Chapter 4
Proof Search with Taclets

Philipp Riimmer and Mattias Ulbrich

4.1 Introduction

The primary means of reasoning in a logic are calculi, collections of purely syntactic
operations that allow us to determine whether a given formula is valid. Two such
calculi are defined in Chapter 2 and 3 for first-order predicate logic and for dynamic
logic (DL). Having such calculi at hand enables us, in principle, to create proofs of
complex conjectures, using pen and paper, but it is obvious that we need computer
support for realistic applications. Such a mechanized proof assistant primarily helps
us in two respects: 1. The assistant ensures that rules are applied correctly, e.g.,
that rules can only be applied if their side-conditions are not violated, and 2. the
assistant can provide guidance for selecting the right rules. Whereas the first point is
a necessity for making calculi and proofs meaningful, the second item covers a whole
spectrum from simple analyses to determine which rules are applicable in a certain
situation to the complete automation that is possible for many first-order problems.

Creating a proof assistant requires formalizing the rules that the implemented
calculus consists of. In our setting—in particular looking at calculi for dynamic
logic—such a formalization is subject to a number of requirements:

» JavaDL has a complex syntax (subsuming the actual Java language) and a large
number of rules: first-order rules, rules for the reduction of programs and rules
that belong to theories like integer arithmetic. Besides that, in many situations
it is necessary to introduce derived rules (lemmas) that are more convenient or
that are tailored to a particular complex proof. This motivates the need for a
language in which new rules can easily be written, rather than hard-coding rules
as it is done in high-performance automated provers (for first-order logic). It is
also necessary to ensure the soundness of lemmas, i.e., we need a mechanized
way to reason about the soundness of rules.

* Because complete automation is impossible for most aspects of program verifica-
tion, the formalization has to support interactive theorem proving. KeY provides
a graphical user interface (GUI) that makes most rules applicable only using
mouse clicks and drag and drop. This puts a limit on the complexity that a single

107

108 4 Proof Search with Taclets

rule should have for keeping the required user interaction clear and simple, and
it requires that rules also contain “pragmatic” information that describes how
the rules are supposed to be applied. Accounts on the user interface in KeY are
Chapter 15 and [Giese, 2004].

* The formalization also has to enable the automation of as many proof tasks as
possible. This covers the simplification of formulas and proof goals, the symbolic
execution of programs (which usually does not require user interaction) as well
as automated proof or decision procedures for simpler fragments of the logic
and for theories. The approach followed in KeY is to have global strategies that
give priorities to the different applicable rules and automatically apply the rule
that is considered most suitable. This concept is powerful enough to implement
proof procedures for first-order logic and to handle theories like linear integer
arithmetic or polynomial rings mostly automatically.

This chapter is devoted to the formalism called faclets that is used in KeY to meet
these requirements. The concept of taclets provides a notation for rules of sequent
calculi, which has an expressiveness comparable to the “textbook-notation” that is
used in Chapters 2 and 3, while being more formal. Compared to textbook-notation,
taclets inherently limit the degrees of freedom (nondeterminism) that a rule can
have, which is important to clarify user interaction. Furthermore, an application
mechanism—the semantics of taclets—is provided that describes when taclets can be
applied and what the effect of an application is.

Historically, taclets have first been devised by Habermalz [2000b,a] under the
name “Schematic Theory Specific Rules,” with the main purpose of capturing the
axioms of theories and algebraic specifications as rules. The language is general
enough, however, to also cover all rules of a first-order sequent calculus and most
rules of calculi for dynamic logic. The development of taclets as a way to build
interactive provers was influenced to a large degree by the theorem prover InterACT
[Geisler et al., 1996], but also has strong roots in more traditional methods like tactics
and derived rules that are commonly used for higher-order logics (examples for such
systems are Isabelle/HOL, see [Nipkow et al., 2002], Coq, see [Dowek et al., 1993],
or PVS, see [Owre et al., 1996]). Compared to tactics, the expressiveness of taclets
is very limited, for the reasons mentioned above. A further difference is that taclets
do not (explicitly) build on a small and fixed set of primitive rules, as tactics do in
(foundational) higher-order frameworks like Isabelle. It nevertheless is a good idea
to add comments in files containing taclets that signal which are meant to be axioms
and which are derived rules that require a proof from the axioms. This has, e.g., been
consistently done for the data type of finite sequences, see Section 5.2.

4.1.1 Purpose and Organization of this Chapter

The purpose of this chapter is twofold: on the one hand, it provides new KeY users
an introduction to the way calculus rules are implemented in the KeY system; on

4.2. A Taclet Tutorial 109

the other hand, it is a reference manual of the taclet formalism, targeting more
experienced users as well as developers. The main sections of the chapter are:

* A taclet tutorial (Section 4.2): a high-level overview of the most important
features provided by the taclet language, and the methodology how taclets are
used for introducing new theories.

o The taclet reference manual (Section 4.3): a detailed description of the taclet
language, and its semantics.

* Reasoning about the soundness of taclets (Section 4.4): techniques to mechani-
cally prove the soundness of taclets, by deriving a formula representation of the
logical content of a taclet.

4.2 A Taclet Tutorial

The next pages give a tour through the taclet language and illustrate the most im-
portant taclet features by means of a case study. Taclets are used in the KeY system
for multiple purposes: for the definition of first-order calculus rules, for the rules of
the JavaDL calculus, to introduce data types and decision procedures, and to give
users the possibility to define and reason about new logical theories. Users typically
encounter taclets in the context of the last scenario, which is why our tutorial will
describe the introduction of a new theory in KeY: we consider a simplified version
of a theory of /ists, and refer the reader to a more complete and practical version of
finite sequences in Chapter 5 .

Theories are introduced by declaring a vocabulary of fypes and (interpreted)
functions, a set of basic axioms defining the semantics of the theory, as well as a set
of derived rules that are suitable for the construction of actual proofs. Both axioms
and derived rules are formulated as taclets in KeY, with the difference that axioms
are assumed and cannot be proven to be correct, while derived rules logically follow
from the axioms.

4.2.1 A Basic Theory of Lists

We will work with a simple data structure of lists resembling the data type found
in Lisp and functional programming languages. The core theory, in the following
sections denoted by Ty, is defined through a type List; elements of the data type
are generated by two constructor symbols, nil and cons, representing the empty list
and extension of a list by adding a new head element respectively. For simplicity we
consider only elements of type int here. The theory of lists is in no way affected by
the type of its elements.

110 4 Proof Search with Taclets

nil : List

cons : int X List — List

For instance, the sequence (3,5, —2) of integers will be represented through the term
cons(3,cons(5,cons(—2,nil))).

The symbols nil and cons are the only constructors of lists, and lists furthermore
represent a free algebraic data type, which implies that:

 every list can be represented as a term only consisting of nil and cons, and
possibly functions needed to construct the list elements (the first argument of
cons);

* the representation of a list using nil and cons is unique assuming a unique
representation of the integers.

Those properties are typically expressed with the help of axioms, which eliminate all
interpretations of the constructor symbols that are inconsistent with the two properties.
Axioms are formulas that are assumed to hold in all considered interpretations of
the theory symbols; there is no way to prove that axioms are correct, since they are
independent assumptions and cannot be derived from any other rules or axioms of
the logic. The consistency of the axioms can be shown by defining a model in which
all axioms are true: one such model is obtained by considering the set of ground
terms over the constructors nil and cons and a unique representation of all integers
as universe, and interpreting nil and cons and all integer ground terms as themselves.
More details are given in Chapter 5 on theories. For our core theory of lists, we need
three axioms:

(@[l/nil) A VList I; Nint a; (¢ — ¢[l/cons(a,l)])) — VListI; ¢ 4.1)
VList [; Yint a; (nil # cons(a,l)) 4.2)

VList l1,1; Vint ay,ay; (Cons(al,ll) =cons(ar,b) — ai =ax N ilz) 4.3)

The axiom (4.1) reflects the assumption that any element of the list data type can
be constructed using the symbols nil and cons. It can be shown that this assumption
cannot precisely be captured using an axiom in first-order logic, it can only be
approximated using weaker formulas, for instance using the induction axiom (4.1)
shown here. The formula represents an axiom schema, since it is formulated with
the help of a schematic variable ¢ that stands for an arbitrary formula that has to be
chosen when using the axiom in a proof; this formula ¢ will usually contain the free
variable [of type List.

In other words, (4.1) should be read as an infinite set of first-order formulas, one
for each possible choice of the symbol ¢. The axiom schema introduces an induction
principle for lists, resembling the one for natural numbers (nonnegative integers)
defined in Section 2.4.2: if it is possible to show that some formula ¢ holds for the
empty list / = nil (denoted by the substitution [//nil] replacing every occurrence of /
with nil), and that ¢ implies that also @[/ /cons(a,l)] holds for any a, then it can be
concluded that ¢ holds for all lists I.

4.2. A Taclet Tutorial 111

—— Taclet

\sorts {
List;
}

\functions {
\unique List nil;
\unique List cons(any, List);

}

\axioms {
list_induction {
\schemaVar \formula phi;
\schemaVar \variable List 1lv;
\schemaVar \variable any av;

\find(==> \forall 1lv; phi)
\varcond (\notFreeIn(av, phi))

\replacewith(==> {\subst 1lv; nil} phi
& \forall 1lv; \forall av;
(phi -> {\subst 1lv; cons(av, 1lv)}phi))

Taclet —

Figure 4.1 Vocabulary and induction axiom for a simplified theory of lists

Induction axioms are relevant for all theories that are assumed to be generated
by some set of function symbols, in the sense that all elements can be written as
terms over this set of functions. In particular, every algebraic data type (an example
of which are lists) comes with a predefined induction axiom similar to (4.1).

The axioms (4.2) and (4.3) represent uniqueness of the representation of a list
using nil and cons. (4.2) expresses that the ranges of nil and cons do not overlap,
whereas (4.3) states that cons is an injective function; in combination, the axioms
imply that two lists are equal only if they contain the same number of elements, and
the elements coincide.

4.2.2 The List Theory in Concrete Syntax

We now explain how the theory T7;,, of lists (as introduced so far) can be modeled in
the concrete syntax of the KeY system. We first use declarations and taclets in order
to model the vocabulary and axioms of the theory in a direct way, and then describe
how further rules can be derived to make the theory more convenient to work with in
practice. Derived rules are also essential for automating the construction of proofs.

112 4 Proof Search with Taclets

The taclet syntax is explained in Section 4.3.1, and a complete description of the KeY
syntax is given in Appendix B.

Figure 4.1 shows the List type, the function symbols nil and cons, as well as the
induction axiom (4.1) in taclet syntax. The \sorts block is used to declare the types
of the theory, whereas \functions contains the declaration of available function
symbols and their signature (the result type and the type of arguments), in syntax
inspired by Java. The declarations and definitions would normally be placed in the
beginning of a KeY problem file, and can then be used for formulating and proving
formulas involving T7;s; the concrete steps to do this are described in Chapter 15,
and later chapters of the book.

Figure 4.1 also captures the two axioms (4.2)—(4.3) of lists. KeY provides a built-in
keyword for specifying the uniqueness of functions, so that the axioms (4.2) and (4.3)
do not have to be written by hand; it suffices to add the flag \unique in the function
declarations. A function declared to be \unique is injective, and the values of two
distinct \unique functions are never equal. The \unique flag implies that KeY will
internally generate (and automatically apply) rules that capture those assumptions.

The \rules block contains the taclet list_induction representing the induction
axiom (4.1). Operationally, the rule list_induction is applied to an existing for-
mula VList [; ¢, and replaces this formula with ¢[l/nil] A VList I; Vint a; (q) —

o[l /cons(a,l)]):

I' = ¢[l/nil) AVList I; Vint a; (¢ — @[l /cons(a,l)]),A
[— VList[; ¢, A

list_induction

In order to specify this transformation, the taclet uses a number of features of the
taclet language, which are explained in the following paragraphs.

* \find defines a pattern that must occur in the sequent to which the taclet
is supposed to be applied. In this taclet, the pattern ==> \forall 1lv; phi
matches on quantified list formulas in the succedent of a sequent; accordingly,
list_induction can be applied whenever such a quantified formula turns up in
a proof goal. The expression matched by \find is called the focus of a taclet
application.

¢ \replacewith tells how the focus of the taclet application will be altered: a
new proof goal is created from the previous one by replacing the expression
matched in the \find part with the expression in the \replacewith part.

For list_induction, the quantified list formula in the succedent will be replaced
by the somewhat complicated expression after the arrow ==>; upon closer in-
spection, it can be seen that the expression indeed represents the conjunction
®[l/nil] A VList I; Vint a; (¢ — ¢[l/cons(a,l)]). The operator {\subst x; r}
expresses substitution of a variable x with a term ¢.

Note 4.1. The keywords of the taclet language reflect the direction in which sequent
calculus proofs are constructed: we start with a formula that is supposed to be proven
and create a tree upwards by analyzing the formula and taking it apart. Taclets
describe expansion steps (or, as a border case, closure steps), and by the application

4.2. A Taclet Tutorial 113

of a taclet we mean the process of adding new nodes to a leaf of a proof tree following
this description.

The taclet illustrates a further important feature of the taclet language, namely the
use of schema variables in order to create flexible rules that can be instantiated in
many concrete ways. The taclet list_induction contains three such schema variables,
phi, 1v, and av. Every schema variable is of a certain kind, defining which expres-
sions the variable can stand for (a precise definition is given in Section 4.3.2). In our
example, phi represents an arbitrary formula, while 1v represents bound variables
of type List, and av bound variables of type int. The possible valuations of schema
variables are controlled with the help of variable conditions, and the \varcond
clause in list_induction:

* \varcond specifies conditions that have to hold for admissible instantiations of
the schema variables of a taclet. The condition \notFreeIn in list_induction, in
particular, expresses that the bound variable av must not occur as a free variable
in the formula phi.

Note that some, but not all occurrences of the schema variable phi in the rule
list_induction are in the scope of a quantifier binding av. Without the variable
condition \notFreeIn(av, phi) it would be ambiguous whether av is allowed to
occur in phi or not.

Example 4.2. We illustrate how the rule list_induction can be used to prove a theorem
in our theory Tz, the fact that every list is constructed using either nil or cons:

VList [, (l =nil VvV 3List m,int b; | = cons(b,m)) 4.4)

For this, we apply the sequent calculus notation introduced in Section 2.2.2. This
sentence already has the shape of the formula \forall 1v; phi in the \find part
of the taclet list_induction, so that the taclet can directly be applied; this has been
done in step () in the proof in Figure 4.2. It should be noted, however, that inductive
proofs often require appropriate strengthening of the formula to be proven: in order
to show that Vx; ¢ is a theorem, first a formula that implies Vx; y is introduced using
the cut rule, and proven by means of induction. Luckily, no such strengthening is
necessary in the example at hand.

When applying list_induction at (), all schema variables occurring in the taclet
have to be instantiated with concrete syntactic objects: the variable 1v is mapped
to the bound variable [, the variable av to the (fresh) variable a, and the formula
variable phi to the body ! = nil vV 3List m,int b; | = cons(b,m). When constructing
the proof in the KeY system, the tool is able to determine those instantiations auto-
matically, it is only necessary to tell KeY to apply list_induction to the formula (4.4)
in the antecedent of the proof goal.

The rest of the proof can be constructed in a comparatively straightforward way
(and can in fact be found automatically by KeY). At (xx), it can be observed that
nil = nil holds, so that the whole conjunct nil = nil \V List m,int a; nil = cons(a,m)
can be reduced to frue and eliminated. Finally, at (x * %), we can observe that the

114 4 Proof Search with Taclets

*

-+« = cons(d,c) = nil, cons(d,c) = cons(d,c)
-+« = cons(d,c) = nil, 3List m,int b; cons(d,c) = cons(b,m)
¢ = nil\VV 3List m,int b; ¢ = cons(b,m)
= cons(d,c) = nil V 3List m,int b; cons(d,c) = cons(b,m)
(¢ = nil vV 3List m,int b; ¢ = cons(b,m))
— (cons(d,c) = nil vV 3List m,int b; cons(d,c) = cons(b,m))
VList I; Vint a; (
= (I =nilV3List m,int b; | = cons(b,m))
— (cons(a,l) = nil v 3List m, int b; cons(a,l) = cons(b,m)))

(%)

(nil = nil v 3List m,int a; nil = cons(a,m))
AVList I; Vint a; (
(I = nil v 3List m,int b; | = cons(b,m))
— (cons(a,l) = nil v List m,int b; cons(a,l) = cons(b,m)))

*
) == VList I; (I = nilV 3List m,int b; | = cons(b,m))

Figure 4.2 Inductive example proof

existentially quantified variables m,b can be instantiated with the terms ¢ and d,
respectively, concluding the proof.

4.2.3 Definitional Extension of the List Theory

At this point we have a fully defined, albeit very minimalist theory T, of lists
available, which could in principle be used to state and prove conjectures about lists
in KeY, or to reason about programs operating on lists or sequences. Most practical
applications require a richer set of operations on lists, however; a general strategy to
introduce such operations, without putting the consistency of the theory at risk, is
known as definitional extension, and proceeds by introducing further functions or
predicates over lists, and defining their intended meaning through recursive axioms
according to the list constructors. Again, for more details we refer to the dedicated
Chapter 5 on theories.

In the scope of our taclet tutorial, we consider two defined functions for computing
length and concatenation of lists; the resulting extension of 77, will be denoted by
TLLiA;t, and include the following additional function symbols:

length : List — Int
append : List X List — List

The semantics of the functions can be formulated by simple recursion over one of
the List arguments of each function, in mathematical notation leading to equations as
follows:

4.2. A Taclet Tutorial 115

—— Taclet

\functions {
int length(List);
List append(List, List);

}
\axioms {
length_nil {
length(nil) = 0
};
length_cons {
\forall List 1; \forall any a; length(cons(a, 1)) = 1 + length(l)
};
append_nil {
\schemaVar \term List 1;
\find(append(nil, 1))
\replacewith(1)
};
append_cons {
\schemaVar \term any a;
\schemaVar \term List 11;
\schemaVar \term List 12;
\find(append(cons(a, 11), 12))
\replacewith(cons(a, append(1l1, 12)))
}
}
Taclet —
Figure 4.3 Vocabulary and axioms for defined list functions
0 if [= nil
length(l) = ,] , 4.5)
length(I'Y+1 if I = cons(a,l’)
lz if ll =nil
append(ly,1) = ,) , (4.6)
cons(a,append(l],,)) if l; = cons(a,l})

The corresponding declarations and axioms in KeY syntax are shown in Figure 4.3.
The definitions can again be put in a KeY problem file, normally right after the
definitions from Figure 4.1, and extend the basic list theory with the two additional
functions length and append (as a technical detail, it is indeed necessary that the new
axioms appear textually after the declarations of the constructors nil and cons in the
KeY file, since KeY adopts a single-pass parsing approach).

Figure 4.3 illustrates that axioms can be written in two different styles. The first
two axioms length_nil and length_cons are formulated as (quantified) formulas, and
closely capture the recursive equation (4.5). When applying either rule in a proof, the

116 4 Proof Search with Taclets

KeY prover will add the given formula to the antecedent of a proof goal; afterwards,
quantifiers in the formula can be eliminated by instantiating with ground terms
occurring in the goal, and the resulting equation can be used for equational rewriting.
An example showing the rules is the following proof; after application of length_nil
and length_cons, the proof can be closed using equational and arithmetic reasoning
(not shown here):

*
length(cons(1,nil)) = 1+ length(nil),length(nil) = 0
= length(cons(1,nil)) = 1
length(cons(1,nil)) = 1+ length(nil)
= length(cons(1,nil)) =1
VList l. Vint a. length(cons(a,l)) =1 —|— length(l)
= length(cons(l,ml))
= length(cons(1,nil))

length_nil

length_cons

In contrast, the axioms append_nil and append_cons are formulated in a similar
operational style as the induction axiom in Figure 4.1; the main difference to the
induction axiom is the fact that \find expressions in Figure 4.3 are no longer
sequents but terms (they do not contain an arrow ==>). Rules of this form are called
rewriting taclets in the KeY terminology, and represent transformations that modify
subexpressions (either a formula or a term) of arbitrary formulas in a proof, both
in the antecedent and succedent, leaving the surrounding formula unchanged. For
instance, the rule append_nil can be used to rewrite any term append (nil,[) to the
simpler expression /, and rule append_cons is applicable to any expression of the
form append(cons(a,ly),1,). An example proof is:

ES

= cons(a,l) = cons(a,l)

d_nil
append_n == cons(a,append(nil,l)) = cons(a,l)

d
append_cons =/ append(cons(a,nil),l) = cons(a,l)

Compared to the declarative style of length_nil and length_cons, the taclets
append_nil and append_cons have both advantages and disadvantages: in partic-
ular, rewriting taclets are usually a lot more convenient to apply when constructing
proofs interactively, since expressions can be simplified (or “evaluated”) with only
a few mouse clicks, in contrast to the multiple rule applications needed when us-
ing axiom length_nil. In addition, the rewriting taclet append_nil also captures the
direction in which the corresponding equation append(nil, 1) = 1 should be
applied, namely rewriting the more complicated left-hand side to the simpler right-
hand side, and can therefore also be applied automatically by the KeY system (see
Section 4.3.1.10).

On the other hand, since the rules length_nil and length_cons are closer to the
recursive mathematical formulation, the introduction of axioms in this style tends

4.2. A Taclet Tutorial 117

to be less error-prone. In the exceedingly rare case that a user wants to rewrite 1 to
append(nil, 1) when constructing a proof, append_nil is actually less practical
than the axiom length_nil, since the simple equation introduced by the latter rule can
be applied in both directions. Rewriting from right to left is still possible even with
append_nil, however, by means of introducing a cut in the proof.

4.2.4 Derivation of Lemmas

An important feature of the taclet language, and of the KeY prover, is the ability to
easily add further derived rules to a theory. Such rules represent lemmas that logically
follow from the theory axioms, and can help structure proofs because the lemmas
can be proven once and for all, and later be applied repeatedly for proving theorems.
The number of derived rules often exceeds the number of axioms of a theory by far:
to reduce the risk of inconsistencies, the set of axioms is usually kept minimalist,
whereas any number of derived rules can be added for reasons of convenience. The
soundness of derived rules can be verified using the same calculus as for proving
theorems, by translating taclets to meaning formulas that capture the logical content
of a rule (see Section 4.4).

A small selection of derived rules for the theory T2 is shown in Figure 4.4; many
more relevant lemmas exist. The first difference to earlier taclets is the fact that rules
are now formulated within a \rules block, and no longer as \axioms, to indicate
that the rules are lemmas.' The definitions from Figure 4.4 can again be put in a KeY
problem file, either after the contents of Figures 4.1 and 4.3, or in a separate file that
KeY users can load on demand. In the latter case, the KeY system will request that
the soundness of the newly introduced rules is immediately justified by showing that
their meaning formula is valid (Section 4.4).

The rewriting rules length_nil_rw and length_cons_rw in Figure 4.4 are oper-
ational versions of the axioms length_nil and length_cons, and correspond to the
way the axioms append_nil and append_cons are written. Since rewriting rules are
usually more convenient than axioms in the form of formulas, as illustrated by the ex-
amples in the previous section, length_nil_rw and length_cons_rw are useful derived
rules; their correctness is directly implied by the theory axioms, of course.

The rule append_nil_right captures the fact that nil is also a right-neutral element
for concatenation append, and complements the axiom append_nil. The soundness
of append_nil_right has to be shown by induction over the first argument of append,
with the help of the axiom list_induction. Similarly, length_append expresses that
length distributes over concatenation, and can be proven correct by induction over
the first argument of append. Both append_nil_right and length_append are rules
that are frequently needed when proving theorems over lists, and present in every
self-respecting list theory.

! In built-in rules of the KeY system, moreover the annotation \1lemma can be added in front of a rule
to indicate that a correctness proof has been conducted; the proof will then be checked automatically
during regression testing.

118 4 Proof Search with Taclets

—— Taclet

\rules {
length_nil_rw {
\find(length(nil))
\replacewith(0)
}

length_cons_rw {
\schemaVar \term any a;
\schemaVar \term List 1;
\find(length(cons(a, 1)))
\replacewith(1 + length(l))
}

append_nil_right {
\schemaVar \term List 1;
\find(append(1l, nil))
\replacewith(1)

};

length_append {
\schemaVar \term List 11, 12;
\find(length(append(1l1, 12)))
\replacewith(length(1l1l) + length(12))
};

length_cons_assume {
\schemaVar \term List 1, 11;
\schemaVar \term any a;
\assumes(1 = cons(a, 11) ==>)
\find(length(1)) \sameUpdateLevel
\replacewith(1 + length(11))

}

list_ctor_split {
\schemaVar \term List 1;
\schemaVar \skolemTerm List skl;
\schemaVar \skolemTerm any ska;
\find(1) \sameUpdateLevel
\varcond(\new(ska, \dependingOn(1l)), \new(skl, \dependingOn(1l)))
\replacewith(nil) \add(1 = nil ==>);
\replacewith(cons(ska, skl)) \add(1 = cons(ska, skl) ==>)

Taclet —

Figure 4.4 Derived taclets for the list theory TLI;A;,

The rules length_cons_assume and list_ctor_split are more sophisticated, and
show several further features of the taclet language. The rule length_cons_assume
is similar to length_cons_rw, but is (also) applicable to list terms that are not of the

4.2. A Taclet Tutorial 119

form cons(a,l): replacing length(l) with 1+ length(l;) is admissible provided that
the equality [= cons(a,l;) holds for some element a. This can be expressed using
the keyword \assumes:

* \assumes imposes a condition on the applicability of a taclet, and has a sequent
as parameter. In the case of length_cons_assume, the \assumes clause states
that the taclet must only be applied if an equation ! = cons(a, ;) appears in the
antecedent of a goal (the sequent may contain further formulas).

* \sameUpdateLevel is a state condition that can be added to rewriting taclets,
and is relevant in the case of taclets in JavaDL proofs. The flag ensures that
the focus of the taclet application (the term that is represented by length(l)
in rule length_cons_assume) does not occur in the scope of modal operators
apart from updates. Updates are allowed above the focus, but in this case the
equation [= cons(a,l;)—or, more generally, all formulas referred to using
\assumes, \replacewith and \add—have to be in the scope of the same
update.

This flag \sameUpdateLevel is necessary to ensure the soundness of the rule
length_cons_assume in dynamic logic, and in fact required for most rewriting rules
that contain any \assumes or \add clauses. In order to illustrate the effect of
\sameUpdateLevel, we consider two potential applications of length_cons_assume:

Mlegal:
v = cons(a,w) = {w :=nil}p(1 +length(w))
v = cons(a,w) = {w := nil} p(length(v))

Legal:
{w:=nil}(v = cons(a,w)) = {w :=nil} p(1 + length(w))
{w = nil}(v = cons(a,w)) = {w = nil} p(length(v))

The first application of length_cons_assume has to be ruled out, and is prevented
by KeY in the presence of the \sameUpdateLevel flag, since the application would
incorrectly move the term w into the scope of the update w := nil redefining the
meaning of w: in the equation v = cons(a,w), the term w represents arbitrary lists,
whereas the update defines w to denote the empty list. The application illustrates the
case of a symbol changing its meaning due to the presence of modal operators.” The
second application of length_cons_assume is correct and possible in KeY, because
all formulas involved are in the scope of the same update.

The rule list_ctor_split enables users to introduce case splits for arbitrary list
expressions [in a proof: either such an expression has to denote an empty list
(I = nil), or the list must have length at least one and can be represented in the

2 It should be noted, however, that KeY will usually apply updates immediately and thus simplify the
formula {w := nil} p(length(v)) to p(length(v)); the illegal situation shown here therefore requires
some mischievous energy to construct in an actual proof. Rule length_cons_assume without flag
\sameUpdateLevel would be unsound nevertheless.

120 4 Proof Search with Taclets

form [= cons(a,l;). In sequent notation, such case splits can be described using the
following rule, in which ¢,d are required to be fresh constants, and ¢[l] expresses
that the list expression / occurs anywhere in the conclusion:

Il =nil = ¢[nil], A I',l = cons(c,d) = ¢[cons(c,d)],A
I' = ¢[l],A

In contrast to all taclets shown up to this point, list_ctor_split contains two goal
templates separated by a semicolon ;, each with one \replacewith and one \add
clause, corresponding to the two cases (or premises) to be generated when applying
the rule. The \add clauses take care of adding the equations [= nil and [= cons(a,l;)
in the antecedent:

¢ \add specifies formulas that are added to a sequent when the taclet is applied. The
argument of \add is a sequent with the formulas to be added to the antecedent
and the succedent, respectively.

The taclet also states, by means of the variable condition \new, that ska and skl
have to be instantiated with fresh Skolem symbols each time the taclet is applied.
The correctness of list_ctor_split can again be proven by means of induction: the
meaning formula of the taclet is essentially the formula discussed in Example 4.2.

Derived taclets can be used not only to augment user-defined theories, but also for
all built-in data types and logics of the KeY system: for each proof to be constructed,
a set of tailor-made taclets can be loaded into the system. The soundness of the
derived taclets has to be shown as outlined before, by first producing a proof of the
meaning formula of the taclets. For instance, a user might choose to introduce the
following rule for modus ponens of antecedent formulas:

—— Taclet

\rules {
mpLeft {
\formula phi, psi;
\assumes(phi ==>) \find(phi -> psi ==>)
\replacewith(psi ==>)

};
}

Taclet —

This rule is subsumed by propositional rules that already exist in KeY (since the KeY
calculus is complete for propositional logic), but might sometimes be more natural
to use in proofs than the built-in rules. The soundness of the rule can easily be shown
automatically be KeY.

4.3. A Reference Manual of Taclets 121

4.3 A Reference Manual of Taclets

This section introduces the concrete syntax of the taclet language and explains its
semantics. It is written in the style of a reference manual for the different taclet
constructs and provides most of the information that is necessary for writing one’s
own taclets to implement a new theory.

4.3.1 The Taclet Language

Taclets formalize sequent calculus rule schemata (see Section 3.5.1) within the KeY
system. They define elementary proof goal expansion steps and describe

1. to which parts of a sequent and
2. under which conditions the taclet can be applied, and
3. in which way the sequent is modified yielding new proof goals.

This information is declared in the different parts of the body of a taclet. Figure 4.5
shows the syntax of the taclet language, which is explained in more detail on the
following pages. The taclet language is part of the language for KeY input files
whose grammar is described in Appendix B. The nonterminal symbols of the gram-
mar that are not further expanded in Figure 4.5 (in particular (schematicSequent),
(schematicFormula), and (schematicTerm)) can be found in the appendix.

4.3.1.1 A Taclet Section

(taclets) ::= \rules { ((taclet))x }
| \axioms { ((taclet) | {axiom))* }

KeY input files are divided into different section that define various parts of
the syntactical language that can be used (functions, predicates, sorts, ...). Taclets
are declared in their own sections headed by either rules or axioms. The header
should be used to differentiate between rules which define the semantics of a newly
introduced logical theory and theorems and lemma rules which follow from the
axioms. Rules consisting only of a single formula (see Section 4.3.1.3) are only
allowed in sections headed axioms .

122 4 Proof Search with Taclets

—— KeY Syntax
(taclets) ::= \rules { ((taclet))x }
| \axioms { ((facler) | {axiom))x }

(taclet) ::=
(identifier) {
(localSchemaVarDecl)*
contextAssumptions)? (findPattern)?
applicationRestriction)? (variableConditions)?
(goalTemplateList) | \closegoal)
ruleSetMemberships)?

o~

}
(axiom) ::= (identifier) { (formula) }

(localSchemaVarDecl) ::= \schemaVar (schemaVarDecl)
(schemaVarDecl) ::= (schemaVarType) (identifier) (, (identifier))* ;

(contextAssumptions) ::= \assumes ((schematicSequent))
(findPattern) ::= \find ((schematicExpression))
(schematicExpression) ::=

(schematicSequent) | (schematicFormula) | (schematicTerm)

(applicationRestriction) ::= \inSequentState | \sameUpdateLevel
| \antecedentPolarity | \succedentPolarity

(variableConditions) ::= \varcond ((variableConditionList))
(variableConditionList) ::= (variableCondition) (, (variableCondition))x
(variableCondition) ::= \notFreeIn((identifier) , (identifier))

| \new((identifier) , \dependingOn((identifier)))

(goalTemplateList) ::= (goalTemplate) (; (goalTemplate))x
(goalTemplate) =

(branchName)?

(\replacewith ((schematicExpression)))?

(\add ((schematicSequent)))?

(\addrules ((taclet) (, (taclet))x))?
(branchName) ::= (string) :

(ruleSetMemberships) ::= \heuristics ((identifierList))
(identifierList) ::= (identifier) (, (identifier))x

KeY Syntax —

Figure 4.5 The taclet syntax

4.3. A Reference Manual of Taclets 123

4.3.1.2 A Taclet Declaration

(taclet) ::=
(identifier) {
(localSchemaVarDecl)*
contextAssumptions)? (findPattern)?
applicationRestriction)? (variableConditions)?
(goalTemplateList) | \closegoal)
ruleSetMemberships)?

o~ N o~

}

Every taclet has got a unique name and a body containing elements describing
how the taclet is to be matched against a sequent followed by a description of what
action will then take place. The order of elements matters in taclet definitions, the
system will not accept taclet definitions that disobey this order of declaration.

4.3.1.3 Special Case: Axiom Declarations

(axiom) =
(identifier) {
(formula)
}

When defining a logical theory, it is often clearer to state the axiomatic basis as a
set of individual formulas rather than as inference rules that are matched against the
current proof state. The semantics of axiom rules is very similar to rules that consist
of a single \add clause. The first axiom length_nil from Figure 4.3, for instance,
is semantically equivalent to the rule

—— Taclet
length_nil {

\add(length(nil) = 0 ==>)
3

Taclet —

A special situation arises if quantified axioms are to be defined as taclets. The
formula patterns in nonaxiomatic rule definitions are schematic formulas in which
only schema variables can be quantified. The second example from the same figure,
would hence have to be reformulated more lengthily when composed as a usual rule:

—— Taclet

length_cons {
\schemaVar \variable List 1;
\schemaVar \variable any a;
\add(\forall 1; \forall a;
length(cons(a, 1)) = 1 + length(l) ==>)

124 4 Proof Search with Taclets

Taclet —

Not all axioms can be stated as individual first-order formulas. The induction rule
list_induction from Figure 4.1, for instance, is a schematic rule (standing for the
infinite set of all possible instantiations of the schema variable phi) that cannot be
formulated using this notation.

4.3.1.4 Schema Variables: Declaring Matching Placeholders

(localSchemaVarDecl) ::= \schemaVar (schemaVarDecl)
(schemaVarDecl) ::= (schemaVarType) (identifier) (, (identifier))x ;

The patterns within the clauses of taclet definitions are templates which can
be applied to many concrete instantiations. They may, hence, contain placeholder
symbols called schema variables which are instantiated during rule application either
by matching the template description containing schematic entities to a part of the
current proof sequent or through user input.

Schema variables can be declared locally at the beginning of a taclet or globally
in a separate section before the taclet definitions. The available types of schema
variables are listed and explained in Section 4.3.2.

4.3.1.5 Context Assumptions: What Has to Be Present in a Sequent

(contextAssumptions) ::= \assumes ((schematicSequent))

Context assumptions are—together with the \find part of a taclet—the means
of expressing that a goal modification can only be performed if certain formulas
are present in the goal. If a taclet contains an \assumes clause, then the taclet may
only be applied if the specified formulas are part of the goal that is supposed to be
modified. Assumptions specify side conditions for the application of taclets. The
formulas specified as assumptions are not modified? by the taclet application.

4.3.1.6 Find Pattern: To Which Expressions a Taclet Can Be Applied

ndPattern) ::= \find ((schematicExpression))
P
(schematicExpression) ::=
(schematicSequent) | (schematicFormula) | (schematicTerm)

More specifically than just to a goal of a proof, taclets are usually applied to an
occurrence of either a formula or a term within this goal. This occurrence is called

3 It is possible, however, that an assumption is also matched by the \find pattern of the taclet. In
this situation a taclet application can modify or remove an assumption.

4.3. A Reference Manual of Taclets 125

the focus of the taclet application and is the only place in the goal where the taclet
can modify an already existing formula.
There are three different kinds of patterns a taclet can match on:

* A schematic sequent that contains a formula: this either specifies that the taclet

can be applied if the given formula is an element of the antecedent, or if it is an
element of the succedent, with the formula being the focus of the application. It
is allowed, however, that the occurrence of the formula is preceded by updates
(see the section on “State Conditions” and Section 3.5.1).
The question how many formulas may appear in a schematic sequent is not
settled by the grammar. The KeY implementation insists that there is exactly
one formula in schematic sequents in find patterns while in assumes patterns
multiple occurrences are possible, e.g., \assumes (phil, phi2 ==>).

¢ A formula: the focus of the application can be an arbitrary occurrence of the
given formula (also as subformula) within a goal.

* A term: the focus of the application can be any occurrence of the given term
within a goal.

Taclets with the last two kinds of \find patterns are commonly referred to as
rewriting taclets.

The find pattern is an optional part of a taclet definition. However, most taclets
possess a find pattern which acts as a hook for the strategy during automatic proof
search by which it finds applicable rules. There are only few taclets without find
clause with the cut rule that allows for case distinction being the most prominent
example. Axioms (in Figure 4.3, e.g.) are also taclets without find clause since they
add knowledge unconditionally onto the sequent.

4.3.1.7 State Conditions: Where a Taclet Can Be Applied

(applicationRestriction) ::= \inSequentState | \sameUpdateLevel |
\antecedentPolarity | \succedentPolarity

In JavaDL—Iike in any modal logic—, the same expression may evaluate differ-
ently depending on the modalities in whose context it occurs. A finer control over
where the focus of a taclet application may be located is needed. For rewriting rules
it is, for instance, often necessary to forbid taclet applications within the scope of
modal operators in order to ensure soundness. Likewise, some rewrite rules are only
sound if the matched focus lies within a context of a certain polarity.

There are three different “modes™ that a taclet can have and that restrict its
applicability:

* \inSequentState: the most restrictive mode, in which the focus of a taclet
application must not be located within the scope of any modal operator.Likewise,
the assumptions that match the \assumes pattern must not be under the influence
of any modality.

There are two submodes for this mode that restrict under which logical con-
nectives a formula may appear. These modes anticipate on which side of the

126

4 Proof Search with Taclets

Table 4.1 Matrix of the different taclet modes and the different \find patterns

\find pattern is \find pattern is No \find
sequent term or formula
Operators that are allowed above focus
\inSequentState [None All nonmodal Forbidden
operators combination
\sameUpdateLevel |Forbidden All nonmodal Forbidden
combination operators, updates combination
Default Updates All operators —
Which updates occur above \ assumes and \ add formulas
\inSequentState [None None Forbidden
combination
\sameUpdateLevel |Forbidden Same updates as Forbidden
combination above focus combination
Default Same updates as None None

above focus

Which updates occur above \ replacewsth formulas

\inSequentState |None None Forbidden
combination
\sameUpdateLevel|Forbidden Same updates as Forbidden
combination above focus combination
Default Same updates as Same updates as None
above focus above focus

For each combination, it is shown (1) where the focus of the taclet application can be located, and
(2) which updates consequently have to occur above the formulas that are matched or added by
\assumes, \add or \replacewith.

sequent a subformula would end up if the top-level formula were fully expanded
using the basic propositional sequent calculus rules. For example, in the se-
quent ~a = b A —¢, the formula ¢ has “antecedent polarity” while a and b
have “succedent polarity” since the fully expanded equivalent sequent reads
¢ = b,a. The mode flags \antecedentPolarity or \succedentPolarity
can be added to constrain the application of a taclet to the one polarity or the
other.

\sameUpdateLevel: this mode is only allowed for rewriting taclets and allows
the application focus of a taclet to lie within the scope of updates, but not in
the scope of other modal operators. The same updates that occur in front of
the application focus must also occur before the formulas referred to using
\assumes. The same update context is used when the \replacewith and \add
patterns are expanded.

Default: the most liberal mode. For rewriting taclets, this means that the focus
can occur arbitrarily deeply nested and in the scope of any modal operator. If
the \find pattern of the taclet is a sequent, then the application focus may occur
below updates, but not in the scope of any other operator.

4.3. A Reference Manual of Taclets 127

While there are no restrictions on the location of the focus, for rewriting taclets
in default mode, formulas that are described by \assumes or \add must not be
in the scope of updates.

An important representative for rules which require the mode \sameUpdateLevel
is the rule applyEq:

—— Taclet
applyEq {
\schemaVar \variable \term int t1, t2
\assumes(t1 = t2 ==>)
\find(t1) \sameUpdateLevel
\replacewith(t2)
}

Taclet —

The mode flag \sameUpdateLevel is mandatory for the soundness of the rule as it
prevents the rule from illegally replacing terms which are influenced by an update.
In the sequent ¢ =3 = {c¢ := 0}(c > 0), the term ¢ > 0 cannot soundly be replaced
with 3 > 0 since the equality ¢ = 3 does not hold in the scope of the update. see also
the examples on page 119.

As an example for a taclet that must be declared using the state condition
\antecedentPolarity, consider the taclet

—— Taclet

weaken {
\schemaVar \formula phi;
\find(phi)
\antecedentPolarity
\replacewith(true)

Taclet —

that allows replacing of any subformula ¢ within the goal by true. In general, replac-
ing a subformula by true is not a sound proof step. The taclet becomes, however, a
sound rule if the polarity restriction is added: Replacing a formula in the antecedent
by true strengthens the proof obligation and is thus a valid proof step. Using the mo-
difier \antecedentPolarity, one can strengthen the obligation without having to
fully expand its propositional structure. State conditions also affect the formulas that
are required or added by \assumes, \add or \replacewith clauses. The relation
between the positions of the different formulas is also shown in Table 4.1.

128 4 Proof Search with Taclets

4.3.1.8 Variable Conditions: How Schema Variables May Be Instantiated

(variableConditions) ::= \varcond ((variableConditionList))
(variableConditionList) ::= (variableCondition) (, (variableCondition))
(variableCondition) ::= \notFreeIn((identifier) , (identifier))

| \new((identifier) , \dependingOn((identifier)))

Schema variables are declared with a kind restricting how they can be instantiated.
Many kinds additionally support sorts limiting instantiation even further (see Sec-
tion 4.3.2). In many cases, one has to impose further restrictions on the instantiations
of schema variables, for instance, state that certain logical variables must not occur
free in certain terms. The taclet formalism is hence equipped with a simple language
for expressing such conditions, variable conditions. To each taclet, a list of variable
conditions can be attached which will be checked when the taclet is about to be
applied.

Many variable conditions are available in KeY, but only two are of importance
when defining new theories. See Appendix B.2.3.3 for a list of all available variable
conditions.

notFreeIn The variable condition \notFreeIn(lv, fe) is satisfied if the logical
variable which is the instantiation of the schema variable Iv does not occur (freely)
in the instantiation of fe (which is a term or a formula). The following rule, for
instance, removes a universal quantifier if the quantified variable x does not occur
in the matrix b.

—— Taclet

deleteForall {
\schemaVar \formula b;
\schemaVar \variable int x;
\find(\forall x; b)
\varcond(\notFreeIn(x, b))
\replacewith(b)

Taclet —

new The variable condition \new(sk, \dependingOn(t)) is used to indicate
that the schema variable sk is to be instantiated with a fresh symbol which has
not yet been used anywhere else within the proof. A fresh symbol not yet present
is surely not constrained by a formula on the sequent and can thus stand in for an
arbitrary value. After naming the schema variable sk which is to be instantiated,
one has to include a \dependingOn() clause listing all schema variables on
which the value of sk may depend. This variable condition used to be mandatory
in older versions of KeY, but is optional now. It is still valuable for documentation
purposes.
As an example consider the following taclet pull0ut which allows the user
to replace a concrete integer expression ¢ by a fresh constant sk. The equality

4.3. A Reference Manual of Taclets 129

between the two is added as assumption to the antecedent of the sequent:
—— Taclet

pullOut {
\schemaVar \term int t;
\schemaVar \skolemTerm int sk;
\find(t)
\sameUpdateLevel
\varcond(\new(sk, \dependingOn(t)))
\replacewith(sk)
\add(t = sk ==>)

Taclet —

4.3.1.9 Goal Templates: The Effect of the Taclet Application

(goalTemplateList) := (goalTemplate) (; (goalTemplate))x
(goalTemplate) ::=

(branchName)?

(\replacewith ((schematicExpression)))?

(\add ((schematicSequent)))?

(\addrules ((taclet) (, (taclet))x))?
(branchName) ::= (string)

If the application of a taclet on a certain goal and a certain focus is permitted
and is carried out, the goal templates of the taclet describe in which way the goal is
altered. Generally, the taclet application will first create a number of new proof goals
(split the existing proof goal into a number of new goals) and then modify each of
the goals according to one of the goal templates. A taclet without goal templates will
close a proof goal. In this case the keyword \closegoal is written instead of a list
of goal templates to clarify this behavior syntactically.

Goal templates are made up of three kinds of operations:

* \replacewith: if a taclet contains a \find clause, then the focus of the taclet
application can be replaced with new formulas or terms. \replacewith has to
be used in accordance with the kind of the \find pattern: if the pattern is a se-
quent, then also the argument of the keyword \replacewith has to be a sequent,
etc. In contrast to \find patterns, there is no restriction concerning the number
of formulas that may turn up in a sequent being argument of \replacewith. It
is possible to remove a formula from a sequent by replacing it with an empty
sequent, or to replace it with multiple new formulas.

¢ \add: independently of the kind of the \find pattern, the taclet application can
add new formulas to a goal.

* \addrules: a taclet can also create new taclets when being applied. We will not
go into this subject any deeper in this chapter.

130 4 Proof Search with Taclets

Apart from that, each of the new goals (or branches) can be given a name using a
<branchName> rule in order to improve readability of proof trees. Observe that this
rule has to be terminated by :.

Note that a semicolon separates goal templates. The action of the taclet whose goal
template is defined as \find(A) \replacewith(B) \add(C==>) has a single
goal template: it replaces A with B and adds C to the antecedent of the sequent. In
contrast to this, the taclet defined as \find (A) \replacewith(B) ; \add(C==>)
has got two goal templates such that this rules spawns two child sequences, one
replacing A with B and one with adding C to the sequent.

4.3.1.10 Rule Sets: Control How Taclets are Applied Automatically

(ruleSetMemberships) ::= \heuristics ((identifierList))
(identifierList) ::= (identifier) (, (identifier))

Each taclet can be declared to be element of one or more rule sets, which are used
by the proof strategies in KeY to choose the taclets which are applied automatically.
Rule sets describe collections of taclets that should be treated in the same way by the
strategies. The strategies work by assigning weights (called “costs”) to all possible
rule application and by choosing that applicable taclet for a sequent that has the
lowest cost. The cost of an applicable rule application decreases over time (i.e., while
other taclets take precedence), thus guaranteeing that every possible rule application
will eventually be taken (fairness).

There exists a number of rule sets in KeY, of which only a few are relevant for
creating new data types definitions. Most rule sets are special-purpose indicators used
by the strategies. Table 4.2 lists those rule sets interesting for the design of data types
and theories. Of particular interest are the rule sets ‘userTaclets1’, ‘userTaclets2’ and
‘userTaclets3” whose priority can be chosen by the user and even modified at runtime
during an interactive KeY proof.

There is one strategy optimization implemented to increase the performance
of KeY’s JavaDL calculus: the One-Step-Simplifier. This built-in aggregator rule
accumulates taclet applications of the ‘concrete’ and ‘simplify’ rule sets and applies
them as one modification to a formula within the sequent. The rules applied by the
one-step-simplifier are the same as are applied by the strategies; however, proofs with
and without activated One-Step-Simplifier may sometimes differ due to the order in
which the individual rules are applied.

4.3.2 Schema Variables

Schema variables are placeholders for different kinds of syntactic entities that can
be used in taclets. Despite their name variable, schema variables are a very broad
concept in KeY. Schema variables can stand in for different kinds of variables (like

4.3. A Reference Manual of Taclets 131

Table 4.2 Most important rule sets in KeY

concrete Rules that simplify expressions containing concrete constant values
are subsumed into this rule set. This includes, for instance, the rules
that simplify x A true to x or 2+4 to 6. Taclets for computations with
concrete values have the highest priority and are applied eagerly.

simplify Rules that simplify expressions locally, without making addi-
tional assumptions, are collected into this rule set. This includes
a large number of taclets, for instance, the one that simplifies the
expression elementOf (o, f,union(A,B)) into elementOf (o, f,A) V
elementOf (o, f, B) for location sets A and B. Taclets in set ‘simplify’
are applied eagerly, but with less priority than taclets in ‘concrete’.

simplify_enlarging Simplification taclets that expand a definition such that the resulting
expression is considerably longer than the original one go into this
rule set. It is applied with more reluctance than the above rule sets
since it makes sequents grow. The rules which expand the predicate
wellFormed (modeling the well-formedness of reachable Java heap
models) belong to this set, for instance.

inReachableState- Taclets that add new formulas onto the sequent go into this set. The

Implication strategies make sure that the same formula is not added twice onto
the same branch which could make the prover run round in circles.
Rules in this rule set are applied more reluctantly and only if no rule
of the above rule sets can be applied. The name of this rule set is
historic, a more appropriate name would be ‘adding’.

userTaclets1 These three rule sets are empty by default and are meant to be
userTaclets2 inhabited by user-defined taclets implemented for new theories and
userTaclets3 data types. Their priority can be controlled interactively by the user

in the user interface of KeY.

logical variables or program variables), terms, formulas, programs or more abstract
things like types or modal operators.

Schema variables are used in taclet definitions. When a taclet is applied, the
contained schema variables will be replaced by concrete syntactic entities. This
process is called instantiation and ensures that schema variables never occur in
proof sequents. Some schema variables are instantiated by matching schematic
expressions against concrete expressions on the goal sequent, other instantiations
come up only during taclet application (through user interaction or by the automatic
proof strategies).

In order to ensure that no ill-formed expressions occur while instantiating schema
variables with concrete expressions, e.g., that no formula is inserted at a place where
only terms are allowed, the kind of a schema variable defines which entities the
schema variable can represent and may be replaced with. Schema variables can be
declared locally at the beginning of a taclet definition or globally at the beginning of
a file.

Example 4.3. In KeY syntax, we globally declare phi to be a schema variable rep-
resenting formulas and n a variable for terms of type int. The taclet definition for

132 4 Proof Search with Taclets

Table 4.3 Kinds of schema variables in the context of a type hierarchy (TSym,C)

\variable A Logical variables of type A € TSym

\term A Terms of type B C A (with A € TSym)
\formula Formulas

\skolemTerm A Skolem constants/functions of type A € TSym
\program ¢ Program entities of type ¢

impRight locally declares another schema variables psi for formulas and makes
use of it and the global phi.

— KeY

\schemaVariables {
\formula phi;
\term int n;

3

\rules {

impRight {
\schemaVar \formula psi;
\find(==> phi -> psi)
\replacewith(phi ==> psi)
};
}

KeY —

4.3.2.1 Schema Variable Kinds

The most important kinds of schema variables in the KeY system are given in
Table 4.3. A more detailed explanation of each of the different categories is given
on the following pages. Out of the kinds of schema variables in the table, the first
four are relevant if you want to introduce user-defined logical theories and calculus
rules. The last one is needed only when taclets are introduced that deal with JavaDL
program modalities. Many subkinds of program schema variables exist and the kind
is listed here only for completeness’ sake and will not be explained in detail.

Variables: \variable A
Schema variables for variables can be instantiated with logical variables (not with

program variables) that have static type A. In contrast to schema variables for terms,
logical variables of subtypes of A are not allowed for instantiation.* Schema variables

4 Such a semantics is hardly ever desired and would make development of sound taclets difficult.

4.3. A Reference Manual of Taclets 133

of this kind can also be bound by quantifiers or variable-binding function symbols
(see Section 2.3.1). Bound occurrences of such schema variables will also be replaced
with concrete logical variables when instantiations are applied.

Terms: \term A

Schema variables for terms can be instantiated with arbitrary terms that have the static
type A or a subtype of A. Subtypes are allowed because this behavior is most useful
in practice: there are only very few rules for which the static type of involved terms
has to match some given type exactly.’ In general, there are no conditions on the
logical variables that may occur (free) in terms substituted for such schema variables.
When a term schema variable is in the scope of a quantifier, logical variables can
be “captured” when applying the instantiation, which needs to be considered when
writing taclets. The occurrence of variables within the instantiation of a term can be
restricted using the variable condition notFreeIn (see Section 4.3.1.8).

Formulas: \formula

Schema variables for formulas can be instantiated with arbitrary JavaDL formulas.
As for schema variables for terms, the substituted concrete formulas may contain
free variables, and during instantiation variable capture can occur.

Skolem Terms: \skolemTerm A

A schema variable for Skolem terms is instantiated with a fresh constant cg of type A
that has not occurred anywhere in the proof, yet.

The taclet application mechanism in KeY creates a fresh constant symbols every
time a taclet with such a schema variable is applied. This ensures that the inserted
symbols are always new, and, hence, can be used as Skolem constants. Compare the
remarks on page 30 in Chapter 2 and at the end of Section 3.5.1.1 on page 62 in
Chapter 3.

There are only few rules that require schema variables for Skolem terms. Some-
times it is helpful to be able to talk about a witnessing object which has some property.
One can realize that using a Skolem schema variable. An alternative would be to
state a corresponding quantified formula.

Schema variables of this kind always require a corresponding variable condition
\new (see Section 4.3.1.8).

3 In case the reader needs to implement a schema variable with exact type A, they may use the
modifier strict after \term.

134 4 Proof Search with Taclets
Other schema variable types

Three schema variable kinds are concerned with matching program constructs and
modalities. They are usually not required to define new data types and theories.
Schema variables of type \program match against syntactical entities® within Java
programs, and they can be used to compose new rules for symbolic execution (see
Section 3.5.6) of Java modalities in JavaDL formulas.

Moreover, there exist a few special purpose schema variable types to match other
syntactical entities like updates or term labels, but we will not discuss them here
since they are not relevant for data type definitions.

4.3.2.2 Schema Variable Instantiation

Schema variables are replaced with concrete entities when a taclet is applied. This re-
placement can be considered as a generalization of the notion of ground substitutions
from Section 2.2.1 in Chapter 2, and like substitutions the replacement is carried
out in a purely syntactic manner. A mapping from schema variables to concrete
expressions is canonically extended to terms and formulas.

Definition 4.4 (Instantiation of Schema Variables). Let (FSym,PSym, VSym) be
a signature for a type hierarchy .7 = (TSym, C) and SV a set of schema variables
over .7 . An instantiation of SV is a partial mapping’

1:SV-+ (DLFml U | J DLTrmy)
AeTSym

that maps schema variables to syntactic entities without schema variables in accor-
dance with Table 4.3. An instantiation is called complete for SV if it is a total mapping
on SV.

For sake of brevity, we also talk about instantiations of schematic terms or formulas,
which really are instantiations of the set of schema variables that occur in the
expression. Given a complete instantiation of a schematic expression, we can turn it
into a concrete one by replacing all schema variables sv with the expression 1(sv).
To this end we can extend 1 to expressions which may also contain schema variables.
In such expressions, a schema variable of type \formula can be used in places
where a formula is admissible, for instance.

Example 4.5. Table 4.4 illustrates the instantiation of the different kinds of schema
variables for first-order logic. We assume that f,g: A — A are function symbols,
a,c: A are constants, p : A and ¢, r are predicates and x:A is a logical variable.

6 like Java expressions, local variables, method or field references, types, switch labels, . ..

7 This is for the schema variables presented here. The domain of 1 must be extended if schema
variables for program elements, or modalities are considered.

4.3. A Reference Manual of Taclets 135

Table 4.4 Examples of schematic expressions and their instantiations

Expression ¢ Instantiation 1 Instance 1(¢)
Tte) Teer a(@] Te@)

f(va) {varsx} f(x)

Vva;p(va) {varx} Vx; p(x)

Vva; p(te) {va+>x,te—x} Vax; p(x)
Vva;phi {va > x, phi > p(x)} Vx; p(x)
phiAp(te) {phi—qVr te— fla)} (qVr)Ap(f(a))
p(sk) — Jva;p(va) {sk+>c, varsx} p(c) = I plx)

Schema variables:
\variables A va; \term A te;
\formula phi; \skolemTerm A sk;

4.3.2.3 Well-formedness Conditions

Not all taclets that can be written using the syntax of Section 4.3.1 are meaningful
or desirable descriptions of rules. We want to avoid, in particular, rules whose
application could destroy well-formedness of formulas or sequents.

Following Chapter 2, we do not allow sequents of our proofs to contain free
logical variables. Unfortunately, this is a property that can easily be destroyed by
incorrect taclets:

—— Taclet

illegalTacl { \find(==> \forall va; p(va))
\replacewith(==> p(va)) };

illegalTac2 { \find(==> \forall va; phi)
\replacewith(==> phi) };

Taclet —

In both examples, the taclets remove quantifiers and possibly inject free variables
into a sequent: (1) schema variables of kind \variable could occur free in clauses
\add or \replacewith, or (2) a logical variable 1(va) could occur free in the
concrete formula 1(phi) that a schema variable phi represents, and after removing
the quantifier, the variable would be free in the sequent (the same can happen with
schema variables for terms). We will rule out both taclets by imposing suitable
constraints.

To avoid that taclets like i11legalTacl endanger the well-formedness of proof
sequents, schema variables of kind \variable must not occur free in \find,
\assumes, \replacewith and \add clauses. To forbid taclets like i1legalTac2,
schema variables must be used consistently: If a schema variable t is in the scope of
a quantification over a schema variable va, then

1. every occurrence of t must also be in the scope of va, or
2. the taclet must be annotated with the variable condition \notFreeIn(t, va).

Both properties can be checked statically, and the KeY implementation rejects ill-
formed taclets immediately; they cannot even be loaded.

136 4 Proof Search with Taclets

4.3.3 Application of Taclets

This section informally explains the process of how taclets are applied as sequent cal-
culus rules on JavaDL sequents in KeY. A more formal introduction of the semantics
of taclets can be found in Section 4.4 on reasoning about the soundness of taclets.

A taclet schematically describes a set of sequent calculus rules. By instantiating
the schema variables in its clauses with concrete syntactical elements, it becomes
a concrete applicable rule in the calculus (see Section 2.2.2). When applying a
taclet, all schema variables must be instantiated according to their declaration. Many
instantiations are determined by matching schematic expressions against concrete
expressions on the goal sequent. Thus, it is determined if (and by which instantiation)
the schematic and the concrete expression can be unified.

But if schema variables occur in the taclet but not in the \find or \assumes
clauses, they cannot be instantiated by matching. In interactive proofs, the user is then
asked to provide suitable instantiations; in automatic proofs, heuristics are invoked to
come up with instantiations (e.g., for finding suitable ground instances of quantified
statements).

An important role in the taclet application process is played by the \find clause
since it determines where on the sequent the taclet performs rewriting actions. Both
in automatic and interactive reasoning, this clause chooses the application focus
(see Section 4.3.1.6) and thus triggers the rule application. We write focus to denote
the located application focus of a rule application, that is, focus refers actually to
a position within the sequent. We will use the notation focus also for the matched
term or formula. The side conditions (variable conditions, \assumes clause, state
conditions) are checked afterwards, and only if all of them are satisfied will the rule
be applied.

Consider a well-formed taclet t and let SV denote the set of schema variables in ¢.
An applicable instantiation of t is a tuple (1,% ,I' = A, focus) consisting of

¢ a complete instantiation t of SV,

* an update % describing the context of the taclet application (% can be empty),

* asequent I' = A to which the taclet is supposed to be applied, and

« an application focus focus within I" == A that is supposed to be modified (we
write focus = | if t does not have a \find clause)

that satisfies the following conditions:

1. 1 is an admissible instantiation of SV,

2. 1 satisfies all variable conditions of taclet ¢,

3. alllogical variables 1(va) represented by schema variables va of kind \variable
in ¢ are distinct,

4. if t has a \find clause, then the position of focus is consistent with the state
conditions of ¢ (Table 4.1),

5. % is derived from focus according to the middle part “Which updates have to
occur above \assumes and \add formulas” of Table 4.1 (for focus = 1 and the
fields “forbidden combination” we choose the empty update skip),

4.3. A Reference Manual of Taclets 137

6. for each formula ¢ of an \assumes clause of #, ' = A contains a correspond-
ing formula %/ 1(¢) (on the correct side),

7. if ¢ has a clause \find (f), where f is a formula or a term, then 1(f) = focus
(the \find pattern has to match the focus of the application),

8. if t has a clause \find (f), where f is a sequent containing a single formula ¢,
then 1(¢) = focus and the formulas ¢ and focus occur on the same sequent side
(both antecedent or both succedent),

9. if a state condition \antecedentPolarity or \succedentPolarity is part
of the rewrite taclet ¢ (see Section 4.3.1.7), then focus must have antecedent/-
succedent polarity,

10. for every schema variable sv of ¢ of kind \term or \formula and all free
variables x € fu(1(sv)),

* sv is in the scope of a schema variable of type \variable with 1(va) = x,
or

* ¢ contains at most one \replacewith clause, sv turns up only in \find,
\replacewith or \varcond clauses of ¢, and x is bound above focus.

Once a complete taclet instantiation has been found applicable, it can be used to
perform a step in the sequent calculus. Applying it onto a focus within an open proof
goal spawns a set of new sequents, which are new proof goals after the application.
The emerging sequents are obtained by modification of the original, carrying out the
modification descriptions in the taclet’s goal templates. The following informally
describes the effects that the application of a taclet ¢ together with an applicable
instantiation (1,% ,I" = A, focus) has on the goal.

First, the sequent is duplicated into new goals according to the number of goal
templates (see Section 4.3.1.9) declared in the taclet. Every new goal corresponds to
one goal template in # where its effects will be carried out. The new goals become
children of the original goal in the sequent calculus proof tree. The following steps
are then repeated for every new goal. If there are no goal templates in the taclet
(indicated by \closegoal) the rule application successfully closes the proof branch.

1. If the goal template has a clause \replacewith(rw), where rw is a formula
or a term, then focus is replaced with 1(rw). If rw is a term and the type Apen
of 1(rw) is not a subtype of the type A,y of focus, in symbols A, Z A,4, then
focus is replaced with (A,7)1(rw) instead of 1(rw) (a cast has to be introduced
to prevent ill-formed terms).

2. If the goal template has a clause \replacewith(rw), where rw is a sequent,
then the formula containing focus is removed from I' = A, and for each for-
mula ¢ in rw the formula % 1(¢) is added (on the correct side).

3. If the goal template has a clause \add (add), then for each formula ¢ in add the
formula % 1(¢) is added (on the correct side).

It is important to note that it is not possible to modify parts of the sequent other
than through the focus. Formulas can be added to the sequent, but never can formulas
that are not in the focus be removed. In terms of schematic sequent calculus rules,

138 4 Proof Search with Taclets

this means that the context of the sequent (I" and A) is always retained through taclet
application.

4.4 Reflection and Reasoning about Soundness of Taclets

This section summarizes results published by Bubel et al. [2008]. See the paper for
further details.

Taclets are a general language for describing proof modification steps. In order to
ensure that the rules that are implemented using taclets are correct, we can consider
the definitions of the previous sections and try to derive that no incorrect proofs can
be constructed using taclets. This promises to be tedious work, however, and is for a
larger number of taclets virtually useless if the reasoning is performed informally:
we are bound to make mistakes.

For treating the correctness of taclets in a more systematic way, we would rather
like to have some calculus for reasoning about soundness of taclets. This is provided
in this section for some of the features of taclets. To this end, a two-step translation
will be presented that define first-order soundness proof obligations for taclets.

e We describe a translation of taclets into formulas (the meaning formulas of
taclets), such that a taclet is sound if the formula is valid. This translation captures
the semantics of the different clauses that a taclet can consist of. Meaning
formulas do, however, still contain schema variables, which means that for
proving their validity, (higher-order) proof methods like induction over terms or
programs are necessary.

* A second transformation handles the elimination of schema variables in meaning
formulas, which is achieved by replacing schema variables with Skolem terms
or formulas. The result is a formula in first-order logic, such that the original
formula is valid if the derived formula is valid.

The two steps can be employed to validate taclets in different theorem prover contexts:

* Only the first step can be carried out, and one can reason about the resulting
formula using an appropriate proof assistant in which the semantics of schema
entities can be modeled, e.g., based on higher-order logic.

* Both steps can be carried out, which opens up for a wider spectrum of provers or
proof assistants with which the resulting formulas can be tackled. The formulas
can in particular be treated by KeY itself.

Proving KeY taclets within KeY is an interesting feature for lemma rules, i.e.,
taclets can be proven sound referring to other—more basic—taclets. The complete
translation from taclets to formulas of dynamic logic can automatically be performed
by KeY and makes it possible to write and use lemmas whenever this is useful, see
[Bubel et al., 2008].

Proof obligations cannot be generated for all taclets in KeY. At the time of writing
this, the following artifacts within a taclet definition keep it from being verifiable
within KeY:

4.4. Reflection and Reasoning about Soundness of Taclets 139

» program modalities in any clause,

e variable conditions other than \new and \notFreeIn (see Section B.2.3.3),

* meta-functions (symbols which are evaluated at rule application time by execut-
ing Java code),

e generic sorts, or

¢ schema variables other \term, \formula, \variable.

In the following, we first give a recapitulation about when rules of a sequent
calculus are sound, and then show how this notion can be applied to the taclet
concept. It has to be noted, however, that although reading the following pages in
detail is not necessary for defining new taclets, it might help to understand what
happens when lemmas are loaded in KeY.

4.4.1 Soundness in Sequent Calculi

This section continues the discussion of Sequent Calculi begun in Section 2.2.2 by
introducing a concept of soundness and criteria for it. In the whole section we write
(I' = A)*:= AI' = V A for the formula that expresses the meaning of the sequent
I' = A. This formula is, in particular:

(=¢)'=0¢, (0=)=-¢.

By the validity of a sequent we thus mean the validity of the formula (I" = A)*.
A further notation that we are going to use is the following “union” of two
sequents:

(= A)U(GL=4,) = LULG=AUA, .

Because antecedents and succedents are defined to be sets, duplicate formulas will
not appear twice.

Definition 4.6 (Soundness). A sequent calculus C is sound if only valid sequents
are derivable in C, i.e., if the root ' => A of a closed proof tree is valid.

This general definition does not refer to particular rules of a calculus C, but
treats C as an abstract mechanism that determines a set of derivable sequents. For
practical purposes, however, it is advantageous to formulate soundness in a more
“local” fashion and to talk about the rules (or taclets implementing the rules) of C.
Such a local criterion can already be given when considering rules in a very abstract
sense: a rule R can be considered as an arbitrary (but at least semi-decidable) relation
between tuples of sequents (the premisses) and single sequents (the conclusions).
Consequently, ((P},...,F), Q) € R means that the rule R can be applied in an
expansion step

P - P
0

140 4 Proof Search with Taclets

The following lemma relates the notion of soundness of a calculus with rules:

Lemma 4.7. A calculus C is sound, if for each rule R € C and also for all tuples
((P1,...,P), Q) € R the following implication holds:

if Pi,...,P. are valid, then Q is valid. 4.7

If condition (4.7) holds for all tuples ((Py,...,F), @) € R of a rule R, then this
rule is also called sound.

4.4.2 Meaning Formulas of Sequent Taclets

In our case, the rules of a calculus C are defined through taclets ¢ over a set SV of
schema 15variables, and within the next paragraphs we discuss how Lemma 4.7 can
be applied considering such a rule. For a start, we consider a taclet whose \find
pattern is a sequent (without implicit update) and that has the following basic shape:

—— Taclet

tl { \assumes(assum) \find(findSeq) \inSequentState
\replacewith(rwl) \add(addl);

\replacewith(rwk) \add(addk) };
Taclet —

Using text-book notation for rules in sequent calculi (as in Chapter 2), the taclet
describes the rule

rwlUaddlUassunU (I' = A) rukUaddkUassunU (I' = A)
findSeqUassunU(I' = A)

In order to apply Lemma 4.7, it is then necessary to show implication (4.7) for all
possible applications of the rule, i.e., essentially for all possible ways the schema
variables that now turn up in the sequents can be instantiated. If 1 is an applicable
schema variable instantiation, and if ' = A is an arbitrary sequent, then

P, = 1(rwiUaddiUassum)U (' = A) (i=1,...,k),

0 = 1(findSeqUassum) U(I" = A) (4.8)
Implication (4.7) can be replaced with:
(Pf AL AP — QF) is valid. (4.9)

Implication (4.7) is a global soundness criterion since validity of the premisses
implies validity of the conclusion while the implication (4.9) is local in the sense
that the premisses implies the conclusion in any single structure.

4.4. Reflection and Reasoning about Soundness of Taclets 141

This new condition is stronger than (4.7), however not significantly stronger
because of the side formulas I" = A that can be chosen arbitrarily. Inserting the
sequents (4.8) extracted from taclet t1 into (4.9) leads to a formula whose validity is
sufficient for implication (4.7):

PiA..AP— QO = AL, (((rwiUaddiUassum)U (I’ = 4))" (4.10)

— (1(findSeqUassum) U (I = A)) .
In order to simplify the right hand side of Equation (4.10), we can now make use
of the fact that 1 distributes through all propositional connectives (—, A, V, etc.)

and also through the union of sequents. Thus, the formulas of Equation (4.10) are
equivalent to

k
l(/\ (rwi*Vaddi*) — (findSeq*V assum*)) V(= A)".
i=1

Showing that this formula holds for all sequents I' = A, i.e., in particular for the
empty sequent, is equivalent to proving

!
1 (/\ (rwi*Vaddi*) — (findSeq*V assum*))

i=1

for all possible instantiations 1. We call the formula

=

M(tl) = (rwi* V addi*) — (f indSeq* VvV assum*) 4.11)

1

the meaning formula of t1. From the construction of M(t1), it is clear that if M(t1)
is valid whatever expressions we replace its schema variables with, then the taclet t1
will be sound. Note that the disjunctions V in the formula stem from the union
operator on sequents. Intuitively, given that the premisses of a rule application are
true (the formulas on the left side of the implication), it has to be shown that at least
one formula of the conclusion is true.

We can easily adapt Equation (4.11) if some of the clauses of t1 are missing in a
taclet:

e If the \find clause is missing: in this case, findSeq can simply be consid-
ered as the empty sequent, which means that we can set findSeq* = false in
Equation (4.11).

e If \assumes or \add clauses are missing: again we can assume that the respec-
tive sequents are empty and set

assum” = false, addi* = false

 If a clause \replacewith(rwi) is not present: then we can normalize by set-
ting rwi = findSeq, which means that the taclet will replace the focus of the

142 4 Proof Search with Taclets

application with itself. If both \replacewith and \find are missing, we can
simply set rwi* = false.

Example 4.8. We consider the taclet impRight from Ex. 4.3 that eliminates implica-
tions within the succedent. The taclet represents the rule schema

phi — psi
— phi — psi

and the meaning formula is the logically valid formula

M(impRight)
= (—phiVpsi)— (phi— psi)=-(phi — psi)V (phi — psi) .

=rwl* =findSeq*

4.4.3 Meaning Formulas for Rewriting Taclets

The construction given in the previous section can be carried over to rewriting taclets.

—— Taclet

t2 { \assumes(assum) \find(findTerm) \inSequentState
\replacewith(rwl) \add(addl);

\replacewith(rwk) \add(addk) };

Taclet —

In this case, findTerm and rwi, ..., rwk are schematic terms. We can, in fact, reduce
the taclet t2 to a nonrewriting taclet (note, that the union operator U is not part of
the actual taclet language).

—— Taclet

t2b { \assumes(assum) \inSequentState
\add((findTerm=rwl ==>) U addl);

\add((findTerm=rwk ==>) U addk) };
Taclet —

We create a taclet that adds equations findTerm=rwli, ..., findTerm=rwk to the
antecedent. Using taclet t2b and a general rule for applying equations in the an-
tecedent, the effect of t2 can be simulated. On the other hand, also taclet t2b can be
simulated using t2 and standard rules (cut, reflexivity of equality), which means that
it suffices to consider the soundness of t2b. Equation (4.11) and some propositional
simplifications then directly give us the meaning formula

4.4. Reflection and Reasoning about Soundness of Taclets 143

.

M(t2b) = M(t2) = (findTerm = rwi — addi*) — assum® . (4.12)

i=1

We have looked at rewriting taclets for terms so far. In the same way, rewriting
taclets for formulas can be treated, if equations in (4.12) are replaced with equiva-
lences:

k
/\ ((findFor «» rwi) — addi*) — assum" (4.13)
i=1

For a taclet like t2 but with mode flag \succedentPolarity (instead of
\inSequentSate), the taclet application is limited to occurrences with positive
polarity; the meaning formula is hence weaker and has the equivalence of (4.13)
replaced by an implication:

~.

((findFor — rwi) — addi*) — assum*

Likewise, for a taclet which is annotated with \succedentPolarity, the meaning
formula has this implication reversed:

>

((rwi — findFor) — addi*) — assum®
1

Example 4.9. Let us go back to the taclet applyEq introduced in Section 4.3.1.7 on
page 127. According to (4.12) its meaning formula is

M(applyEq) = (t1=t2—false) >tl1=1t2 (4.14)

with t1 and t2 schema variables. The implication of false is introduced since the
taclet does not specify an \assumes clause. The next section will elaborate how the
schematic meaning formula is refined into a concrete proof obligation.

4.4.4 Elimination of Schema Variables

Meaning formulas of taclets in general contain schema variables, i.e., placeholders
for syntactic constructs like terms, formulas or programs. In order to prove a taclet
sound, it is necessary to show that its meaning formula is valid for all possible
instantiations of the schema variables.

Let us once more look at taclet applyEq (= Ex. 4.9). In order to prove the
taclet sound, we would have to prove the meaning formula (4.14) valid for all
possible terms 1(t1), 1(t2) that we can substitute for t1, t2. Note that this syntactic
quantification ranges over terms and is completely different from a first-order formula

144 4 Proof Search with Taclets

Vint x; p(x), which is semantic and expresses that x ranges over all elements in the
set of integers.

Instead of explicitly enumerating instantiations using techniques like induction
over terms, it is to some degree possible, however, to replace the syntactic quantifi-
cation with an implicit semantic quantification through the introduction of Skolem
symbols. For M (applyEq), it is sufficient to prove validity of the formula

¢ = (c=d—false)—>c=d

in which ¢, d are fresh constant symbols. The validity of M (applyEq) for all other
instantiations follows, because the symbols ¢, d can take the values of arbitrary terms
1(t1), 1(t2). Fortunately, ¢ is only a first-order formula that can be tackled with a
calculus as defined in Chapter 2.

We will only sketch how Skolem symbols can be introduced for some of the
schema variable kinds that are described in Section 4.3.2, more details can be found
in [Bubel et al., 2008]. For the rest of the section, we assume that a taclet ¢ and
its meaning formula M(z) are fixed. We then construct an instantiation i of the
schema variables that turn up in ¢ with Skolem expressions. In the example above,
this instantiation would be

1k ={tl—c, t2—d}

Variables: \variable A

KeY makes the names of bound variables unique by internally renaming them?®.
Thus we need only consider instantiations t that map different schema variables va
to distinct logical variables. Such variables only occur bound in taclets and the
identity of bound variables does not matter. Therefore, this instantiation 1y (va)
of a \variable schema variable va can simply be chosen to be a fresh logical
variable 15 (va) = x of type A.

Terms: \term A

As already shown in the example above, a schema variable te for terms can be
eliminated by replacing it with a term. While it sufficed to choose Skolem constants
in the above case, in general, also the logical variables II(te) that are bound in the
context of te have to be taken into account and have to appear as arguments of the
Skolem functions symbol. The reason is that such variables can occur in the term that

is represented by te. We choose the instantiation 1 (te) = fu(x1,...,x;), where
* xi1,...,x; are the instantiations of the schema variables vay,...,va,, i.e., x; =
Lk (vay),

8 applying so-called a-conversions

4.4. Reflection and Reasoning about Soundness of Taclets 145

e vap,...,va; are the (distinct) context variables of the variable te in the taclet ¢:
H(te) ={vay,...,va},

* f«:Ai1,...,A; — Ais a fresh function symbol,

e Ay,...,A; are the types of x1,...,x; and te is of kind \term A.

An example motivating the more complex Skolem expression will follow after
the next paragraph which first describes a very similar situation.

Formulas: \formula

The elimination of schema variables phi for formulas is very similar to the elimina-
tion of term schema variables. The main difference is, obviously, that instead of a
program variable, which is a nonrigid function symbol, a nonrigid predicate symbol
has to be introduced: 15 (phi) = ps(x1,...,%), Where

* xi1,...,X; are the instantiations of the schema variables vay,...,va,, i.e., x; =
Lk (vay),
* vap,...,va; are the (distinct) context variables of the variable te in the taclet ¢:

IL(te) = {vay,...,va},
* p« :A1,...,A; is a fresh predicate symbol,
* Ay,...,A; are the types of xq,...,x;.

As an example to demonstrate the necessity of the arguments xp, ..., x;, consider
the following unsound” taclet:

—— Taclet

swapMixedQuants {
\schemaVar \variable int x;
\schemaVar \variable int y;
\schemaVar \formula phi;

\find(\exists y; \forall x; phi)
\replacewith(\forall x; \exists y; phi)

Taclet —

Its meaning formula (according to (4.12)) is
M (swapMixedQuants) = (3x;Vy;phi) <> (Vy;Ix;phi)

with x, y and phi schema variables. Were phi replaced by a Skolem (propositional)
constant 1(phi) = ¢ and x, y by logical variables x, y, then the instantiated meaning
formula 1 (M (swappedMixedQuants)) = (Ix;Vy;c) <> (Vy;Ix;c) = ¢ <> ¢ would
be valid although the taclet is clearly unsound.

9 This taclet can, e. g., be used to prove Jint x;Vint y;x =y which is not a valid formula.

146 4 Proof Search with Taclets

If, on the over hand, the instantiation for phi is chosen as t'(phi) = b(x,y)
with x and y as dependencies to a fresh Skolem predicate symbol b : int,int, the
resulting formula ' (M (swapMixedQuants)) = (3x; Vy; b(x,y)) < (Vy;3x;b(x,y))
is not valid.

Skolem Terms: \skolemTerm A

Schema variables of kind \skolemTerm A are responsible for introducing fresh con-
stant or function symbols in a proof. Such variables could in principle be treated like
schema variables for terms, but this would strengthen meaning formulas excessively
(often, the formulas would no longer be valid even for sound taclets).

We can handle schema variables sk for Skolem terms more faithfully: if in
implication (4.7) the sequents Py, ..., P contain symbols that do not occur in Q, then
these symbols can be regarded as universally quantified. Because a negation occurs in
front of the quantifiers in (4.9) (the quantifiers are on the left side of an implication),
the symbols have to be considered as existentially quantified when looking at the
whole meaning formula. This entails that schema variables for Skolem terms can be
eliminated and replaced with existentially quantified variables: 14 (sk) = x, where x
is a fresh variable of type A.'” At the same time, an existential quantifier 3x; has to
be added in front of the whole meaning formula.

Example 4.10. The taclet pullout allows replacing any ground term t with a fresh
Skolem constant sk; equality between them is guaranteed by an added assumption.

—— Taclet

pullout {
\schemaVar \term G t;
\schemaVar \skolemTerm G sk;

\find(t) \sameUpdateLevel
\varcond(\new(sk, \dependingOn(t)))

\replacewith(sk)
\add(t = sk ==>)

Taclet —

The meaning formula of the taclet pullout is

M(pullout) = (t=sk— —t=sk)—false = r=sk

10 Strictly speaking, this violates Definition 4.4, because schema variables for Skolem terms must
not be instantiated with variables according to this definition. The required generalization of the
definition is, however, straightforward.

4.4. Reflection and Reasoning about Soundness of Taclets 147

according to (4.12). In order to eliminate the schema variables of this taclet, we first
assume that the schematic type!! G of the taclet is instantiated with a concrete type A.

If both schema variables t and sk were replaced by Skolem constants ¢ and d,
the resulting formula ¢ = d would be far from valid—though the taclet pullout is
sound.

To overcome this imprecision, the schema variable sk can be replaced with a fresh
logical variable 14 (sk) = x of type A. The schema variable t is eliminated through
the instantiation by a Skolem constant 15 (t) = d. Finally, we add an existential
quantifier 3x. The resulting formula without schema variables is

I (M(pullout)) = dx;(x=d)

which is obviously universally valid.

The Order Matters

To establish the soundness of taclets for a theory, validity of the meaning formu-
las of all taclets in the theory must be shown. To this end, it would be convenient
if already proved taclets could be used in the soundness proofs of the remaining
taclets.

Such taclet applications must be restricted however: If taclets could be used
unconditionally in each other’s soundness proofs, two unsound taclets could be
abused to mutually establish their validity. The consistency of the taclet rule
base could thus be compromised.

A simple heuristics guarantees that such cyclic dependencies within the set
of taclets of a theory are impossible: For the verification of the soundness of
taclet, only taclets which are defined before it in the input file may be used.

This requires that the order of taclets is well thought of for the design of
a theory to simplify the proof workload. Naturally, the axioms which fix the
semantics, go first; followed by taclets capturing reusable lemmas, optimized
special purpose taclets follow last.

! Schematic types, known as generic sorts in KeY, are like schema variables for type references
that can be instantiated by concrete types.

