow to change and query
the program-visible instance state (created, initialized, etc.); see Table 3.5. These
implicit fields behave as the usual class or instance attributes, except that they are
not declared by the user but by the logic designer. To distinguish them from normal
(user-declared) fields, their names are enclosed in angled brackets.

Table 3.5 Implicit object repository and status fields

Modifier Implicit field Declared in Explanation

protected boolean <created> Object indicates whether the object
has been created

protected boolean <initialised> Object indicates whether the object
has been initialized

Example 3.19. To express that the field head declared in some class A is nonnull for
all created and initialized objects of type A, one can use the following formula:

∀a : A.(a 6 .= null∧a.<created> .
= TRUE → (a.head 6 .= null))

In future, we use the easier to read created to refer to the field <created>, except
for syntax used as part of KeY input files or similar.

3.6.6.2 Overview of the Java Instance Creation and Initialization Process

We use an approach to handle instance creation and initialization that is based on
program transformation. The transformation reduces a Java program p to a program p′

such that the behavior of p (with initialization) is the same as that of p′ when
initialization is disregarded. This is done by inserting code into p that explicitly
executes the initialization.

The transformation inserts code for explicitly executing all initialization processes.
To a large extent, the inserted code works by invoking implicit class or instance
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methods (similar to implicit fields), which do the actual work. An overview of all
implicit methods introduced is given in Table 3.6.

Table 3.6 Implicit methods for object creation and initialization declared in every nonabstract
type T (syntactic conventions from Figure 3.2)

Static methods

public static T <createObject>() main method for instance creation and initiali-
sation

private static T <allocate>() allocation of an unused object from the object
repository

Instance methods

protected void <prepare>() assignment of default values to all instance fields
mods T <init>(params) execution of instance initializers and the invoked

constructor

The transformation covers all details of initialization in Java, except that we
only consider nonconcurrent programs and no reflection facilities (in particular no
instances of java.lang.Class). Initialization of classes and interfaces (also known
as static initialization) is fully supported for the single threaded case. KeY passes the
static initialization challenge stated by Jacobs et al. [2003].

In the following, we use the schematic class form shown in Figure 3.2.

mods0 class T {
mods1 T1 a1 = initExpression1;
...
modsm Tm am = initExpressionm;

{
initStatementm+1;
...
initStatementl;

}

mods T(params) {
st1;
...
stn;

}
...

}

Figure 3.2 Initialization part in a schematic class
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Example 3.20. Figure 3.3 shows a class Person and its mapping to the schematic
class declaration of Figure 3.2. There is only one initializer statement in class Person,
namely “id = 0,” which is induced by the corresponding field declaration of id.

class Person {
private int id = 0;

public Person(int persID) {
id = persID;

}
}

mods0 7→ −
T 7→ Person
mods1 7→ private
T1 7→ int
a1 7→ id
initExpression1 7→ 0
mods 7→ public
params 7→ int persID
st1 7→ id = persID

Figure 3.3 Example for the mapping of a class declaration to the schema of Figure 3.2

To achieve a uniform presentation we also stipulate that:

1. The default constructor public T() exists in T in case no explicit constructor
has been declared.

2. Unless T = Object, the statement st1 must be a constructor invocation. If this is
not the case in the original program, “super();” is added explicitly as the first
statement.

Both of these conditions reflect the actual semantics of Java.

3.6.6.3 The Rule for Instance Creation and Initialization

The instance creation rule

instanceCreation

=⇒ 〈π T v0 = T.<createObject>();
T1 a1 = e1; . . .; T1 an = en;
v0.<init>(a1,...,an)@T;
v0.<initialised> = true;
v = v0;

ω〉φ
=⇒ 〈π v = new T(e1,...,en); ω〉φ

replaces an instance creation expression “v = new T(e1,...,en)” by a sequence
of statements. The implicit static method <createObject>()is declared in each
nonabstract class T as follows:
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public static T <createObject>() {
T newObject = T.<allocate>();

// Invoke the preparation method to assign default values to
// instance fields

newObject.<create>();
// Return the newly created object in order to initialize it:

return newObject;
}

<createObject>() delegates its work to a series of other helper methods. The
generated code can be divided into three phases, which we examine in detail below:

1. <allocate>(): Allocate space on the heap, mark the object as created (as ex-
plained above, it is not really “created”), and assign the reference to a temporary
variable v0.

2. <create>(): Prepare the object by assigning all fields their default values.
3. <init>(): Initialize the object and subsequently mark it as initialized. Note that

the rule uses the method body statement instead of a normal method invocation.
This is possible as we exactly know which constructor has been invoked and it
allows us to achieve an improved performance as we do not need to use dynamic
dispatch.

The reason for assigning v0 to v in the last step is to ensure correct behavior in case
initialization terminates abruptly due to an exception.3

3.6.6.4 Phase 1: Instance Allocation: <allocate>

During the first phase, an implicit method called <allocate>(), performs the central
interaction with the heap. The <allocate>() method has no Java implementation;
its semantics is given by the following rule instead:

allocateInstance

o′ 6 .= null, exactInstanceT (o
′)

.
= TRUE,(

wellFormed(heap)→ selectboolean(heap,o′,created) .
= FALSE

)
=⇒ {heap := create(heap,o′)}

{lhs := o′}
〈π ω〉φ

=⇒ 〈π lhs = T.<allocate>(); ω〉φ

where o′ :T ∈ FSym is a fresh symbol

3 Java does not prevent creating and accessing partly initialized objects. This can be done, for
example, by assigning the object reference to a static field during initialization. This behavior is
modeled faithfully in the calculus. In such cases the preparation phase guarantees that all fields have
a definite value.
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The rule introduces a fresh constant symbol o′ to represent the new object, i.e.,
a constant symbol not occurring anywhere in the conclusion. The rule adds three
assumptions about the otherwise unknown object represented by o′: (i) it is different
from null; (ii) its dynamic type is T; and (iii) if the heap is well-formed, then the
object is not yet created. These assumptions are always satisfiable, because there is
an infinite reservoir of objects of every type, and because in a well-formed heap only
a finite number of them is created.

The new object is then marked as “created” by setting its created field to true, and
the reference to the newly created object is assigned to the program variable lhs.

3.6.6.5 Phase 2: Preparation: <create>

During the second phase, an implicit method called <create> marks the object as
not yet initialized (this.<initialized>=false;) and calls the implicit method
<prepare>(), which makes sure that all fields, including the ones declared in the
superclasses, are assigned their default values.4 Up to this point no user code is
involved, which ensures that all field accesses by the user observe a definite value.
This value is given by the function defaultValue that maps each type to its default
value (e.g., int to 0). The concrete default values are specified in the Java language
specification [Gosling et al., 2013, § 4.5.5]. The method <prepare>() used for
preparation is shown in Figure 3.4.5

protected void <prepare>() {
// Prepare the fields declared in the superclass. . .

super.<prepare>(); // unless T = Object

// Then assign each field ai of type Ti declared in T
// to its default value:

a1 = defaultValue(T1);
. . .
am = defaultValue(Tm);

}

Figure 3.4 Implicit method <prepare>()

4 Since class declarations are given beforehand this is possible with a simple enumeration. In case
of arrays, a quantified update is used to achieve the same effect, even when the actual array size is
not known.
5 In the KeY system, <create>() does not call <prepare>() on the new object directly. Instead
it invokes another implicitly declared method called <prepareEnter>(), which has private access
and whose body is identical to the one of <prepare>(). The reason is that due to the super call in
<prepare>()’s body, its visibility must be at least protected such that a direct call would trigger
dynamic method dispatching, which is unnecessary and would lead to a larger proof.
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3.6.6.6 Instance Initialization: <init>

After the preparation of the new object, the user-defined initialization code can be
processed. Such code can occur

• as a field initializer expression “T attr = val;” (e.g., (*) in Figure 3.5); the
corresponding initializer statement is attr = val;

• as an instance initializer block (similar to (**) in Figure 3.5); such a block is
also an initializer statement;

• within a constructor body (like (***) in Figure 3.5).

class A {
(*) private int a = 3;
(**) {a++;}

public int b;

(***) private A() {
a = a + 2;

}
(***) public A(int i) {

this();
a = a + i;

}
...

private <init>() {
super.<init>();
a = 3;
{a++;}
a = a + 2;

}

public <init>(int i) {
this.<init>();
a = a + i;

}
}

Figure 3.5 Example for constructor normal form

For each constructor mods T(params) of T we provide a constructor normal form
mods T <init>(params), which includes (1) the initialization of the superclass,
(2) the execution of all initializer statements in source code order, and finally (3) the
actual constructor body. In the initialization phase the arguments of the instance
creation expression are evaluated and passed on to this constructor normal form. An
example of the normal form is given in Figure 3.5.

The exact blueprint for building a constructor normal form is shown in Figure 3.6,
using the conventions of Figure 3.2. Due to the uniform class form assumed above,
the first statement st1 of every original constructor is either an alternate constructor
invocation or a superclass constructor invocation (with the notable exception of
T = Object). Depending on this first statement, the normal form of the constructor
is built to do one of two things:

1. st1 = super(args): Recursive restart of the initialization phase for the superclass
of T . If T = Object stop. Afterwards, initializer statements are executed in
source code order. Finally, the original constructor body is executed.

2. st1 = this(args): Recursive restart of the initialization phase with the alternate
constructor. Afterwards, the original constructor body is executed.

If one of the above steps fails, the initialization terminates abruptly throwing an
exception.
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mods T <init>(params) {
// invoke constructor
// normal form of superclass
// (only if T 6= Object)

super.<init>(args);

// add the initializer
// statements:

initStatement1;
. . .
initStatementl;

// append constructor body
sts; . . . stn;

// if T = Object then s = 1
// otherwise s = 2

}

(a) st1 = super(args)
in the original constructor

mods T <init>(params) {

// constructor normal form
// instead of this(args)

this.<init>(args);
// no initializer statements
// if st1 is an explicit
// this() invocation

// append constructor body
st2; . . . stn;

// starting with its second
// statement

}

(b) st1 = this(args)
in the original constructor

Figure 3.6 Building the constructor normal form

3.6.7 Handling Abrupt Termination

3.6.7.1 Abrupt Termination in JavaDL

In Java, the execution of a statement can terminate abruptly (besides terminating
normally and not terminating at all). Possible reasons for an abrupt termination
are (a) that an exception has been thrown, (b) that a statement (usually a loop or a
switch) is terminated with break, (c) that a single loop iteration is terminated with
the continue statement, and (d) that the execution of a method is terminated with
the return statement. Abrupt termination of a statement either leads to a redirection
of the control flow after which the program execution resumes (for example, if an
exception is caught), or the whole program terminates abruptly (if an exception is
not caught).

Note, that the KeY system contains three user-selectable calculus variations
for reasoning about run-time exceptions that may be thrown by the JVM (e.g.,
NullPointerException); see Section 3.6.2 and 15.2.3.

3.6.7.2 Evaluation of Arguments

If the argument of a throw or a return statement is a nonsimple expression, the
statement has to be unfolded first such that the argument can be (symbolically)
evaluated:

throwEvaluate
=⇒ 〈π Tnse v0 = nse; throw v0; ω〉φ

=⇒ 〈π throw nse; ω〉φ
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3.6.7.3 If the Whole Program Terminates Abruptly

In JavaDL, an abruptly terminating statement—where the abrupt termination does
not just change the control flow but actually terminates the whole program p in a
modal operator 〈p〉 or [p]—has the same semantics as a nonterminating statement
(Definition 3.5). For that case rules such as the following are provided in the JavaDL
calculus for all abruptly terminating statements:

throwDiamond

=⇒ false
=⇒ 〈throw se; ω〉φ

throwBox

=⇒ true
=⇒ [throw se; ω]φ

Note, that in these rules, there is no inactive prefix π in front of the throw statement.
Such a π could contain a try with accompanying catch clause that would catch the
thrown exception. However, the rules throwDiamond, throwBox etc. must only be
applied to uncaught exceptions. If there is a prefix π , other rules described below
must be applied first.

3.6.7.4 If the Control Flow is Redirected

The case where an abruptly terminating statement does not terminate the whole
program in a modal operator but only changes the control flow is more difficult to
handle and requires more rules. The basic idea for handling this case in our JavaDL
calculus are rules that symbolically execute the change in control flow by syntactically
rearranging the affected program parts.

The calculus rules have to consider the different combinations of prefix-context
(beginning of a block, method-frame, or try) and abruptly terminating statement
(break, continue, return, or throw). Below, rules for all combinations are
discussed—with the following exceptions:

• The rule for the combination method frame/return is part of handling method
invocations (Step 6 in Section 3.6.5.1).

• Due to restrictions of the Java language specification, the combination method
frame/break does not occur.

• Since the continue statement can only occur within loops, all occurrences of
continue are handled by the loop rules.

Moreover, switch statements, which may contain a break, are not considered here;
they are transformed into a sequence of if statements.

3.6.7.5 Rule for Method Frame and throw

In this case, the method is terminated, but no return value is assigned. The throw
statement remains unchanged (i.e., the exception is handed up to the invoking code):
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methodCallThrow
=⇒ 〈π throw se; ω〉φ

=⇒ 〈π method-frame(. . .) : {throw se; p } ω〉φ

3.6.7.6 Rules for try and throw

The following rule allows us to handle try-catch-finally blocks and the throw
statement:

tryCatchFinallyThrow

=⇒ 〈π if (se == null) {
try { throw new NullPointerException(); }
catch (T v) { q } cs finally { r }

} else if (se instanceof T) {
try { T v; v = (T)se; q } finally { r }

} else {
try { throw se; } cs finally { r }

}
ω〉φ
=⇒ 〈π try { throw se; p}

catch ( T v ) { q } cs finally { r }
ω〉φ

The schema variable cs represents a (possibly empty) sequence of catch clauses.
The rule covers three cases corresponding to the three cases in the premiss:

1. The argument of the throw statement is the null pointer (which, of course, in
practice should not happen). In that case everything remains unchanged except
that a NullPointerException is thrown instead of null.

2. The first catch clause catches the exception. Then, after binding the exception
to v, the code q from the catch clause is executed.

3. The first catch clause does not catch the exception. In that case the first clause
gets eliminated. The same rule can then be applied again to check further clauses.

Note, that in all three cases the code p after the throw statement gets eliminated.
When all catch clauses have been checked and the exception has still not been

caught, the following rule applies:

tryFinallyThrow

=⇒ 〈π if (se == null) { vse = new NullPointerException(); }
else { vse = se; }
r
throw vse;

ω〉φ
=⇒ 〈π try { throw se; p } finally { r }〉φ
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This rule moves the code r from the finally block to the front. The try-block gets
eliminated so that the thrown exception now may be caught by other try blocks in
π (or remain uncaught). The value of se has to be saved in vse before the code r is
executed as r might change se.

There is also a rule for try blocks that have been symbolically executed without
throwing an exception and that are now empty and terminate normally (similar rules
exist for empty blocks and empty method frames). Again, cs represents a finite
(possibly empty) sequence of catch clauses:

tryEmpty
=⇒ 〈π r ω〉φ

=⇒ 〈π try{ } cs { q } finally { r } ω〉φ

3.6.7.7 Rules for try/break and try/return

A return or a break statement within a try-catch-finally statement causes the
immediate execution of the finally block. Afterwards the try statement terminates
abnormally with the break or the return statement (a different abruptly terminating
statement that may occur in the finally block takes precedence). This behavior
is simulated by the following two rules (here, also, cs is a finite, possibly empty
sequence of catch clauses):

tryBreak

=⇒ 〈π r break l; ω〉φ
=⇒ 〈π try{ break l; p } cs { q } finally{ r } ω〉φ

tryReturn

=⇒ 〈π Tvr v0 = vr; r return v0; ω〉φ
=⇒ 〈π try{ return vr; p } cs { q } finally{ r } ω〉φ

3.6.7.8 Rules for block/break, block/return, and block/throw

The following two rules apply to blocks being terminated by a break statement that
does not have a label, or by a break statement with a label l identical to one of the
labels l1, . . . , lk of the block (k ≥ 1).

blockBreakNoLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .lk:{ break; p } ω〉φ

blockBreakLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .li:. . .lk:{ break li; p } ω〉φ
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To blocks (labeled or unlabeled) that are abruptly terminated by a break statement
with a label l not matching any of the labels of the block, the following rule applies:

blockBreakNomatch
=⇒ 〈π break l; ω〉φ

=⇒ 〈π l1:. . .lk:{ break l; p} ω〉φ

Similar rules exist for blocks that are terminated by a return or throw statement:

blockReturn
=⇒ 〈π return v; ω〉φ

=⇒ 〈π l1:. . .lk:{ return v; p} ω〉φ

blockThrow
=⇒ 〈π throw v; ω〉φ

=⇒ 〈π l1:. . .lk:{ throw v; p} ω〉φ

3.7 Abstraction and Modularization Rules

The symbolic execution rules presented so far are sufficient to verify many safety
properties of Java programs. With these rules, method declarations are inlined at the
invocation site and loops are unwound. Verifying programs this way is very similar
to using a bounded model checker, such as, for example, CBMC [Kroening and
Tautschnig, 2014].

Yet, in order for program verification to scale up, abstraction is in general required.
With abstraction, certain pieces of code being verified are replaced with an approx-
imation. The term “abstraction” refers to both the process and the approximation
used.

Before we give a definition, let’s recall that every program fragment p induces a
transition relation ρ(p) on states (Definition 3.5).

Definition 3.21 (Abstraction). We call a relation α(p) on states an abstraction of p,
iff

ρ(p)⊆ α(p) , (3.1)

i.e., iff the abstraction α(p) contains all behaviors that the program p exhibits (or
more).

The two major kinds of abstractions in KeY are method contracts and loop invari-
ants. They are user-supplied but machine-checked for correctness. The user describes
an abstraction syntactically using JavaDL or, more often, JML. KeY generates a
proof obligation that the abstraction is correct, i.e., that it fulfills (3.1). In parallel,
the abstraction can be used in place of the abstracted method or loop.

Abstraction offers several advantages:
1. Not all aspects of the code are crucial to establish a given correctness prop-

erty. Abstraction allows eliding irrelevant aspects, thus reducing proof size and
complexity.
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2. Abstractions can be used to facilitate inductive reasoning, such as is the case
with loop invariants.

3. Abstractions can be checked once and used multiple times, potentially saving
proof effort.

4. When a part of the program is extended or modified, it is sufficient to check
that the new version conforms to the same abstraction as the old one. It is not
necessary to reverify the rest of the program.

5. For certain program parts (library code, native code) the source code may be
unavailable. A user-provided abstraction is a convenient way to capture some or
all of the missing code’s functionality.

Advantages 3 and 4 are typically what is referred to as modularization.
At the same time, there are also costs to using abstraction. One of them is associ-

ated overhead. For simple methods, it might be more efficient to inline the method
implementation instead of writing, proving, and using a contract. Another one is
incompleteness. If a proof attempt cannot be completed, an insufficiently precise
abstraction can be the reason. The user needs to diagnose the issue and refine the
abstraction.

In the following, we briefly introduce the method contract and the loop invariant
rules of JavaDL.

3.7.1 Replacing Method Calls by Specifications: Method Contracts

The specification of a method is called method contract and is defined as follows
(this definition is identical to Definition 8.2 on page 268, where the translation of
JML contracts into JavaDL is presented).

Definition 3.22 (Functional method contract). A functional JavaDL method con-
tract for a method or constructor

R m(T1 p1, ..., Tn pn)

declared in class C is a quadruple

(pre,post,mod, term)

that consists of

• a precondition pre ∈ DLFml,
• a postcondition post ∈ DLFml,
• a modifier set mod ∈ TrmLocSet ∪{STRICTLYNOTHING}, and
• a termination witness term ∈ TrmAny∪{PARTIAL}.

Contract components may contain special program variables referring to the execu-
tion context:

• self : C for references to the receiver object (not available if m is a static method),
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• p1 : T1, . . . ,pn : Tn representing the method’s formal parameters,
• heap : Heap to access heap locations,
• heappre : Heap to access heap locations in the state in which the operation was

invoked (in the postcondition only),
• exc : Exception to refer to the exception in case the method terminates abruptly

with a thrown exception (in the postcondition only),
• res : R to refer to the result value of a method with a return type different from
void (in the postcondition only).

While pre,mod, term (only) refer to the state before method invocation, the post-
condition post refers (also) to the state after termination of the invoked method.
Therefore, post has more expressive means to its avail: Besides two heap represen-
tations (heap and heappre), the result value, and a possibly thrown exception can
be used in the postcondition. In some situations, certain context variables are not
available. For instance, there is no result value for a constructor invocation.

Usually (especially when employing JML as specification language), the postcon-
dition post ∈ DLFml is of the form

(exc .
= null→ φ) ∧ (exc 6 .= null→ ψ) ,

where φ is the postcondition for the case that the method terminates normally and ψ

is the postcondition in case the method terminates abruptly with an exception.
The formulas pre and post are JavaDL formulas. However, in most cases, they

do not contain modal operators. This is in particular true if they are automatically
generated translations of JML specifications.

The termination marker term can be the special value PARTIAL, indicating that the
contract is partial and does not require the method to terminate. Alternatively, term
is an expression whose value needs to be decreasing according to some well-founded
ordering with every recursive call. If the method does not involve recursive calls, any
expression can be used for term (e.g., zero). More on termination proofs for recursive
methods can be found in Section 9.1.4.

Below, we give the rule methodContractPartial that replaces a method invocation
during symbolic execution with the method’s contract. The rule assumes that the
given method contract is a correct abstraction of the method. There must be a separate
argument (i.e., a separate proof) establishing this fact. Chapter 8 gives details on such
correctness arguments for method contracts.

The rule methodContractPartial applies to a box-modality and, thus, the question
of whether the method terminates is ignored.

The above rule is applicable to a method invocation in which the receiver setarget
and the arguments sei are simple expressions. This can be achieved by using the
rules methodCallUnfoldTarget and methodCallUnfoldArguments introduced in Sec-
tion 3.6.5.3.

In the first premiss, we have to show that the precondition pre holds in the state
in which the method is invoked after updating the program variables self and pi
with the receiver object setarget and with the parameters sei. This guarantees that the
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methodContractPartial
=⇒U pre

cont pre

U post
cont Amod(exc

.
= null) =⇒U post

cont Amod(post→{lhs := res} [π ω]φ)

U post
cont Amod(exc 6

.
= null) =⇒U post

cont Amod(post→ [π throw exc; ω]φ)

=⇒ [π lhs=setarget.method(se1, . . . ,sen); ω]φ

where
• (pre,post,mod, term) is a contract for method;
• U pre

cont = {self := setarget ||p1 := se1 || · · · ||pn := sen} is an update
application setting up the precondition-context variables;

• U post
cont = U pre

cont{heappre := heap ||res := cr ||exc := ce} is an update
application setting up the postcondition-context variables; cr and ce are
fresh constants of the result type of method or of type Throwable;

• Amod is an anonymizing update w.r.t. the modifier set mod.

Figure 3.7 Method contract rule

method contract’s precondition is fulfilled and, according to the contract, we can use
the postcondition post to describe the effects of the method invocation—where two
cases must be distinguished.

In the first case (second premiss), we assume that the invoked method terminates
normally, i.e., the context variable exc is null after termination. If the method is
nonvoid the return value res is assigned to the variable lhs. The second case deals
with the situation that the method terminates abruptly (third premiss). As in the
normal-termination case, the context variables are updated with the corresponding
terms. But now, there is no result value to be assigned, but the exception exc is
thrown explicitly.

Note that, in both cases, the locations that the method possibly modifies are
updated with an anonymizing update Amod. Such an update, which replaces the
values of the locations in mod with new anonymous values can be constructed using
the function anon : Heap×LocSet×Heap→ Heap (see Section 2.4.3). The heap
update

{heap := anon(heap,mod,h)} ,

where h is a new constant of type Heap, ensures that, in its scope, the heap coincides
with h on all locations in mod and all not yet created locations and coincides with
heap before the update elsewhere.

Anonymizing the locations in mod ensures that the only knowledge that can
be used about these locations when reasoning about the poststate is the knowledge
contained in post—and not any knowledge that may be contained in other formulas in
the sequence, which in fact refers to the prestate. Otherwise, without anonymization,
knowledge about the pre- and the poststate would be mixed in an unsound way. See
Section 9.4.1 for further information on the concept of anonymizing updates.

The method contract rule for the box modality is similar. It can be applied inde-
pendently of the value of the termination marker.



3.7. Abstraction and Modularization Rules 101

3.7.2 Reasoning about Unbounded Loops: Loop Invariants

Loops with a small bound on the number of iterations can be handled by loop
unwinding (see Section 3.6.4). If, however, there is no bound that is known a priori or
if that bound is too high, then unwinding does not work. In that case, a loop-invariant
rule has to be used.

A loop invariant is a formula describing an overapproximation of all states reach-
able by repeated execution of a loop’s body while the loop condition is true. Using a
loop invariant essentially is an inductive argument, proving that the invariant holds
for any number of loop iterations—and, thus, still holds when the loop terminates.

Loop invariant rules are probably the most involved and complex rules of the KeY
system’s JavaDL calculus. This complexity results from the inductive structure of
the argument but also from the features of Java loops, which include the possibility
of side effects and abrupt termination in loop conditions and loop bodies.

In this section, we present basic versions of the loop invariant rules; in particular,
loop termination and using the loop’s modifier set for framing is not considered in
the following. Enhanced loop invariant rules are presented in Chapter 9. Moreover,
Section 16.3 provides a more intuitive introduction to formal verification of while
loops with invariants and contains a tutorial on systematic development of loop
invariants.

Also, automatic invariant generation is a hot research topic—a particular approach
to this challenge is described in Section 6.3.

The loop invariant rule has been cross-verified against another language framework
for an earlier version of JavaDL [Widmann, 2006].

3.7.2.1 Loop Specifications

A loop specification is similar to a method contract in that it formalizes an abstraction
of the relationship between the state before a method or loop is executed and the
state when the method or loop body, respectively, terminates. In that sense, a loop
invariant is both the pre- and the postcondition of the loop body. Yet, in most cases, a
useful loop invariant is more difficult to find than a method contract because it relates
the initial state with the states after every loop iteration.

Like method contracts, loop specifications contain two additional elements: (a) a
modifier set describing which parts of the state the loop body can modify and (b) a
termination witness providing an argument for the loop’s termination. As said above,
the basic rules presented in this chapter do not make use of this additional information.
Extended rules considering modifier sets and termination are presented in Chapter 9.

Definition 3.23. A loop specification is a tuple

(inv,mod, term)

that consists of
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• a loop invariant inv ∈ DLFml,
• a modifier set mod ∈ TrmLocSet ∪{STRICTLYNOTHING}.
• a termination witness term ∈ TrmAny∪{PARTIAL}.

Specification components may make use of special program variables which allow
them to refer to the execution context:

• all local variables that are defined in the context of the loop,
• self : C for references to the receiver object of the current method frame (not

available if that frame belongs to a static method),
• heap : Heap referring to the heap in the state after the current iteration,
• heappre : Heap referring to the heap in the initial state of the immediately en-

closing method frame.

3.7.2.2 Basic Version of the Loop Invariant Rule

The first basic loop invariant rule we consider makes two assumptions: It is only
applicable if (1) the loop guard is a simple expression se, i.e., the loop condition
cannot have side effects and cannot terminate abruptly. And (2) the loop body pnorm
must be guaranteed to always terminate normally, i.e.,

1. execution of pnorm does not raise an exception, and
2. pnorm does not contain break, continue, return statements.

The rule takes the form shown in Figure 3.8.

simpleInv

=⇒ inv
=⇒AheapAlocal

(
(inv∧ se .

= TRUE) → [pnorm]inv
)

=⇒AheapAlocal
(
(inv∧ se .

= FALSE) → [π ω]ϕ
)

=⇒ [π while(se) { pnorm } ω]ϕ

where
• se is a simple expression and pnorm cannot terminate abruptly;
• (inv,mod, term) is a loop specification for the loop to which the rule is

applied;
• Aheap = {heap := ch} anonymizes the heap; ch:Heap is a fresh constant;
• Alocal = {l1 := c1 ‖ · · · ‖ ln := cn} anonymizes all local variables l1, . . . , ln

that are the target of an assignment (left-hand side of an assignment state-
ment) in pnorm; each ci is a fresh constant of the same type as li.

Figure 3.8 Basic loop invariant rule

When a method contract is used for verification, the validity of the contract is not
part of the premisses of the contract rule but a separate proof obligation. In contrast
to that, the loop invariant rule combines both aspects in its three premisses.

• Base case: The first premiss is the base case of the inductive argument. One has
to show that the invariant is satisfied whenever the loop is reached.
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• Step case: The second premiss is the inductive step. One has to show that, if the
invariant holds before execution of the loop body, then it still holds afterwards.6

• Use case: The third premiss uses the inductive argument and continues the sym-
bolic execution for the code π ω following the loop but now with the knowledge
that the invariant holds.

Note that, in the step case, one can assume the loop condition se to be TRUE (i.e.,
the loop is iterated once more). In the use case, on the other hand, one can assume
that the loop condition se is FALSE (i.e., the loop has terminated).

The combination AheapAlocal is called the anonymizing update application of
the loop rule. It needs to be added to the second and the third premiss of the rule,
which refer to the state after an unknown number of loop iterations. Its application
ensures that only the knowledge encoded in inv can be used to reason about the heap
locations and the local variables changed by the loop. Instead, of using the update
application Aheap that anonymizes all heap locations, one can use a more precise
update Amod that only anonymizes the locations in mod (see the previous section on
method contracts and Section 9.4.1 for more information). This requires, however,
the additional proof that the loop body does indeed not modify any other locations
than those in mod.

3.7.2.3 Loop Conditions with Side-effects

In Java, loop conditions may have side effects. For example, the loop condition in
while(a[i++] > 0) { ... }

has a side effect on the local variable i.
In Figure 3.9, we present a loop invariant rule that allows the loop condition to

be a nonsimple expression nse, i.e., to have side effects. The idea is to capture the
value of nse in a fresh Boolean program variable b. To account for the effects of the
condition, its evaluation is repeated right before the loop body.

While the rule sideEffectInv takes into account any state changing side effects
in nse, it does not yet capture the exceptions that it might throw. For example,
the possibility that the loop condition a[i++] in the above example can throw an
ArrayIndexOutOfBoundsException is not considered.

3.7.2.4 Loops with Abrupt Termination

In the loop invariant rules shown above (simpleInv and sideEffectInv), the loop body
is executed outside its usual context π ω . Thus, a continue or a break statement
does not make sense. Likewise, a return statement is not sensible since it is not

6 Note that the loop body in the step case is not enclosed in the execution context π ω . Nevertheless,
the innermost method frame that is part of π has to be added implicitly so that method invocations
within pnorm can be resolved correctly.
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sideEffectInv

=⇒ inv
=⇒AheapAlocal

(
(inv∧ [b=nse; ]b .

= TRUE) → [b=nse; pnorm]inv
)

=⇒AheapAlocal
(
(inv∧ [b=nse;]b .

= FALSE) → [π b=nse; ω]ϕ
)

=⇒ [π while(nse) { pnorm } ω]ϕ

where
• pnorm and nse cannot terminate abruptly;
• (inv,mod, term) is a loop specification for the loop to which the rule is

applied;
• Aheap = {heap := ch} anonymizes the heap; ch:Heap is a fresh constant;
• Alocal = {l1 := c1 ‖ · · · ‖ ln := cn} anonymizes all local variables l1, . . . , ln

that are the target of an assignment (left-hand side of an assignment state-
ment) in pnorm or in nse; each ci is a fresh constant of the same type
as li;

• b is a fresh Boolean variable.

Figure 3.9 Invariant rule for loops with side effects in the loop condition

embedded into the original method frames, and exceptions do not occur within the
right try-catch-finally block.

In order to be able to deal with loop bodies in isolation, we transform them in
such a way that abnormal termination is turned into normal termination in which
certain flags are set signaling the abnormal termination. We will not go into details
of this transformation here, but illustrate it using one synthetic example loop, which
exhibits all possible reasons for abnormal termination:

while(x >= 0) {
if(x == 0) break;
if(x == 1) return 42;
if(x == 2) continue;
if(x == 3) throw e;
if(x == 4) x = -1;

}

We use the Boolean variables BREAK and RETURN, and a variable EXCEPTION
of type Throwable to store and signal the termination state of the loop body. In the
example, the original loop body is translated into the block
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loopBody: {
try {

Break=false; Return=false; Exception=null;
if(x == 0) { Break=true; break loopBody; }
if(x == 1) { res=42; Return=true; break loopBody; }
if(x == 2) { break loopBody; }
if(x == 3) { throw e; }
if(x == 4) { x = -1; }

} catch(Throwable e) {
Exception = e;

}
}

The result of the transformation is guaranteed to terminate normally, with the original
termination reason caught in the Boolean flags.

In general, this transformation can be more involved if it has to deal with nested
labeled blocks and loops. It then resembles the translation outlined in Section 3.6.4
for loop unwinding.

Using the above transformation, the loop invariant rules that can handle both
abrupt termination and side effects in the loop condition takes the form shown in
Figure 3.10.

In the second premiss of this rule (subformula post), if a loop is left via abnormal
termination rather than by falsifying the loop condition, the loop invariant does not
need be reestablished but the execution of the program in its original context π ω

is resumed—retriggering an exception or return statement if they were observed
in the loop body. The rationale behind this is that loop invariants are supposed to
hold whenever the loop is potentially reentered, which is not the case if a return,
throw, or break statement has been executed. If, however, a continue statement is
executed in the loop body p, the transformation ̂b=nse; p terminates normally and
the invariant has to hold before the next loop iteration is started (as in the NORMAL
case).

In this chapter, we have not presented a loop invariant rule that handles loops
in 〈·〉-modalities and, thus, needs to guarantee program termination; this issue is
addressed in Section 9.4.2. One aspect shall be mentioned here nonetheless: When
termination matters, the modality 〈·〉 is used instead of [·]. However, the box modality
[b=nse], which occurs on the left-hand side of the second and the third premiss in
rules sideEffectInv (Figure 3.9) and abruptTermInv (Figure 3.10), must remain a box
modality. If it were to be changed into a diamond modality, then a nonterminating
loop condition would make these two premisses of the loop invariant rules trivially
valid; the calculus would be unsound.
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abruptTermInv

=⇒ inv
=⇒AheapAlocal

(
(inv∧ [b=nse; ]b .

= TRUE) → [ ̂b=nse; p]post
)

=⇒AheapAlocal
(
(inv∧ [b=nse;]b .

= FALSE) → [π b=nse; ω]ϕ
)

=⇒ [π while(nse) { p } ω]ϕ

where
• (inv,mod, term) is a loop specification for the loop to which the rule is

applied;
• Aheap = {heap := ch} anonymizes the heap; ch:Heap is a fresh constant;
• Alocal = {l1 := c1 ‖ · · · ‖ ln := cn} anonymizes all local variables l1, . . . , ln

that are the target of an assignment (left-hand side of an assignment state-
ment) in pnorm or in nse; each ci is a fresh constant of the same type
as li;

• b is a fresh Boolean variable;
• ̂b=nse; p is the result of transforming b=nse; p as described above to handle

abrupt termination;
• post is the formula

(EXCEPTION 6 .= null→ [π throw Exception; ω]ϕ)
∧ (BREAK

.
= TRUE→ [π ω]ϕ)

∧ (RETURN
.
= TRUE→ [π return res; ω]ϕ)

∧ (NORMAL→ inv)

with
NORMAL ≡ BREAK

.
= FALSE ∧

RETURN
.
= FALSE ∧

EXCEPTION
.
= null

Figure 3.10 Invariant rule for loops with abrupt termination


