
The Karlsruhe Java Verification Suite

Jonas Klamroth1, Florian Lanzinger2[0000−0001−8560−6324], Wolfram
Pfeifer2[0000−0002−9478−9641], and Mattias Ulbrich2[0000−0002−2350−1831]

1 FZI Research Center for Information Technology, Karlsruhe, Germany
<lastname>@fzi.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
<firstname>.<lastname>@kit.edu

Abstract. Thanks to the deductive verifier KeY, the formal verification
of Java programs has a long-standing tradition at Karlsruhe. The design
of KeY implies some properties that can restrict its use in real-world
application cases: (1) Verifying long, code-intensive methods with many
instructions or bit-wise operations is difficult even if their behaviour is not
overly complex, and (2) tracking formal guarantees through unverified
code is difficult if not impossible using KeY.
To mitigate these weak spots, we introduce the Karlsruhe Java Verification
Suite, a collection of formal Java verification tools that work with the Java
Modeling Language (JML). Complementing KeY, the suite comprises
JJBMC, a bounded model checker for Java and JML and the Property
Checker, a type checker for user-defined property types.
In this paper, we first discuss formally how tools sharing a common
specification language can share distributed obligations in a general
setting, and then specialise this to the case of Java and our tool suite.
In a case study, we show that the Karlsruhe Java Verification Suite can
verify a program that none of the three components could have proved
alone.

Keywords: Software verification · Modular design · Design by contract
· Software bounded model checking · Pluggable type systems · Deductive
verification · Refinement types

1 Introduction

The KeY project [1] was initiated more than 20 years ago at Karlsruhe University,
with Reiner Hähnle one of the founders of the project. The deductive proof engine
for the formal verification of the correctness of formally specified Java code has
since been an important player in the world of formal analysis of Java programs.
KeY is still an active project that is now co-developed in Karlsruhe, Darmstadt
and Gothenburg.

Over the years we have observed that when applying formal Java verification
closer to practical application cases, there are properties of KeY which make it
hard to apply KeY easily in practical situations:

2 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

1. Some parts of a program to be verified may not fall into the fragment that
KeY can handle well.
While the symbolic execution of Java programs in KeY models the Java
semantics very precisely, it does not scale very well and verifying larger
sections of code may hamper the verification significantly even if the code
is loop-free and has a simple specification. Since KeY models the bounded
integer types in Java using unbounded mathematical integers and modulo
operations, verification of programs using bit-wise operations (like XOR) are
also difficult.
It would be beneficial if the power of KeY could be complemented by verifi-
cation routines that are particularly good on these domains.

2. It may be necessary to track formal guarantees through code outside the
verified core.
Usually one can identify a critical core of a program onto which formal
verification is applied to guarantee its correctness. However, it is not unusual
that data leaves this verified core, is processed in code areas with a lower
criticality level (like a user interface) and then, later, reenters the verified
core. Since KeY does not scale well enough to verify entire code bases, it
would be beneficial to complement KeY with approaches which scale well
and allow verified properties to be propagated through large code bases.

In this paper, we present how two approaches and their corresponding tools
complement KeY with functionalities that fill precisely these two gaps. It is a
deliberate decision that they are not tightly integrated into KeY, but collabo-
rate with KeY using the Java Modeling Language (JML) [19] as their common
specification language. The rationale behind this loose coupling is that thus no
technical tool-specific encoding or implementation details must be considered
outside each verification tool. Using the common specification language JML
as the interface makes it possible to easily incorporate other tools than ones
presented here into the approach.

JJBMC [2] complements the deductive verification engine in KeY by a com-
ponent for bounded model checking. It translates JML specifications into as-
sumptions and assertions in the code, which can then be analysed using bounded
model checking. While bounded model checking can in general not fully prove
properties about programs with loops or recursion, it is well well-suited to loop-
free programs with many cases, which often slow KeY’s proof search to a crawl.
Unlike KeY, which models Java bounded integers using unbounded mathematical
integers, JJBMC can deal well with bit-wise operators.

The Property Checker [18] brings together the expressive power of formal
specification and verification with KeY and the scalability of lightweight verifica-
tion using decidable type systems by translating type qualifiers whose correctness
cannot be shown by the type system into JML annotations. We will show how
this combination can be used to reduce the specification and verification overhead
of proving program correctness.

Since KeY and these two approaches are currently actively developed at KIT
in Karlsruhe, the combination of approaches and tools form the Karlsruhe Java

The Karlsruhe Java Verification Suite 3

Verification Suite. The collaboration between the tools works by a distribution
of proof obligations among them. We discuss for a simple while language with
embedded assumptions and assertions, how the assertions to be proved can be
distributed between different approaches and when such a distribution is correct.
We formally prove this in Thm. 1 in Sec. 4. We then (in Sec. 5) informally lift
this result from the while language to JML-annotated Java and show how the
tool collaboration there can follow the same principles as in the simpler language.
We discuss a few points necessary for an application of the approach in the field
(semantic coherence, proof management).

We have implemented a small wine-store example illustrating the benefits of
the collaboration within the Karlsruhe Java Verification Suite. The critical core
is a sorting routine which is verified using KeY, supported by JJBMC for long
linear code and bit-level operations within it. The application has a graphical user
interface outside the verified core. The Property Checker is used to propagate
the sortedness property through the non-core code. By joining forces, the three
tools can together show that the contracts are satisfied. No tool would have been
able to show this alone.

The main contributions of this paper are the following:

– an approach to combine verification tools that follow different formal analysis
approaches but share a common specification language,

– a formalisation of this approach for a while language with embedded assump-
tions and assertions and a formal correctness proof,

– the description of an instantiation of the combination idea with three tools
(KeY, JJBMC, Property Checker) that collaborate using JML,

– a case study for the JML combination which the tools can only verify
collaboratively.

2 The Java Modeling Language

The Java Modeling Language (JML) [19] serves as lingua franca for the different
tools in the Karlsruhe Java Verification Suite. Therefore, this section provides a
short introduction to its concepts. JML is a behavioural specification language
for sequential Java programs and the de facto standard in the Java verification
community. It is designed to be close to the Java language and thus comparatively
easy to write and understand for Java developers. JML follows the principle of
design by contract [21]. This means that specifications are written at the method
level using contracts, which abstract from the method’s behaviour. A contract
in general consists of a precondition and a postcondition with the semantics
that if the precondition holds at the method call, the postcondition must hold
after returning from the method. The use of contracts allows one to divide the
complexity of large software into smaller parts, which can then be reasoned about
individually (modular reasoning). However, to be able to verify the contracts
using a deductive program verifier, it is often necessary to provide additional
helper specifications. The most prominent ones are loop invariants and framing
clauses: The former can be used to conduct induction proofs over the number of

4 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

/*@ normal_behavior
@ requires 0 <= a < array.length;
@ requires 0 <= b < array.length;
@ ensures array[a] == \old(array[b]);
@ ensures array[b] == \old(array[a]);
@ assignable array[a], array[b];
@*/

public static void swap(int[] array, int a, int b) {
int tmp = array[a];
array[a] = array[b];
array[b] = tmp;

}

Fig. 1. A formally specified swap method as an example JML method contract.

loop iterations, while the latter are used to specify an upper bound of the heap
locations written by the method. These auxiliary specifications are often difficult
to write and error prone. In addition to contracts, JML also supports inlined
specification statements like explicit assertions or assumptions.

To be transparent to Java compilers, all JML annotations are embedded into
Java comments that start with an ‘at’ sign after the comment delimiter (i.e. //@
and /*@). JML intends to be precise on the one and concise on the other hand;
therefore it imposes some useful defaults for specification, for example that fields,
parameters and return values are non-null by default.

Figure 1 provides an example of a JML method contract. The keyword
normal_behavior is used to specify that the method always terminates and
does not throw an exception. Under the precondition (requires) that the given
indices a and b are in the bounds of the array, the contract states that after
execution of the method the two elements will be swapped (ensures). The
operator \old(...) is used inside the postconditions to evaluate an expression
in the method’s pre-state rather than in its post-state. Furthermore, a framing
clause (assignable) is given: The method is at most allowed to write to the
heap locations of the two elements of the array.

A number of formal tools to reason about JML specifications has been
implemented over the years, with KeY and OpenJML [8] the most actively
developed tools today. In addition to deductive verification, OpenJML also
supports run-time assertion checking. There are also other dynamic verification
tools for JML like for example JMLUnitNG [24], which allows users to create
unit tests with test oracles automatically generated from JML specifications.

To enable parts of the specification only for specific tools, JML brings the
feature of annotation markers: If an annotation contains the tool name prior to
the ‘at’ sign (e.g. //+KeY@), this annotation is only to be considered by the named
tool, other tools have to ignore it. Likewise, specific JML clauses can be explicitly
disabled for some tools via //-<toolname>@. Therefore, some assertions can be

The Karlsruhe Java Verification Suite 5

discharged by specific tools, while other tools may assume them afterwards. Of
course, one has to be careful not to conduct an unsound circular proof.

3 Tools in the Karlsruhe Java Verification Suite

The specification language JML is the common denominator and the communi-
cation means by which the components of the verification suite can interact and
combine and exchange their verification results. In the following we represent the
main three components of the suite (co-)developed in Karlsruhe: KeY as a full
fledged deductive verification tool at the heart of the tool suite, JJBMC as a
more versatile, flexible, well-scaling bounded verification tool for more lightweight
static checking and the Property Checker as a means to check lightweight formal
properties in a well-scaling type checker.

While the presentation in this paper and in the case study in Sec. 6 focus on
these tools developed at KIT, the described approach is by no means limited to
them. On the contrary, since the only requirement is support of the JML language,
other tools that operate using this language can be naturally incorporated as well.
In particular, the deductive JML verification engine OpenJML fits seamlessly
into the tool suite.

3.1 KeY

KeY [1] is a tool for deductive verification of Java programs which are formally
specified in JML. At its core is a sequent calculus working on Java Dynamic
Logic (JavaDL) formulas. This logic features the modal operators [p] and 〈p〉
(‘box p’ and ‘diamond p’) parametrised by a Java program p. The formula [p]ψ
is valid iff starting in any pre-state, either the program p does not terminate or
it does terminate and ψ holds in the post-state of its execution. In contrast to
that, 〈p〉ψ is valid iff the program terminates and ψ holds in the state afterwards.
In dynamic logic, the Hoare triple {φ}p{ψ} with a precondition φ, a program
p, and a postcondition ψ can be expressed as φ → [p]ψ. In general, dynamic
logic is more expressive than Hoare logic, since the formulas can contain nested
modalities again, which enables the specification of, for instance, the equivalence
of two programs. In KeY, multiple modalities are used for example to formulate
proof obligations for information flow in a very intuitive and natural fashion,
whereas in Hoare logic additional constructs like Hoare Quadruples would have
to be introduced for this.

Besides modalities, JavaDL extends first order dynamic logic by a type
hierarchy suitable for Java. In particular, the types Heap, Object, Field, and
LocationSet are included to be able to model and reason about memory properties
of Java programs using the theory of arrays [20] and dynamic frames [16].

The usual workflow in KeY is as follows: After loading the method contract
to be proven, KeY creates a JavaDL proof obligation whose validity entails the
correctness of the method wrt. the contract. Next, the program is symbolically
executed by applying a series of sequent calculus rules that transform the code

6 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

inside modalities into substitutions outside of them. Eventually, symbolic ex-
ecution terminates in a proof tree with one or more branches which contain
only first-order formulas without modalities. While in theory, the validity of
formulas already in first-order logic (and thus also in JavaDL) is undecidable,
in practice, it is possible to find a proof for many instances even automatically
by using well-designed heuristics built into KeY. However, in case the automatic
proof search fails, KeY provides the possibility to apply rules interactively, which
further increases the number of provable instances.

3.2 JJBMC

JJBMC [2] is a command-line tool for the verification of JML-annotated Java code
based on the bounded model checker JBMC [9]. The tool provides an automatic
translation of JML specifications to pure Java code with additional assertions,
assumptions and non-deterministic value assignments. This translation is a purely
syntactical replacement function trans (·) : JML ∪ Java → Java. It relies on the
base idea of translating a method contract as first assuming the precondition,
then executing the method body, and finally asserting the postcondition. This
can be formally expressed as follows:

trans

 /*@ requires R;
@ ensures E; */

{ B }

 =
trans(assume R);
trans(B);
trans(assert E);

The transformation trans is recursively defined on all statement and expression
constructors. While some Java expressions are their own translation directly, some
JML-specific expressions like quantifiers require a more sophisticated translation
which may involve additional code, like loops in the case of a quantification over
an integer range. The JML example presented in Fig. 1 gets translated into the
Java code in Fig. 2.

The bounded model checker JBMC is then able to analyse the result of the
translation and thus verify each method wrt. its contract. By using JBMC as a
back end, JJBMC inherits the bounded analysis semantics of JBMC:

The key idea of bounded verification is to consider only program runs which
are bounded by a given threshold in loop iterations and recursive method calls.
In particular, this allows the bounded analysis to unroll loops, inline method
calls and thus create a finite program. While this brings along several advantages
like the possibility to leave out auxiliary specification as well as being a fast and
fully automatic approach, this also means that results obtained in this manner
can only ever be valid up to the given threshold. If the program contains loops
which may have more iterations or contains arrays which are bigger than the
threshold, the result is only partial. By partial we mean that although the tool
signals a successful verification, there may still be a violation of the specification
for runs of the program that exceed the threshold.

The Karlsruhe Java Verification Suite 7

public static void swapVerf(int[] array, int a, int b) {
assume(array != null);
assume(0 <= a && a < array.length);
assume(0 <= b && b < array.length);
int old0 = array[b];
int old1 = array[a];
int tmp = array[a];
array[a] = array[b];
array[b] = tmp;
assert array[a] == old0;
assert array[b] == old1;

}

Fig. 2. Result of JJBMC’s JML-to-Java transformation for the swap method of Fig. 1.
assume refers to a static verification-only method declared by JBMC.

In JBMC (and, hence, also in JJBMC), all data is modelled in a bit-precise
fashion using bit vectors. This encoding has the advantage that bit-wise logical or
shift operations can easily be formulated and reasoned about. When representing
bounded Java integers using mathematical integers like in KeY, it is still possible
to encode such operations, but makes reasoning significantly more difficult.

JJBMC can be used to fully verify loop-free code. But it can also be used as
a means to gain confidence about a specification before conducting a full formal
proof. The fully automatic bounded model checking approach allows one to check
specifications early on even when auxiliary specifications like loop invariants or
method contracts of subroutines are still missing. This provides a early feedback
opportunity while engineering JML specifications.

3.3 Property Checker

Pluggable type systems [7] are type systems which extend a language’s existing type
system without changing its run-time semantics. The Checker Framework [10,22]
is a framework for the creation of pluggable Java type systems using Java’s
annotation mechanism. For example, the annotation @NonNull and the base
type Object can be combined into the type @NonNull Object of all objects
which are not null. A type consisting of an annotation and a base type is called
a qualified type, and an annotation which occurs in a qualified type is called a
qualifier.

The advantages of pluggable type systems as a verification tool are that
they are simple to use and that the type checker’s run time generally scales
very well with program size. On the other hand, they only provide conservative
estimations of the property they are designed to show. So a nullness type checker

3See the original file at https : / / github . com / codespecs / daikon / blob /
a62c452bf4a5818271f87bd0d2ba322a18e197ee / java / daikon / PptTopLevel . java #
L2087

https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/daikon/PptTopLevel.java#L2087
https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/daikon/PptTopLevel.java#L2087
https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/daikon/PptTopLevel.java#L2087

8 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

boolean is_less_equal(@NonNull VarInfo v1, @NonNull VarInfo v2) {
@Nullable Invariant inv = null; @Nullable PptSlice slice = null;
slice = findSlice(v1, v2);
if (slice != null) {

inv = instantiate(slice);
}
if (inv != null) {

@SuppressWarnings("nullness")
boolean found = slice.is_inv_true(inv);
return found;

}
return false;

}

Fig. 3. Example of a false positive of the Checker Framework’s Nullness Checker.3

will reject all programs in which a NullPointerException may occur, but it
may also reject some NPE-free programs. Consider the excerpt in Fig. 3 from
the Daikon Invariant Generator [11], which uses the Checker Framework to avoid
NullPointerExceptions at run time. Our presentation of this example is taken
from [18, Sec. 2]. The Checker Framework reports that the variable slice may
be null when slice.is_inv_true is called. This is a false positive, because the
implementation ensures that if the variable inv is non-null, the variable slice is
also non-null.

Deductive verification, as provided e.g. by KeY, has the exact opposite ad-
vantages and disadvantages: It is rare that the correctness of a correct program
cannot be proven using KeY’s calculus. On the other hand, using KeY requires
more expertise than using a type checker and both KeY’s run time and the
time required to write a correct specification scale badly with program size and
complexity.

The Property Checker [18] is a generic framework for pluggable type sys-
tems with user-defined properties developed in the Checker Framework. This
checker can be instantiated with a hierarchy of property qualifiers, which are
qualifiers whose semantics is defined by a single Boolean expression, which
may depend on the typed variable (called the subject). For example, @Non-
Null could be made into a property qualifier via the property subject 6= null .
More elaborate examples for property type qualifiers can be found in the case
study in Sec. 6.2. The Property Checker also supports qualifier hierarchies and
parametrised qualifiers. For instance, a qualifier @GreaterEq(int a) can be defined
by the property subject ≥ a. A suitable subtyping hierarchy can be defined via
@GreaterEq(a) � @GreaterEq(b) :⇐⇒ a ≥ b. However, these features are not
needed in the case study.

A type which is qualified with a property qualifier is called a property type.
Property types can thus be seen as a kind of refinement types, a refinement

The Karlsruhe Java Verification Suite 9

//@ requires v1 != null && v2 != null;
boolean is_less_equal(VarInfo v1, VarInfo v2) {

Invariant inv = null; PptSlice slice = null;
slice = findSlice(v1, v2);
if (slice != null) {

//@ assume slice != null;
inv = instantiate(slice);

}
if (inv != null) {

//@ assume inv != null;
//@ assert slice != null;
boolean found = slice.is_inv_true(inv);
return found;

}
return false;

}

Fig. 4. (Simplified) translation of Fig. 3.

type being a subtype which restricts its base type by demanding that all of its
instances fulfil some property [12,23].

Defining qualifiers using Boolean expressions allows the Property Checker
to translate occurrences of qualifiers in a program to JML specifications, which
in turn allows us to combine the scalability of type systems with the power of
deductive verification: The Property Checker checks for a conservative estimation
of the desired properties using simple subtyping rules over the declared hierarchy.
Any occurrences of property qualifiers whose correctness cannot be established
using this estimation are translated to JML assertions, to be discharged by some
other JML tool. In addition, any occurrences of property qualifiers whose correct-
ness can be established are translated to JML assumptions to aid in the proof
search. The translation of our example from Fig. 3 is seen in Fig. 4: All qualifier
occurrences proven by the type checker have been translated into assumptions,
and all occurrences not proven into assertions. Thus, we can discharge most proof
obligations using the scalable, easy-to-use type checker, but still rely on the full
power of deductive verification for the trickier proof obligations.

4 Distributing Proof Obligations

For multiple verification tools to be able to collaboratively prove a program correct,
we must first clarify how proof obligations for a program can be distributed
between different tools while keeping a sound verification approach.

To this end, in this section we will not work with Java and JML, but study
a simpler while language with assertion and assumption statements. For this
language, we will prove that it suffices for a program to be correct that any
assertion in the program be proven by any one tool while all other assertions

10 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

C ::= x := T | if B then C else C | while B do C | C ; C |
assert L : B | assume B

T ::= x | T + T | T ∗ T | T − T | 0 | 1
B ::= ¬B | B ∧B | T = 0 | T > 0

Fig. 5. Grammar for the while language with asssertions and assumptions.

can be taken as assumptions (i.e. their statements can be used in the verification
process without having to be shown).

The considered while language is according to the grammar in Fig. 5, in
which x ∈ Var is a placeholder for a variable name from the set of variables Var .
Assertions are garnished with a label L, which must be a unique character string
within the entire program. The set labels(P) collects all assertion labels that
occur in P . The set Programs is the set of all syntactically correct programs that
can be produced from the non-terminal C in the above grammar.

This deterministic language has the usual intuitive semantics with the set of
states of an execution being State = ZVar , the set of all variable assignments.
Intuitively, whenever the execution reaches an assumption whose condition fails,
execution silently halts. Whenever the execution reaches an assertion whose
condition fails, it raises an error. A program is correct if it does not raise an error
for any initial state.

For the purposes of this paper, we only consider programs that always
terminate, but assume termination silently without showing it.4 We formally
define the semantics of such programs using assertion/assumption-traces (short
aa-traces): An aa-trace is a finite sequence of pairs in A = {assert, assume} ×
Bool. Each element in the sequence denotes that an assertion/assumption has
been reached and whether its condition evaluated to true or false. This is encoded
as a function J·K(·) : Programs × State→ A∗ × State whose definition is shown
in Fig. 6.

This definition is well-founded (despite the recursive definition for loops) since
we silently only consider terminating programs. Note that failing assertions and
assumptions do not end an aa-trace but let the execution continue. The formal
definition of a correct program capturing the intuitive notion takes this into
account by requiring that no assertion fails before an assumption has failed:

Definition 1 (Correct Program). A program P ∈ Programs is called correct
if the trace JP K(σ) for each initial state σ ∈ State

1. does not contain the pair (assert , false) or
2. contains the pair (assert , false) only at a position after an occurrence of

(assume, false).

4It would have been possible to extend the following definitions also to non-
terminating programs, but would have reduced readability without adding much insight.

The Karlsruhe Java Verification Suite 11

Jx := T K(σ) = (ε, σ[x 7→ Tσ]) (Tσ evaluates expression T in σ)
Jc1; c2K(σ) = (s1_s2, σ2) with (s1, σ1) = Jc1K(σ),

(s2, σ2) = Jc2K(σ1)

Jif b then t else eK(σ) =

{
JtK(σ) if σ |= b

JeK(σ) otherwise

Jwhile b do cK(σ) =

(s1_s2, σ2) if |= b with (s1, σ1) = JcK(σ),

(s2, σ2) = Jwhile b do cK(σ1)

(ε, σ) otherwise

Jassert L : bK(σ) =

{
([(assert , true)], σ) if σ |= b

([(assert , false)], σ) if σ 6|= b

Jassume bK(σ) =

{
([(assume, true)], σ) if σ |= b

([(assume, false)], σ) if σ 6|= b

where s_u denotes the concatenation of two sequences s and u.

Fig. 6. Definition of program semantics using assertion/assumption-traces.

Remember that in this section, we want to show that it suffices that each
assertion is covered by one verification approach while all other verification
engines are allowed to consider it an assumption. Therefore, we introduce the
concept of program variants. A variant P ′ of a program P ∈ Programs is a
program that can be produced from P by rewriting arbitrarily many assertions
into assumptions of the same conditions. For instance, assert a; assume b
is a variant of assert a; assert b (but not vice versa). Since executions in
variants take the same path as in the original program, but encounter potentially
fewer assertions, every variant P ′ of a correct program P is also correct. In the
following, we also want to refer to a verification tool t, which we consider to be a
partial function t : Programs 7→ Bool which returns whether the argument is a
correct program. We assume all tools are sound wrt. Def. 1.

Theorem 1 (Distributed Proof Obligations).
Given a program P ∈ Programs and a set of sound verification tools T , let for
any t ∈ T the program Pt denote the variant assigned to tool t.

If t(Pt) = true for all t ∈ T and
⋃

t∈T labels(Pt) = labels(P), then P is
correct.

This theorem formally captures the goal of this section: The condition⋃
t∈T labels(Pt) = labels(P) encodes that every assertion (identified by its label

in labels(P)) has not been rewritten into an assumption in at least one variant
Pt. If all variants can be proven correct by their respective sound tool t, the joint
verification effort proves that the input program is correct.

Proof (of Thm. 1). Let P be a program according to the requirements of Thm. 1,
i.e. every tool reports that its respective variant Pt is correct. Let us assume

12 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

that P is incorrect. There would then be an initial state σx ∈ State with trace
s = JP K(σx), which is a counterexample to the correctness of P , i.e. the first
failing verification statement is an assertion, not an assumption. Let us call the
label of that assertion Lx and its position in the trace x. All entries in the trace
before x are either (assert , true) or (assume, true).

Let us inspect a variant Pt with Lx ∈ labels(Pt) covering the assertion under
observation, and its trace st = JPtK(σx). (Variant Pt must exist as every label
must be covered by some tool.) We notice that throughout the execution of the
programs P and Pt, the same operations have been executed and the same path
has been taken. This implies that the conditions checked in assertions are the
same, the only possible difference between s and st is that some ‘assert’ elements
in the aa-trace s have been replaced by ‘assume’ in st. This implies that the xth
entry in st must also be the first failing entry in that aa-trace, the same as in
s. But failing this assertion entails that Pt is not a correct program which is a
contradiction against the assumed soundness of the tool t which reported Pt to
be correct. So, while Pt contains additional assumptions, all failing assertions
will still be reported, as the assumptions are justified by other tools and, thus,
do not restrict the traces of the program. ut

This result allows us to distribute proof obligations in form of assertions in a
while program among a set of verification approaches. This principle of distributed
assertions is not limited to while programs and it remains as future work to
extend the formal setting to (recursive) function invocations, their abstraction
for a formal modular analysis following design-by-contract and to the more
sophisticated features of the Java language (exceptions, non-standard control
flow, etc.).

5 Tool Interaction and Integration

The central feature that allows the tools in the Karlsruhe Java Verification Suite
to be integrated is the use of a common specification language: JML. In Sec. 4,
we have seen how the proof obligations dispersed throughout a while program
in the form of assertions (in a common language) can be distributed among a
set of verification tools by building a variant for each tool. In a modular context
following the design-by-contract principle (e.g. when using JML), there are fewer
explicit assertions in the code and, usually, the specification goes into method
contracts. Clauses in method contracts can most naturally also serve as such
specification distribution points. This ties in with the concept of assumption
variants from Sec. 4, as the clauses in contracts between caller and callee have
both a nature of assertion and of assumption that go hand in glove. The schematic
sequence diagram in Fig. 8 sketches this relationship for a method call to m()
with a contract with precondition pre (asserted by caller, assumed by callee) and
postcondition post (asserted by callee, assumed by caller). If we now verify the
two methods n and m with separate tools we can see that the tool for n assumes
the conditions verified by the tool covering m and vice versa. Covering different

The Karlsruhe Java Verification Suite 13

Property
Checker

active tools

. . .

JJBMC

passive tools

KeY

. . .

type annotations

Java source

user-defined JML
specifications

additional JML
statements

(assume/assert)

tool results

Input Generated Output

proof management

Fig. 7. Vision for interaction between the tools.

caller

assert pre

assume post

callee

assume pre

assert post

n()

m()

Fig. 8. Dual nature of specification clauses in design-by-contract

methods modularly with different JML verification tools is thus a special case of
the proof obligation distribution sketched in Sec. 4.

Approaches for modular deductive verification often require extensive spec-
ifications, which in many cases is considered a major downside. But for once,
the specification overhead can also be considered an advantage, as the explicit
contracts allow one to distribute the verification overhead between different tools
without requiring even more specification.

There are two ways in which a formal verification tool can interact via its
specification language: either passively by interpreting specifications or actively
by emitting specifications. Figure 7 shows the basic workflow and interaction
between the tools. While JJBMC and KeY passively read and interpret JML
specifications, the Property Checker does not itself digest JML specifications,
but produces additional JML annotations to be verified or assumed by other
tools. In either case, the tools integrate by distributing the proof responsibilities

14 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

between them. In the passive case, it is the user who decides which tool has to
cover which assertion of the specification. In the active case, it is the tool that
decides if other tools must verify a property (if it cannot be discharged) or may
assume it (if it can be discharged).

5.1 JML Semantics

One major challenge for the collaboration of the different tools in the suite
is the potentially different semantics that different tools might implement for
annotations in the common language JML. There are a few points in the semantics
of JML which have a canonical answer within each approach, but not necessarily
the same one for all systems. Two such semantics questions shall illustrate the
challenge:

When do which object invariants have to hold? This is still an active research
area and the answer to the question heavily depends on the technique the tool
implements to deal with heap framing (e.g. separation logic, region logic, dynamic
frames, ownership, . . .). While JML originally proposed an ownership approach,
KeY adopted dynamic frames. It is very difficult to bring these two concepts
together in general.

What is the meaning of arithmetic operations in specifications? Due to the
nature of encoding data using bit vectors, JJBMC naturally uses strict Java 32-bit
integer semantics for arithmetic operations in specifications while JML by default
assumes integer arithmetic to be performed on non-overflowing mathematical
integers. Fortunately, KeY has switches that allow it to treat integers compatibly
to the bounded model checker.

We have made sure (by manual review) that such differences do not compro-
mise the validity of our case study. It remains as future work to either base all
tools on the same semantic footing, even out differences in the specifications or
at least to detect and report discrepancies. The envisioned Proof Management
system (see Sec. 5.3) seems to be the ideal point to integrate this into the tool
suite.

5.2 Formulating Program Variants Using JML

While assigning method contracts to different tools provides a natural process
to distribute proof obligations between tools, it is also convenient to be able to
follow the idea of assertion distribution from Sec. 4 more closely in such a setting.

Indeed, the JML annotation marker feature, which allows users to assign
a JML annotation to specific tools, serves as a perfect means to express this
distribution. If there are two JML-based verification tools A and B, then the
annotation /*+A@ assert φ;*//*+B@ assume φ;*/ makes sure that the same
condition φ is interpreted as an assertion by A and as an assumption by B.

In the case study in Sec. 6, we have used this feature to combine bit-precise
reasoning provided by JJBMC with more sophisticated reasoning in KeY. Fig. 12
shows the swap method that exchanges the ath and bth element of an array,

The Karlsruhe Java Verification Suite 15

Fig. 9. Example of a report generated by our proof management tool.

implemented using XOR operations. JJBMC considers the swapping property
in the JML annotation as an assertion, whereas KeY is allowed to assume it.
JJBMC can prove this property easily while proving it is out of scope for KeY
(which models Java integers using mathematical integers and cannot deal with
bit-level operations). But with KeY being allowed to assume this property, it
can then proceed and use it to prove a more sophisticated permutation property
which would have been out of scope for JJBMC.

5.3 Proof Management

In the current state of the Karlsruhe Java Verification Suite, it has to be ensured
by the user that the verification responsibilities are distributed soundly among
the tools according to Thm. 1. While for simple cases, the proof coverage and the
absence of cycles can still be checked manually, for large projects, it is essential
to have some kind of proof management. For multiple KeY proofs, this gap is
already closed by a command line tool which can be used to check that (a) the
proofs can be reloaded and checked, and also match the Java source code and
JML specifications, (b) there are no illegal5 cyclic dependencies in the proofs,
(c) all contracts a proof depends on are proven as well, and (d) the settings are
compatible. This last point ensures that the semantics, for instance the meaning
of arithmetic operations, is the same for each proof.

5To be able to reason about (mutually) recursive methods, cyclic dependencies are
allowed as long as a termination witness is provided for each of them.

16 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

The proof management tool generates an HTML report from a set of input
proofs that contains all the information described above. Fig. 9 shows an example
of such a report for a source file containing 5 contracts, of which 4 are proven.
However, one contract still has open dependencies, which means that the proof
uses another contract that is still not discharged. In addition, there is an illegal
cycle detected; therefore the two contracts in the cycle are considered unproven.

At the moment, this tool manages only KeY proofs. For the future however,
we envision a proof management tool that also integrates results from JJBMC
and the Checker Framework and possibly other tools such as OpenJML, and
which therefore serves as a connection between the tools of the Karlsruhe Java
Verification Suite. The goal is that if the proof management report indicates
that all proofs have been done, then the proof obligations have been distributed
successfully and the project has been correctly verified.

6 Case Study

We implemented a small Java-based shop GUI (shown in Fig. 10) to illustrate how
the different components of the Karlsruhe Java Verification Suite can collaborate
to prove a system correct. In the application, the user can buy different types of
wine. Whenever they click on the button beside a wine, a number representing
its price is added to the shopping basket at the top of the GUI. The items in
the shopping basket are always kept in sorted order. The code contains a sorting
routine whose verification falls clearly in the domain of deductive verification
with KeY. However, there is a base case which is better handled using JJBMC.
The client program uses GUI-specific code and could not even be loaded into KeY.
Luckily, the sortedness property of the basket can be propagated through the GUI
code using property types. All components of the Karlsruhe Java Verification
Suite have to join forces to prove this program correct.

Figure 11 shows a class diagram for the case study. In addition to the GUI class,
we have a Shop class containing the products and prices as well as a Basket class
which encapsulates the user’s shopping basket in an instance of ImmutableArray.
ImmutableArray uses a sorting algorithm provided by the class Quicksort.

6.1 Library code: Quicksort With Explicit Base Case

As a library function for the web shop, we provide a method to sort the elements
of an array. We follow a common practice in algorithm engineering by efficiently
sorting the given array with Quicksort until we reach a small enough array
(less than six elements) for which we employ a specialised sorting network. This
approach proves to be faster than Quicksort in practice. We also use the in-place
swap method using repeated XOR operations from Fig. 12 to swap elements in
the array. The interplay between KeY and JJBMC for this method has already
been explained in Sec. 5.2.

The sorting network implementing the base case with at most 5 elements
(taken from [6]) is free of loops, but contains 12 consecutive if statements: It is

The Karlsruhe Java Verification Suite 17

Fig. 10. Graphical user interface for the case study.

itemPrices

« uses »

GUI

Shop Basket

ImmutableArray

ImmutableArray insertSortedNonNegative(int x)

Quicksort

void sort(int[] a)

Invariant: itemPrices
is sorted and con-
tains only non-
negative numbers

Invariant: itemPrices
is sorted and con-
tains only non-
negative numbers

Contract: After the
sort method has run,
the array is sorted
and a permutation
of the original array.

Contract: After the
sort method has run,
the array is sorted
and a permutation
of the original array.

Fig. 11. Class diagram for the case study.

18 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

void swap(int[] arr, int a, int b) {
if(a != b) {

arr[a] ^= arr[a];
arr[a] ^= arr[b];
arr[b] ^= arr[a];
//+KeY@ assume arr[a]==\old(arr[b]) && arr[b]==\old(arr[a]);
//+JJBMC@ assert arr[a]==\old(arr[b]) && arr[b]==\old(arr[a]);

}
}

Fig. 12. In-place swap of integers using XOR operations. (Its JML contract is the one
shown in Fig. 1.)

@Sorted , subject 6= null ∧ subject .arr 6= null ∧ Util.isSorted(subject .arr)

@NonNegArray , subject 6= null ∧ subject .arr 6= null ∧ Util.isNonNeg(subject .arr)

@NonNeg , subject ≥ 0

Fig. 13. Property qualifier definitions. The identifier subject refers to the variable
receiving the type annotation.

thus a natural fit for bounded model checking, whereas KeY chokes on the input
due to the large number of paths it has to traverse during symbolic execution.6
In contrast, the actual Quicksort implementation with several unbounded loops
and arrays is where KeY shines. This routine is a perfect example of how different
tools can play together in order to conduct proofs that neither of them would be
able to find alone.

The base case verifies in JJBMC within 13 minutes.7 Sortedness is shown
for bound k=6, the permutation property for k=5 (greater bounds resulted in a
timeout). The analysis of the swap method is instantaneous. For the verification
of the different parts of the Quicksort algorithm, KeY runs in automatic proof
search mode for about 11 minutes in total7. For the permutation property, a few
manual rule applications (which can be captured in a proof script) are needed to
guide quantifier instantiation in the prover.

6.2 Library code: Immutable Arrays With Sortedness and
Non-negativity

In the application, we want to be able to obtain immutable array instances which
are known to only contain non-negative numbers in sorted order. Since references
to arrays with such properties will also be handed around in GUI code, the plan

6There are verification tools which avoid this exponential blowup of proof obligations,
but other tools relying on symbolic execution would suffer under the same problem.

7on a PC with an AMD Ryzen 7 PRO 4750U (8x1.7GHz) CPU and 32GB RAM

The Karlsruhe Java Verification Suite 19

public static
@NonNegArray ImmutableArray
insertSortedNonNegative(@Sorted @NonNegArray ImmutableArray ia,

@NonNeg int newElement) {
int[] newArr = new int[ia.arr.length + 1];
System.arraycopy(arr, 0, newArr, 0, ia.arr.length);
newArr[ia.arr.length] = newElement;
Quicksort.sort(newArr);
return new ImmutableArray(newArr);

}

Fig. 14. The ImmutableArray methods which need to be proven in KeY.

is to capture these conditions as property types to not have to load GUI code
into the deductive verifier. The required qualifiers are shown in Fig. 13, where the
qualifiers @Sorted and @NonNegArray can be applied to instances of the class
ImmutableArray, and @NonNeg can be applied to int values. The type property
definitions make use of the helper methods Utils.isSorted, which returns true
if and only if the array is sorted, and Utils.isNonNeg, which returns true iff
all elements in the array are ≥ 0.

Next, we use these qualifiers to specify the method insertSortedNonNegative()
(shown in Fig. 14) which takes a non-negative array and a non-negative number,
returns a new sorted non-negative array. Since the implementation of property
types is currently limited to immutable objects, the method returns a new object
instead of modifying the argument array.

To obtain the well-typedness of the method, its return type must be correct,
i.e. the returned array must (a) be sorted, and (b) contain only non-negative
elements. The type-checking algorithm behind the Property Checker cannot
look inside the type qualifier definitions and take their semantics into account.
Instead, it only checks whether syntactic typing rules are respected; e.g., the
right-hand side of an assignment must evaluate to a subtype of the left-hand
side’s type. Thus, the Property Checker is unable to prove the well-typedness of
this method. The fact that the returned array is sorted could be shown by the
checker if Quicksort.sort() were specified using property types. But since it
was specified directly in JML instead, the checker cannot use its specification.
The fact that the returned array contains only non-negative elements follows from
the fact that Quicksort.sort() returns a permutation of the original array, and
also cannot be established by the checker. Hence, it translates the type qualifiers
of the returned value into JML assertions. The types of the method parameters,
on the other hand, are guaranteed and are translated into JML assumptions.
KeY is then able to discharge the proof obligations that arise from the assertions.
This requires 85 seconds in KeY’s automatic mode8 and two manual quantifier
instantiations.

8on a PC with an AMD Ryzen 7 PRO 4750U (8x1.7GHz) CPU and 32GB RAM

20 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

(ActionEvent e) -> {
basket.prices = basket.prices.insertSortedNonNegative(price);
...

}

Fig. 15. An assignment which passes along a type property and can be verified by the
Property Checker.

6.3 Client code: The web shop GUI

The method in the class Quicksort has now been formally verified, (Sec. 6.1) and
a formal connection between type qualifiers and their defining predicates has been
established (Sec. 6.2). The remaining classes in the case study do not establish
any type properties, but only use them and pass objects having the property
along. The well-typedness of these classes can be proven by the Property Checker.
For example, consider the action listener in Fig. 15, which is executed whenever
the user presses a button. It updates the shopping basket with the price of the
newly chosen product. The fact that this assignment preserves the type properties
of the shopping basket – i.e. that basket.prices is sorted and non-negative –
follows directly from the well-typedness of insertSortedNonNegative() and is
verified by the Property Checker. The total run time of the Property Checker for
this case study is 8 seconds.8

Unlike KeY, the Property Checker supports code using features of Java 8
and later like lambda functions, making it well-suited to this kind of client code,
which would otherwise have to be rewritten for KeY and specified in JML just
for this relatively superficial formal treatment.

6.4 Conclusion

This case study demonstrated how multiple verification tools can be combined to
prove the correctness of a program that is not wholly accessible to either of the
tools. While sorting routines generally fall in KeY’s domain, highly optimised
routines like the one analysed here often have base cases with long if cascades,
which are onerous to prove in KeY. JJBMC has no problem with this kind of code,
but can only show bounded correctness in code with loops. But since the base case
is only used for arrays with bounded size, JJBMC can give us a total correctness
guarantee. Our program also has a graphical user interface, which we can only
analyse in KeY or JJBMC after writing lots of boilerplate JML specifications for
the GUI code. Even then, we still have to do a lot of work just to prove how the
sortedness property is propagated through the GUI methods. Using a pluggable
type system and the Property Checker, this task is less burdensome: We simply
annotate all variables which should be sorted with an appropriate qualifier and
run the Property Checker. On the other hand, the Property Checker is unable
to reason about the methods which establish the sortedness property, which we

The Karlsruhe Java Verification Suite 21

instead have to prove in KeY or JJBMC. Thus, all components of the Karlsruhe
Java Verification Suite have to join forces to prove this program correct.

7 Related Work

An overview over existing approaches to combine multiple verifiers is discussed
by Beyer and Wehrheim [5]. In their classification system, our approach would
fit into the category ‘cooperation of tools viewed as black box objects’, since
our tools only communicate via an interface (JML in our case), do not need to
know anything about their internals, and cooperate on intermediate results of
the verification (for instance, well-typedness information from type checker is
passed via additional assumptions to KeY).

In [14], Jacobs presents a technique to construct a correctness witness from
multiple partial analysis results. As opposed to our work for combining a type
system, an interactive deductive verifier, and a bounded model checker, the
technique presented there is targeted towards model checkers and static analysers
which have an explicit notion of visited and checked states and record these
states via so called abstract reachability graphs. On a practical level, as they
implemented their technique using the CPAChecker framework [4], their technique
works for programs written in C, while our approach works for Java.

There are many other deductive verification approaches which combine differ-
ent tools to check the correctness of one program.

Type checkers for refinement type systems like LiquidHaskell [23] use SMT
solvers internally, which allows them to be more powerful than conventional
stand-alone type checkers. LiquidJava [13] applies this idea to Java: Refinements
similar to our property types are specified using Java annotations and the proof
obligations arising from them are translated to SMT.

Hybrid type checking [17] combines static type checks at compile time with
dynamic checks at run time. The static type checking process has three possible
results: 1. definitely well-typed, where the program’s type safety was able to
be established at compile time, 2. definitely ill-typed, where the compile-time
checks found a definitive error, and 3. unknown, where some parts of the program
were proven to be type-safe, and the other parts had dynamic run-time casts
automatically inserted where necessary. JJBMC can distinguish between definitive
incorrectness and bounded correctness. KeY too can in some cases generate
counterexamples for incorrect programs using SMT. In contrast to hybrid type
checking, which combines a compile-time type checker with run-time checks, our
approach combines multiple compile-time tools, but it could also be extended to
include run-time tools where the compile-time verification fails.

RustBelt [15] is an approach which proves the soundness of Rust’s ownership
type system. Programs written in a safe subset of Rust are proven to always
be sound, and for library code using unsafe features, verification conditions for
Coq [3] are generated. Thus, the correctness of a Rust program using such a
library is proven by a combination of the Rust type checker and Coq. In contrast

22 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

to RustBelt, which is focused on ownership properties, our approach is based on
the Java Modeling Language, allowing us to prove general functional properties.

8 Conclusion and Future Work

We introduced the Karlsruhe Java Verification Suite, a collection of Java ver-
ification tools (co)-developed in Karlsruhe built around the deductive verifier
KeY, which next to KeY includes the bounded model checker JJBMC and a type
checker called the Property Checker. We showed how proof obligations can be
soundly distributed between different verification tools and how this distribution
can be implemented for JML. We also demonstrated using a small case study
how the Karlsruhe Java Verification Suite can be used to verify the correctness
of a program which would have required a large refactoring and specification
overhead if we had only used KeY.

In the future, we plan to investigate how other kinds of verification tools
can be used to expand the Karlsruhe Java Verification Suite. We also plan to
refine an existing proof management tool such that it can be used to orchestrate
proofs with proof obligations distributed over the tool suite. In particular, the
management tool has to be able to deal with differences in the interpretation of
JML between different verification tools.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification - The KeY Book - From Theory to
Practice, Lecture Notes in Computer Science, vol. 10001. Springer (Dec 2016).
https://doi.org/10.1007/978-3-319-49812-6

2. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) 9th
International Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation (ISoLA 2020). Lecture Notes in Computer Science, vol. 12476,
pp. 60–80. Springer (Oct 2020). https://doi.org/10.1007/978-3-030-61362-4_4

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-
07964-5

4. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 184–190. Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_16

5. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Sur-
vey and unifying component framework. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation: Veri-
fication Principles. pp. 143–167. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-61362-4_8

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-61362-4_8

The Karlsruhe Java Verification Suite 23

6. Bingmann, T., Marianczuk, J., Sanders, P.: Engineering faster sorters for
small sets of items. Software: Practice and Experience 51(5), 965–1004 (2021).
https://doi.org/10.1002/spe.2922, https://onlinelibrary.wiley.com/doi/abs/
10.1002/spe.2922

7. Bracha, G.: Pluggable type systems. In: OOPSLA’04 Workshop on Revival of
Dynamic Languages (Oct 2004)

8. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods. pp. 472–479.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20398-5_35

9. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC:
A bounded model checking tool for verifying Java bytecode. In: Computer
Aided Verification (CAV). LNCS, vol. 10981, pp. 183–190. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3_10

10. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.: Building and using
pluggable type-checkers. In: Proceedings of the 33rd International Conference
on Software Engineering. pp. 681–690. ICSE 2011, Association for Computing
Machinery (05 2011). https://doi.org/10.1145/1985793.1985889

11. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz,
M.S., Xiao, C.: The Daikon system for dynamic detection of likely in-
variants. Science of Computer Programming 69(1–3), 35–45 (Dec 2007).
https://doi.org/10.1016/j.scico.2007.01.015

12. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementation.
p. 268–277. PLDI ’91, Association for Computing Machinery, New York, NY, USA
(1991). https://doi.org/10.1145/113445.113468

13. Gamboa, C., Santos, P.A., Timperley, C.S., Fonseca, A.: User-driven design and
evaluation of liquid types in Java. CoRR abs/2110.05444 (2021), https://arxiv.
org/abs/2110.05444

14. Jakobs, M.C.: PARTPW: From partial analysis results to a proof witness. In: Cimatti,
A., Sirjani, M. (eds.) Software Engineering and Formal Methods. pp. 120–135.
Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-
319-66197-1_8

15. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: Securing the founda-
tions of the Rust programming language. Proceedings of the ACM on Programming
Languages 2(POPL) (Dec 2017). https://doi.org/10.1145/3158154

16. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and shar-
ing without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006: Formal Methods. pp. 268–283. Springer, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11813040_19

17. Knowles, K., Flanagan, C.: Hybrid type checking. ACM Transac-
tions on Programming Languages and Systems 32(2) (Feb 2010).
https://doi.org/10.1145/1667048.1667051

18. Lanzinger, F., Weigl, A., Ulbrich, M., Dietl, W.: Scalability and precision by
combining expressive type systems and deductive verification. Proceedings of
the ACM on programming languages 5(OOPSLA), Article no: 143 (Oct 2021).
https://doi.org/10.1145/3485520

19. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,
J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual (May 2013),
http://www.eecs.ucf.edu/~leavens/JML//refman/jmlrefman.pdf, revision
2344

https://doi.org/10.1002/spe.2922
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2922
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2922
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/113445.113468
https://arxiv.org/abs/2110.05444
https://arxiv.org/abs/2110.05444
https://doi.org/10.1007/978-3-319-66197-1_8
https://doi.org/10.1007/978-3-319-66197-1_8
https://doi.org/10.1145/3158154
https://doi.org/10.1007/11813040_19
https://doi.org/10.1145/1667048.1667051
https://doi.org/10.1145/3485520
http://www.eecs.ucf.edu/~leavens/JML//refman/jmlrefman.pdf

24 Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer, and Mattias Ulbrich

20. Mccarthy, J.: Towards a mathematical science of computation. In: In IFIP Congress.
pp. 21–28. North-Holland (1962). https://doi.org/10.1007/978-94-011-1793-7_2

21. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (oct 1992).
https://doi.org/10.1109/2.161279

22. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical plug-
gable types for Java. In: International Symposium on Software Testing and Anal-
ysis. pp. 201–212. ISSTA, ACM, Association for Computing Machinery (2008).
https://doi.org/10.1145/1390630.1390656

23. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton Jones, S.: Refinement types
for Haskell. In: Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming. pp. 269–282. ICFP ’14, Association for Computing
Machinery (September 2014). https://doi.org/10.1145/2628136.2628161

24. Zimmerman, D.M., Nagmoti, R.: JMLUnit: The next generation. In: Beckert, B.,
Marché, C. (eds.) Formal Verification of Object-Oriented Software. pp. 183–197.
Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18070-5_13

https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1007/978-3-642-18070-5_13

	The Karlsruhe Java Verification Suite

