Seamless Interactive Program Verification

Sarah Grebing', Jonas Klamroth?, and Mattias Ulbrich!

! Karlsruhe Institute of Technology, Karlsruhe, Germany
2 FZI Research Center for Information Technology, Karlsruhe, Germany

Abstract. Deductive program verification has made considerable progress
in recent years. Automation is the goal, but it is apparent that there
will always be challenges that cannot be verified fully automatically, but
require some form of user input. We present a novel user interaction
concept that allows the user to interact with the verification system on
different abstraction levels and on different verification/proof artifacts.
The elements of the concept are based on the findings of qualitative user
studies we conducted amongst users of interactive deductive program
verification systems. Moreover, the concept implements state-of-the-art
user interaction principles. We prototypically implemented our concept
as an interactive verification tool for Dafny programs.

Deductive program verification tasks lead to challenging logical reasoning
tasks. Recent and ongoing progress of satisfiability modulo theories (SMT) solvers
allow these tasks to be more and more automated. As program verification is
an undecidable problem, one can always find verification tasks which cannot be
verified automatically — in practice, many real-world verification tasks require
user guidance such that automatic reasoning engines can find a proof. With
rising success of automatic verification engines, programs that require inspection
become more and more sophisticated. They are likely to operate on complex data
structures or make use of advanced features like concurrency.

This complexity contributes to the fact that guiding the verification tool
is a non-trivial, iterative process which, in addition, requires knowledge about
internals of the verification tool. First proof attempts for a verification task are
likely to result in an unfinished proof either because the code does not satisfy its
specification or because the given guidance is not sufficient to allow automation
to close the proof. To proceed in the verification process, it is crucial for the user
to be able to understand the reason for a failed proof attempt to either remedy
the flaw or to provide the right guidance.

The main contribution of this paper is an interaction concept for interactive
verification that supports users in understanding unfinished program verifica-
tion situations and allows them to provide the right guidance to the underlying
automatic reasoning engines. It allows users (a) to choose from different represen-
tations of the proof state and the kind of interaction style for proof construction
according to the user’s preferences and the current proof situation, (b) to seam-
lessly switch between proof state representations when another one seems more
informative, (c) to easily recognize relations between information artifacts shown



to the user in the different representations, and (d) to focus on challenging proof
subtasks, leaving trivial subtasks to the (automatic) prover.

In state-of-the-art verification systems, the user can interact on different scopes
of the verification problem: the formal specification, the program code, and the
logical representation of the proof state. Depending on which scope a verification
system focuses on, different advantages arise: Systems that allow conducting
proofs by annotating the source code have the advantage that the user can operate
on the same abstraction level as the original source code and needs not understand
the logical encoding. Comprehending why a proof attempt failed can be difficult
in these verification systems because of the high degree of abstraction. In contrast,
systems that allow users to directly manipulate on the logical encoding level
may lack the possibility to understand how the encoding relates to the source
code. Either way the user is faced with the problem that most state-of-the-art
verification systems either offer only one possible representation or do no support
the user in understanding the relations between different representations.

Our hypothesis is that one major bottleneck for finding proofs with verification
tools is the difficulty of comprehending and exploring unfinished proofs. Without
providing methods to support these tasks, advancing proofs gets extremely
challenging. Users need means to be able to understand and explore the proof
state in order to make an informed decision for the next goal-oriented action.

The remainder of this paper is structured as follows. In Sect. 1, we present
preliminaries, followed by a brief summary of the results of our user studies in
Sect. 2. Based on these results we present our interaction concept in Sect. 3 and
its realization in a prototype in Sect. 4. We present related work in Sect. 5 and
conclude the paper with future work in Sect. 6.

1 Setting the Stage: Interactive Program Verification

1.1 Verification Task

To prove properties of programs with a verification system, different proof
artifacts interact during the verification process. First the user has to express
the desired properties of a software system, the requirement specification, using
a specification formalism understood by the verification system. Moreover, the
user may provide additional specification elements for prover guidance, called
auxiliary specification [1].

We refer to the program to be verified, together with its specification as proof
input artifacts. In our case the specification is given in form of annotations of the
program. We consider a software system to be composed of different modules
and each module may in turn contain different methods and functions. The most
basic components of a software system we consider here for verification are thus
single methods. We will call a pair of a requirement specification and a software
system currently under verification a concern [2]. Depending on the context, a
requirement specification of a concern may in turn be an auxiliary specification
in the larger picture.



Listing 1.1. Running Example Linked List

class List {
ghost var seqq: seq<int>
ghost var nodeseqq: seq<Node>
var head: Node
method getAt(pos: int) returns (v: int)
requires 0 < pos < |seqql A Valid ()
ensures v == seqql[pos]
{
var idx := O0;
var node := head;
while (idx < pos)
decreases |seqql| - idx
invariant 0 < idx < pos
invariant node == nodeseqql[idx]
{
node := node.next;
idx := idx + 1;
}
v := node.value;
Yoo
}

As running example we use the Dafny implementation of a singly-linked list
in Listing. 1.1. The program contains two classes Node and List. A node has a
value field and a pointer to the next node. A list object points to the first node
(the head) of the list (line 4). The class List contains the method getAt () (in
lines 5-20) and a function Valid () (not shown in the Listing. 1.1). For verification
purposes we added two ghost fields seqq and nodeseqq (lines 2 and 3) which
have no effect on the program execution. They shadow the list’s content. The
sequence seqq is the sequence of values, and nodeseqq is the sequence of the
list nodes. The function Valid() is a predicate which is true if these sequences
correspond to the list’s content and serves as the object invariant of the list. We
will focus on the method getAt () returning the value at a given index. In the
implementation we iterate until the given index is reached and then return the
value of that node. The requirement specification of the method getAt () is its
pre- and postcondition pair in lines 6-7.

The proof task for a concern (e.g., the correctness of a method) can be divided
into smaller individual and located proofs units which we will call verification
conditions (VC). We distinguish two levels of the proof process: the global level,
i.e., finding the right formalization for a concern, and the local level, i.e., proving
single VCs. One example for VCs is to generate a proof obligation for each
conjunct in the postcondition when considering a method contract. If all VCs
can be proven valid, the system is correct w.r.t. its requirement specification. In
our running example, one VC would be to prove that the second part of the loop
invariant (line 14) is preserved in each loop iteration. The proof obligation then
encodes this VC logically, as shown in the screenshot in Fig. 4.

1.2 Interaction Styles

Program verification systems can be categorized by their type of user interaction
from purely automatic systems, over auto-active systems up to interactive program
verification systems (see Fig. 1).



While user interaction in automatic systems is limited to starting the proof
system, in auto-active systems user interaction is limited to adding guiding anno-
tations to the program to be verified. Interactive systems allow users to interact
and guide the proof search on the logical representation of the proof problem.

Mainly two interaction styles are sup-
ported for proof construction: direct ma-
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Schneiderman [6], the central ideas for di-
rect manipulation are that the objects the
users are interacting with have a visual
representation on the screen and the ac-
tions applied to these objects are “rapid,
reversible and incremental”. Users use a pointing device to select objects on the
screen which they then can perform actions on. It is crucial that the representa-
tion of the elements of the task domain is chosen thoughtfully — otherwise, the
representation may be more confusing than helpful. In interactive program verifi-
cation the objects are the proof obligations, the program with its specification
and the proof. Actions on these objects include changing parts of the program
or its specification, applying rules to parts of a proof obligation and modifying
parts of the proof.

Fig. 1. Categorization of Program Ver-
ification Systems and their User Inter-
action

Text-based Interaction The command-language or command line interac-
tion forms the basic principle for text-based interaction. Users formulate actions
as commands followed by a textual representation of the objects that are being
manipulated. The action is only executed when users complete their commands
and explicitly execute them. For more complex actions command sequences can
be provided, where the commands are executed in a sequential order.

The structured script-based interaction is a more sophisticated form of the
textual interaction style. In addition to the commands in the CLI interaction
the user may use control flow structures to combine commands to more complex
actions. Script-based interaction can be found in different theorem provers, e.g.,
Isabelle/HOL [5] or the Coq [4] verification system. The kind of proof language
differs between the systems. While Isabelle’s proof language Isar 7] follows a
more textbook style of proof construction, Coq’s proof language together with its
tactic language LTac [8] is closer to a programming language. Feedback is given
by presenting the goal states after executing a proof script. If the proof attempt
was not successful, the user needs to inspect the proof to find the cause for any
remaining open goal. Advantages of this interaction style is that experienced users
are able to formulate proofs efficiently as long as the interface supports the user in



text editing and programming (e.g., with auto-completion or syntax highlighting).
A disadvantage of this interaction style is that the principle recognition rather
than recall [9-11] for applying the appropriate tactic can be missing, even if auto
completion exists. Also, insight into the application of tactics is often missing in
these systems.

Auto-active systems, such as OpenJML [12] or Dafny [13] also allow for a kind
of text-based interaction purely on annotation-level. In this textual interaction
style, users interact with the proof system by providing the program and its
specification together with further assertions in the source code. These assertions
serve as hints for the proof system for the proof search. Feedback is only given
in terms of the program and its specification by using visual highlights on
program statements alongside with textual messages. Compared to programming
the auto-active style is similar to the idea of literate programming [14], where
the documentation and the source code are interweaved. One idea behind this
interaction style is to hide the proof object and the verification system from the
user. Hence, the user does not need to change between different proof artifacts
(and thus contexts) when constructing the program and its specification. However,
when trying to find the cause for a failed proof attempt detailed insight into the
logical representation of the proof problem may be needed [15].

2 User Activities revealed in User Studies

To gain insights into which actions users perform in the program verification
process and to identify factors for time-consuming interactions, we conducted
qualitative, explorative user studies with intermediate and expert users of in-
teractive verification systems. In particular, we were interested in the proof
step granularities, the time-consuming actions and the feedback mechanisms the
verification systems offer. We conducted two focus group discussions [16-18]: one
for Isabelle/HOL as a representative for a verification system with script-based
interaction and one for the interactive program verification system for Java
programs KeY [3], as representative for the direct manipulation interaction style.
Subsequently, we conducted semi-structured interviews together with practical
tasks where the participants were asked to perform a proof for a small program
with the help of KeY. In this study we have also shown different proof states to
the participants and asked for a description of the states [18].3
The actions of the participants in the practical tasks have been recorded,
and in the analysis phase we have extracted consolidated sequence models [19,
20]. The answers to the interview questions and the voices of the focus group
discussions have been evaluated using qualitative content analysis methods [21].
The following are the key results of our user studies influencing our concept.
Different domain elements have to be combined. The evaluation of the
user interactions in the practical tasks revealed that one common interaction was
that users switched between the different representations of the proof state and

3 Further details can also be found https://formal.iti.kit.edu/~grebing/SWC



the annotated program to relate parts of the specification, respectively program
to the formulas in the proof state. One participant in the KeY user study even
placed the text editor containing the annotated program next to the proof state
with its open goals to find the relation between the artifacts. Switching between
contexts can be costly for users: firstly, users needs to (re)gain the orientation in
each representation, and, secondly, users need to relate artifacts to each other
that refer to the same state but are represented in a different formalism.

Many degrees of freedom. Our evaluation also revealed that there is not
one single proof process that is followed, rather users take advantage of the
many degrees of freedom in user interaction for proof construction and proof
comprehension provided by the systems. One example is that some participants
used KeY in a first attempt to gain feedback on an initial specification they
provided to be able to step-wise adjust it, while others started by using a lot
of time to come up with the right specification before using the KeY system
for proof construction. For proof construction participants used the full range
from performing single proof steps, combinations with sequences of proof steps
that were performed automatically by the prover up to fully automatic proof
search. For creative tasks like proof construction the degrees of freedom in the
interaction are advantageous, however, when developing an interaction concept
these degrees of freedom need to be taken into account to not limit expert users.

Alternation of Abstraction and Focusing. As users tried to gain orien-
tation in the proof, we were able to observe an alternation between abstracting
from and focusing on specific details of the proof state: users tried to gain an
overview over the proof by adjusting the view onto the proof tree, e.g., with
hiding features that remove intermediate proof steps from the displayed tree
such that only branching nodes are visible. After gaining an overview, users then
focused on specific open goals by navigating to them to see in which cases the
proof stays open and then focused on sequents and single formulas in the goal.
In a subsequent step, users related the inspected elements to the input artifacts.

From our observations in the user studies, we derived the hypothesis that
users of interactive program verification systems need both an overview over the
system and the bigger picture of the proof task and a way to focus on specific
parts of the proof problem. At the same time users need different ways to interact
with the proof system for proof comprehension and proof construction.

3 Seamless Interaction Concept

Our interaction concept presented in the following is based on observations from
our user studies, on established design principles, on existing interaction func-
tionalities of state-of-the-art verification systems, and on the usability principles
for theorem provers by Easthaughffe [22]. Our concept follows the assumption
that users must have the ability to interact on a high level of abstraction, the
programming language level like in the auto-active approach, but at the same
time must be able to learn about and work on the level of the logical proof
encoding, like in the interactive approach.



In our concept, we support users (a) in accessing and combining information
from different domains during proof state inspection and proof construction by
structuring the proof state into views, (b) in gaining both an overview over the
proof state and focusing on details, by providing a view containing proof and
system information, together with a mechanism to seamlessly switch between the
views. At the same time, our concept retains the idea of many degrees of freedom,
e.g., by allowing proof construction in each view and by providing mechanisms
to inspect dependencies between the views.

We have seen in our user studies that users need different context informa-
tion both to comprehend the proof situation and to advance the proof. Which
information is needed depends both on the concern the user is focused on and
also on whether the user is working on the global or local level.

One challenge of providing the user with the right amount of information
are existing dependencies between the different constituents of the system and
between the requirement specification and auxiliary specification currently in
focus. To support users in proof construction and proof comprehension, we
provide multiple projections of the proof problem and proof state (shown in
Fig. 2), each with their own set of available interactions. The complexity of the
proof problem is reduced by concentrating on a subset of dependencies at a time
and by providing the required information (resp. hiding unnecessary information)
whenever possible during the verification process.

Our concept also supports verification by means for abstraction of, as well as
focusing on details of the proof problem and by breaking down the proof task
into smaller subtasks. This step-wise focusing should help the user in keeping
the overview and dependency information gained from one representation and
transferring this knowledge between representations.

One key feature of our concept is that users can choose their preferred way
of interacting with the proof system and use the different interaction styles
interchangeably. For this we integrate direct manipulation with structured scripts.
Actions performed using the direct manipulation style are textually encoded and
added to the proof script, adhering to the usability principle of substituitivity [23)].
The script also serves as a mean to advance the proof by allowing users to
textually add proof commands to the script and executing it.

3.1 Projections: Multiple Views onto the Proof Problem

To support users in the verification task we propose multiple projections on the
proof problem to be presented to users in different views. These views support
users on the level they are currently working on but also take into account that
users shift their focus during the proof process. Presenting multiple views of the
proof state and allowing meaningful operations on those views are considered as
two usability principles for theorem provers. The different views should support
users in forming models of the proof task to be able to choose the most appropriate
representation for the next goal-directed action [22].

To allow for a seamless change from the global to the local level, users have to
be able to inspect dependencies between the components of the verification target,



as well as the relations between levels. As a prerequisite, these dependencies need
to be made visible to the user.

We assume that the user has a different focus on the components on each level
and thus different context information may have to be shown to the user. This
idea adheres to the usability principle of anticipation, which makes the claim
that “all information and tools needed for each step in the process” [24] should
be provided to the user.

We consider the following views (see Fig. 2) as essential for program verifi-
cation: @ a view showing the system and proof structure as well as the proof
progress overview, @ a view showing the proof input artifacts, i.e, the source
code and its annotations, ® a view that focuses on the logical representation of
a single VC with the possibility to construct a deductive proof for this VC(®).

Source Code View

In our user study (described in Sect. 2), participants accessed the annotated
program in different phases of the process and with different intents and actions:
to formulate the requirement and auxiliary annotations at the beginning of the
process, as well as for inspection and modification of the annotated program
during the proof.

There are different possibilities to display the program and its annotations
to the user: both artifacts can be either shown in a combined view or shown
separately, but also the amount of annotations that are shown can vary (e.g.,
showing all annotations as provided by the user, or only certain parts).

Showing both artifacts in a combined view allows users to access information
that is closely related and allows for an easy navigation of dependencies between
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Fig. 2. Abstract concept of our user interface. From left to right: the System and
Proof Overview (D), the Source Code View (®), the Logical View (@) and the Proof
Manipulation View (®). The user can access two adjacent views at the same time
(indicated by the dotted rectangle).



the annotations and the source code locations for inspection. A further advantage
is that the maintenance of annotations is simplified such that when changing the
source code, the annotations can be directly adjusted as well.

Using two separate views for the program and the annotations would provide
more visual clarity compared to the sometimes cluttered source code shown in a
combined view. Furthermore, a multi-formalism document is avoided, allowing
users to stay in one formalism for each view, reducing the user’s cognitive load.

The source code view needs to provide actions to capture the following user
intents: the comprehension of the proof problem or the proof state, the search
for mistakes in the proof input artifacts, the construction of the program and
adding (auxiliary) annotations.

As support for inspection, mechanisms have to be provided to inspect the
relation between elements of the proof state and the proof input artifacts to
support the comprehension tasks. Support to proceed in the verification process
should include functionalities similar to common text editing features found in
IDEs (e.g., program refactoring) and features for navigation through the source
code. Furthermore, to provide immediate feedback to the user, support for writing
the annotated program in the form of auto-completion and checking for syntax
errors should be provided.

System and Proof Overview

Similarly to the systems to be verified, also concerns have an internal (hierarchical)
structure. This structure helps to divide the large task into smaller sub-tasks. It
is crucial for the user to gain an overview over the system and its dependencies to
build up a mental model about the problem and the proof progress to facilitate
decisions about the next actions to take. Providing dependency information also
supports the user in keeping track of parts of specifications that influence each
other during the proof process.

We devise a view to support the user in gaining a global overview over the
concern and the proof task. This view allows for activities to progress in the
proof process on a more global level, as well as provide means for navigation to
the individual proofs for a concern. Typical activities we consider for this view
are the selection of proof artifacts for inspection, selection of proof tasks to work
on and browsing activities to build a mental model about the problem structure.

The system and verification task structure in this view is shown as a collapsible
tree. A further possibility to show call dependencies and dependencies between
different specifications needs to be available in this view to support the user in
comprehending impacts of modifications to one of involved elements.

In addition to the browsing activities, the user is able to apply general proof
search strategies to all or a part of the VCs in this view without the need to
know the internal details of the proof. If the proof search is able to prove the
concern there is no need for the user to look into the proof, allowing the user to
focus on VCs that need further attention. We observed such activities during the
user study, where some participants used the automatic proof search strategies
of KeY to determine which parts need detailed inspection or interaction.



Logical and Proof Construction View

In auto-active verification systems, users need to come up with auxiliary anno-
tations for which often insight into the logical encoding is needed [1,15]. We
propose a view that enables users to gain insight into the logical encoding (VC)
and the deduction steps performed, if they are not able to solve the problem
on the program level. Users should be able to focus on one verification task in
isolation.

The notation of the logical encoding should be as close as possible to the input
artifacts, e.g., names of identifiers such as fields in the program should not be
renamed by deduction steps. This would adhere to the principle of consistency [25,
23]. In cases where renaming cannot be avoided, a possibility to trace back to the
original version of an entity should be provided. In the user study the renaming
issue and the retracing of the origin of symbols was criticized by participants.

On the logical view, proof construction takes place on the most detailed level.
Here, the user focuses on the individual propositions that are either assumed or
need to be proven for the corresponding program state. We argue that formulas
with similar origins should be displayed close to each other, e.g., by grouping
formulas resulting from the precondition of a program together.

To deal with large logical representations, the user should have possibilities to
freely customize the logical view. It should be possible to abstract from formula
sets by hiding them or by abbreviating them by names. Furthermore, formulas
should be arbitrarily arrangeable (by grouping and sorting).

A natural choice to allow proof construction in this view is via direct ma-
nipulation: by pointing and clicking onto terms and formulas the user retrieves
possible rule applications for the selected position and is able to apply them. As
users should be prevented from performing actions by mistake, it is essential to
be able to observe the result of a rule application before actually applying it.
This information should be given both on a more abstract level, to give a rough
estimate about the rule’s effect (e.g., by showing how many branches result from
the rule application) and on a more detailed level, to provide an insight into how
the proof would evolve if the rule would be applied.

Additionally, to be able to persist the interaction we devise that also a sub
view of the logical view should contain the possibility to perform the proof using
textual interaction. We will call this sub view script-view.

Both interaction styles should be usable interchangeably and in alternation,
to allow for different user preferences. Interactions performed using direct manip-
ulation have to automatically extend the proof script. This also allows that the
actions performed using direct manipulation are reversible, as users just have to
delete the corresponding statement in the script.

Besides the single VCs, also the current overall proof state needs to be
presented to the user to allow for navigation through the proof performed so far.

3.2 Relations between Proof Artifacts

Up to now, we have addressed the difficulties that arise with the system’s
and problem’s structure and dependencies on each view individually. However,
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dependency relations also exist between the different proof artifacts across the
different proposed views. These dependencies are often implicit and users need
to keep them in mind while proving or invest resources to search for these
dependencies, as was also observable in our user study. One building block of our
concept is thus to make these hidden dependencies [26] visible to the user.

Concerning the verification target, each implementation in the source code
view has a representation in the system overview that shows its location in the
system hierarchy. This information about call contexts of subsystems can be used
by the user when formulating requirement specifications of the subsystems.

For an overview over the proof task, not only the proof progress is important
but also the information about dependencies between the proof obligations, the
proof input artifacts, the VCs, as well as lemmas. This dependency information
is necessary to get an overview about what can be (re)used during the proofs.

The VCs in the system and proof overview have a relation to the properties
of a subsystem, i.e., a VC has a relation to a path through the program and
the annotations along this path. A VC also has a direct relation to the logical
view where the logical representation is a formalization of the VC. The two
relations together induce the relation between the individual formulas in the
logical representation and the annotated program. Formulas in the logical view
can have their origin from statements in the program or the annotations or from
specific rule applications, such as the cut-rule.

Between the Script View and the Logical View relations exist as well. Each
statement in the script corresponds to a proof state of a VC, which evolves by
applying rules. Altogether, there exists a relation between a rule application, a
statement in the proof script and the logical representation of the proof state,
e.g., a node in a proof tree. It is crucial for user support to make these relations
visible. As the number of relations may become large, it is advisable to display
this information on user request.

Furthermore, we devise to support “zooming-in” from the abstract overview
to the detailed representation, which was also observable in the user study. This
especially means to support the user in switching between the different views and
keeping track of the dependencies that exist in one view but also the dependencies
between the views. This can be supported by positioning views sequentially, i.e.,
starting with the most abstract view (proof and project overview) down to the
detailed logical view, and thus restricting the work-flow to the “zooming-in”
process. This restriction ensures that important relations are always visible and
can be inspected. The proposed arrangement of views supports users in carrying
over relevant information from one view to another in two ways: firstly by placing
contextually close views next to each other and secondly by always keeping the
last view present when switching to a new one. Further support could be to allow
the user to trace the origin of element across the different views.
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Fig. 3. The Project and Proof Overview (@) and the Source Code View (®) of DIVE
adjacent to each other. This view is the first view users see when loading a project.

4 Realization of the Concept

The presented concept is prototypically implemented as a tool called DIVE
(Dafny Interactive Verification Environment)?* for programs written in Dafny.

The main window of DIVE is split up into 4 different views (as shown in
Fig. 2): the System and Proof Overview, the Source Code View, Logical View and
the Proof Manipulation View. Each view corresponds to a different projection of
the same proof state. In the course of this section we will first present each view
and their relations in more detail and then give an exemplary walk-through to
depict a common series of user interactions. The reader might choose to read the
walk-through first depending on their preferences.

The Source Code View (@ in Fig. 3) shows the proof input artifacts. In
DIVE this view is a tabbed window with standard text editor features. We
included syntax highlighting for the annotated source code as a visual user
guidance, as well as syntax checking with a visual highlighting of the location
containing a syntax error.

As soon as users edit any proof input artifact in the source code view, the
contents of all other views are disabled as the information presented in these
views is outdated. This decision has been made to maintain a consistent state
of all proof artifacts. These views are re-enabled as soon as the user saves the
changes. We chose to refresh the project state only if the user explicitly requests
this refresh to avoid unnecessary reload attempts during typing.

The System and Proof Overview (see @ in Fig. 3) enables users to quickly
get an overview of the overall progress made so far. It allows users to see how
many VCs are still open/closed, as well as the structure of the overall proof and
the navigation to the logical representation of a VC.

We show the hierarchical structure of the components of the verification
target in a tree view. Besides these (sub)systems of the verification target, we
also include lemmas written by the user in this tree view. The tree structure

* Available at https://github.com/mattulbrich/dive.
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is collapsible and expandable to allow the user to either gain a more abstract
overview or to be able to focus on single components of the system.

To support the user in relating a VC to the annotated program the VC
identifiers encode the symbolic execution path, followed by the VC’s purpose.
Also, users can add labels that are used in the VC’s name.

To allow for an overview over the proof progress, for proof inspection and
proof construction on the system level, we included means for interacting with
the VCs in the tree structure. For each VC, an indicator of its proof status is
shown, the number of proof branches in a proof and a possibility to select the
VC for proof construction on the local level. Users can start proof construction in
this view by selecting a (sub)system or VC and applying a general SMT solver or
script. When selecting a system, the corresponding implementation is shown in
the Source Code View. Expanding a system results in displaying the hierarchical
structure of the system down to all VCs. Users can retrieve a presentation of
the VCs for a system and a VC’s relation to the program control structure by
selecting a single VC. Upon selection, in the Source Code View the relevant part
of the source code is put into focus together with a highlight of those statements
that correspond to the symbolic execution path for the selected VC.

The Logical View (see ® in Fig. 4) shows the logical representation of a
VC. We decided to use a sequent calculus as underlying logic so VCs are shown
as sequents. This view consists of two list views which represent the antecedent
and succedent of a sequent. Formulas in the antecedent may be assumed for the
selected VC (e.g., preconditions) whereas to discharge the VC at least one of the
formulas of the succedent has to be shown (e.g., assertions or post-conditions).

During proof construction branching rules may be applied to a sequent such
that the VC has more than one branch. In this case the logic view is tabbed to

BSave T Refresh ©TryClose All 6 Settings € Project Chooser @ About

AlgoverList.dfy ~ | getAt + | List.getAt/loop/invinodeinv] ~

P 10 andLeft on='...((?match: && && )) ...
auns o a—rr——po 20 expand on='...((?match: this.valid())) ...|
30 andLeft on='...((?match: && && && &
node: == this.nodeseqq[idx:] 40 inst with='idx:' ;
508

idx2 < pos

|this.seqq| == |this.nodeseqq|
& |this.seqq| >= 1
&& this.head != null Rules
& (forall n:int :: ( n>=0
&& n < |this.nodeseqq|
==> this.nodeseqq[n] != null))
& (forall i:int :: ( i>= 0 && i < |this.seqq|
==> this.seqq[i]
== this.nodeseqq[i].value))
&& (forall k:int :: ( k >= 0 & k < |this.nodeseqq| - 1
==> this.nodeseqq[k].next !'= null))
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thi
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|_
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Fig. 4. The Logical View (®) and the Proof Manipulation View (®) of DIVE. These
views adjoin to the right of the views in Fig. 3
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allow the user to navigate between different branches. When applying rules the
effect of the last rule application is also shown as graphical hints in the logic view
so that users are able to see the consequences of actions.

Additionally users are able to request the origin of (sub-)formulas displayed
in the logic view. These origins may stem from the source code (e.g. a pre- or
postcondition) in which case the responsible part in the source code is highlighted
or may have resulted from rule applications in which case the relevant part of
the script in the Proof Manipulation View is highlighted. This allows users to
relate the elements in the projections to each other and build up as well as keep
a mental model consistent with the proof state.

The Proof Manipulation View (see @ in Fig. 4) allows proof construction
using the two interaction styles direct manipulation and text-based interchange-
ably. Each manipulation technique is modeled in DIVE with one subview which
supports users in manipulating the proof in their desired way.

The Script View is a text field where the user can manually extend the proof
script. This view also allows users to navigate through different proof states of
one VC by placing the cursor in the script on a proof command or clicking on
checkpoint markers next to the script. The script is only executed on request to
prevent repeated executions when no full command has been provided.

The Rule View allows users to apply rules using direct manipulation. Users
select formulas (or sub-formulas) in the Logical View and a list of applicable rules
appear in the rule view. Each rule is displayed as panel with the name of the
rule, the number of branches that would be opened if this rule is applied and
the possibility to apply this rule to the selected formula. Additionally if a panel
is selected the effects of applying this rule are shown in the Logical View. All
these features support users in gaining information about the effect of applying a
certain rule and thus allows users to make an informed decision which rule to
apply in which situation. Applying a rule automatically updates the script and
the Logical View to represent the new proof state.

An Exemplary Walk-Through. As an example for a common interaction
with DIVE, consider that the user loads the Dafny file containing the implemen-
tation of our running example. This results in the system showing the content of
the file in the Source Code View, at the same time, the VCs are generated and
shown in the System and Proof Overview. The user is now able to modify the
source code and the annotations. In a next step the proof process can be started
by selecting the VCs in the system overview and applying solvers (e.g., SMT
solvers) to them. The result of applying these solvers to all generated VCs of the
class List is depicted in Fig. 3. In our example, some VCs stay open (indicated
by the red symbol). The user may now focus on those VCs in the subsequent
steps. For example, the second invariant remains open. The proof obligation (@
in Fig. 4) states that at each iteration of the loop the local variable node is the
i-th element of the ghost sequence which mirrors the list (thus stating that at
each iteration node is the i-th element of the list).

To close the proof the correct instantiation of a quantifier in the antecedent
is missing. The user can select this quantified formula in the logical view and
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apply the rule “forall-instantiation” in the proof manipulation view. Now the
SMT solver is able to close this part of the proof and the user can focus on the
next VC. Alternatively, the user could have provided a script to close the proof.

Another scenario is to inspect the sequent and recognize a contradiction due to
which the proof could not be closed. In this case the user would like to determine
the origin of the contradiction. To do so it is possible to request the origins of the
involved formulas. Thus, users are able to see whether the contradiction is due
to an error in the source code or is introduced by a rule application (e.g., a cut).

5 Related Work

One of the key features of our concept is to present different projections of the
proof state in adjacent views and allowing a seamless switch between these views.
Systems such as KIV [27,28], Why3 [29], KeY, KeYmaeraX [30-32], SED [33],
Coq [4] or Isabelle [5] provide views with different purposes to the user. These
systems show the current proof state in a view that is different from the view
containing the whole proof structure. Each view should support users in specific
tasks, thus each view contains actions and features that are necessary for the task.
For example, in KIV or KeY the current goal view allows to retrieve the applicable
rules and context-sensitive support for rule application, or the script view in
Isabelle or Coq allows to extend the proof script with support for text-editing.

In KeYmaeraX, the actions accessible in the view containing deduction paths
allow for a step-wise focusing on the different steps of a proof branch, by expanding
details of the path in a tab, starting at the open goal. With progressing proof,
this view may become cluttered as a deduction path may contain a large number
of proof steps. Structuring of proof goals is also possible in KeYmaeraX: users
can change the sequent view by hiding formulas.

The hierarchical structuring of concerns, and the color-coded highlighting of
relevant parts of the source code in DIVE have been inspired by the presentation
in the Why3 platform. Recently, Why3 has been amended with a scripting
language for text-based interaction [34]. Its design allows the language connect
higher-level proof scripting languages for the target programming language in
case Why3 acts as intermediate verification language. A connection to the IDE
of SPARK that allows script-based verification for SPARK programs has been
presented.

Also KeY offers support for inspecting relations between proof artifacts. In
response to our user study, KeY was improved to show the relation between the
annotated program and the proof state in a new window, where all symbolically
executed statements are highlighted. However, changing the annotated program
requires an external editor and a restart of the verification process.

In our concept we integrate interactive with auto-active verification as found
in tools like VCC [35] and Dafny [36]. These tools give feedback on the program
level, and provide integration into an IDE. Users may retrieve information
about violated assertions at specific program locations and inspect the values of
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variables for a program path. Concerning the direct manipulation style, mainly
KeY, KeYmaeraX and KIV were role-models for our concept.

Similarly to the concept presented here, in previous work we integrated direct
manipulation and script-based interaction for KeY [37, 38]. Other systems that al-
low for different combinations of interaction styles include KeYmaeraX which also
allows for both direct manipulation and text-based interaction interchangeably.

6 Conclusion and Future Work

We have presented a concept for a user interface for a seamless interactive program
verification process, which is based on results from user studies, general usability
principles, and principles for theorem provers. One of the goals of the concept is
to support users in step-wise focusing on the different parts of the proof artifacts
for inspection and proof construction, as well as the possibility to seamlessly
switch to more abstract presentations if necessary. At the same time users are
supported in the inspection of relations between the proof artifacts. The concept
integrates auto-active and interactive program verification and allows for an
alternating use of text-based interaction and direct manipulation.

We also presented DIVE as an implementation of our concept. Different views
structure the proof artifacts and are arranged in a way to support step-wise
focusing on more detailed parts. Only adjacent views are shown to the user at the
same time. The goal of the arrangement is to support the users in carrying over
information about relations and dependencies between different proof artifacts
from one view to the other, by trying to keep the cognitive load low. Additionally,
users may invoke mechanisms for inspecting relations and dependencies.

Future work includes integrating missing features like a view showing the
call or usage dependencies, or proof exploration techniques for the logical view.
Existing techniques to support users in coming up with annotations and means
for debugging failed verification attempts remain to be added. This includes, in
particular, displaying possible counterexamples from SMT solvers for invalid VCs
in the source code view. Examples for such an integration for the Dafny system
is presented in [39] and for the Ivy system in [40].

Following the user-centered design process, case studies, as well as user studies
have to be performed in a next step to evaluate the effectiveness of the interaction
concepts and the user experience. The user studies should also evaluate whether
our proposed work-flow may need to be adapted for expert users.

To evaluate whether the integration of the interactions styles is improving
user support, we suggest performing a comparative evaluation using the proto-
type. Groups of participants should perform comparable verification tasks with
either using only a single interaction style or with a combination of styles. Both
task completion time should be measured, as well as the user experience using
standardized questionnaires, such as UEQ [41] or SUMI [42].
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