
Modular Regression Verification
for Reactive Systems?

Alexander Weigl�, Mattias Ulbrich, and Daniel Lentzsch

Karlsruhe Institute of Technology, Karlsruhe, Germany
weigl@kit.edu

Abstract. Reactive software is often deployed in long-running systems
with high dependability requirements. Despite their safety- and mission-
critical use, their functionalities must occasionally be adapted, for example
to support new features or regulations. But software evolution bears
the risk of introducing new malfunctions. Regression verification helps
preventing the introduction of unintended, faulty behaviour.

In this paper we present a novel approach for modular regression verifica-
tion proofs for reactive systems based on the idea of relational regression
verification contracts. The approach allows the decomposition of a larger
regression verification proof into smaller proofs on its subcomponents. We
embedded the decomposition rule in a new algorithm for regression verifi-
cation, which orchestrates several light- and heavyweight techniques. We
implemented our approach for software used by Programmable Logic Con-
trollers (PLC) written in Structured Text (IEC 611131-3) and show the
potential of the approach with selected scenarios of a Pick-and-Place-Unit
case study.

1 Introduction

Reactive software driving technical systems is often in operation for long periods
of time, sometimes for many years or even decades. Guarantees regarding its
correctness must be ensured over the entire system lifetime, and the software
must go along and maintain quality through all hardware and software evolution
steps. To avert malfunctions which may cause harm to humans or substantial
financial losses, such reactive software is typically very thoroughly tested before
deployment. In long-living systems, the confidence that the system’s control
software behaves correctly increases also with its successful operation time, as
experience of its behaviour are gathered in various configurations and situations.

When software changes during an evolution step, thorough testing helps to
identify software flaws and to increase confidence in the correctness of the system.
While this is the standard in the industry, it has drawbacks: A test suite can
never cover all possible scenarios, and confidence gained by experience with an
old software revision cannot be transferred to a new revision.

? Research supported by the DFG in Priority Programme SPP1593: Design for Future
– Managed Software Evolution (BE 2334/7-2, and UL 433/1-2).

A solution to this problem is regression verification: Instead of using two
separate specifications for two revisions, the two revisions are compared directly
to each other, where the old revision serves as a functional specification for the
new one. The goal is then to prove equivalence, or a different specified relation,
between both revisions. To this end, both software revisions are transformed into
a logical representation, and then the combination is passed to a model checker
for verification [1]. In previous work, we have shown that the resulting proof
obligations can be discharged in some cases, but that the size of the system may
make the verification approach suffer from the potential problem of state space
explosion. Even for a simple case study with less complexity than real-world
scenarios, proving equivalence with the approach described above took up to a
day of computing time.

As a response to this challenge, this paper presents a technique to modularise
regression verification by decomposing the verification condition into smaller
subgoals which can be regression-verified individually. The novelty in comparison
to existing model checking modularisation approaches is not that individual
programs are decomposed into manageable fragments, but that the programs are
split into pairwise blocks combined to be verified relationally.

The modular verification approach is embedded into a new regression veri-
fication algorithm which combines different lightweight (syntactical) and more
heavyweight regression verification analyses.

Modularising the verification has multiple gains: Firstly, it reduces the state
space of proof obligations, allowing them to be more feasible for model checking.
Moreover, it introduces a locality principle: Parts of a program not touched at
all by a refactoring can be factored out and equivalence be proven by simpler,
syntactical techniques. For modules that occur more often, the verification effort
can also be reduced since they only need to be analysed once.

A characteristic of reactive systems is that their code is executed periodically
to react to changes in their application environment. Software for reactive systems
is usually limited in the used (or allowed) programmatic constructs because they
have to ensure real-time guarantees with deterministic runtimes. In many cases
this means that there are no unbounded loops (or unconstrained recursion) in
reactive systems software which allows us to unroll the code fully (thus eliminating
the need for loop invariants or bounded analyses).

Contribution In this paper, we present a sound modularisation technique for
the regression verification of reactive system software; it requires that relational
specifications of subroutines are given (by the user). Moreover, we present a new
algorithm for regression verification which orchestrates a collection of diverse
heavy- and lightweight verification techniques making the new modular analysis
more powerful in practice. We implemented the algorithm for PLC software, and
demonstrate the feasibility of our approach on the Pick-and-Place-Unit (PPU) [12]
– a community demonstrator for showing the evolution of manufacturing systems.

Outline In Sect. 2 we present the foundations of regression verification for reactive
systems which is the basis for the modularisation approach. The approach itself

is presented in Sect. 3 along with a formal definition on a basic program structure
and specification. The approach is embedded into a new verification algorithm
which we present in Sect. 4. The evaluation on the PPU and its results are
discussed in Sect. 5.

2 Foundations

2.1 Regression Verification

Throughout their lifetime, systems have to adapt to new situations (bug fixes,
hardware replacements, new function requirements, etc.) and many system
changes will also incorporate changes in the software. Each software modifi-
cation potentially introduces incorrect behaviour as a side-effect. To avoid the
effect, regression tests are widely used in the industry as they yield good re-
sults and can easily be extended to new functionality of the software. However,
software testing cannot guarantee correct behaviour since there will always be
scenarios which are not covered by the test suite. Functional verification can help
overcoming this problem: A formal specification describes the expected behaviour
of the software and a verification system analyses whether the specification holds
in all possible scenarios. But, the specification must be user-provided and is, in
most cases, not trivial to find, especially when developers are less experienced
with formal specification. For the verification in an evolutionary environment,
two specifications are required: one for the existing software revision, and one for
the new revision.

In regression verification, instead of using two specifications for two revisions,
both revisions are compared directly to each other, and the old software revision
serves as a functional specification for the new one. However, the old revision can
only partially specify the new one since only those scenarios (input sequences)
where the behaviour should not change can be checked for equivalence. The
input sequences, for which the behaviour has been intentionally changed, need
to be verified separately using functional verification or testing. Regression
verification does not necessarily imply the software behaves correctly for all
inputs, it rather says that the software has the same behaviour as the previous
revision – including all potentially undiscovered errors. The confidence and trust
gained by experience in the earlier revision is thus transferred to the new revision,
as has been elaborated in [4].

2.2 Programmable Logic Controllers

The techniques in this paper are applicable to all kinds of reactive software
systems. However, we put a special focus on Programmable Logic Controllers
(PLC) as an example application area for the approach.

PLCs are computing units which are used to drive and control automated
production systems. They are thus reactive real-time systems, and are usually in

operation for a long time. In a PLC, the code is repeatedly executed once every
few milliseconds. The constant time between two runs is called the cycle time.1

A family of programming languages for PLCs has been defined in the standard
IEC 61131-3 [8]. While the languages are Turing-complete, PLC programs hardly
ever contain general while-loops. If they contain loops, they have a known fixed
upper bound on the number of iterations since PLC code has to meet strict real-
time conditions. Dynamic memory allocation is not possible in the programming
languages which makes them more predictable. This makes the state space for
the software bounded, and the correctness problem theoretically decidable.

IEC 61131-3 has a concept of modules for structuring programs, similar to
those used in common imperative programming languages. They allow one to
encapsulate functionality into so-called function blocks. A function block consists
of a variable signature (input, state and output variables) and an operation defined
on this signature. It can be instantiated multiple times in other function blocks,
and the invocation of an operation evaluates against the state of a particular
instance.

In each execution cycle, the PLC obtains the current sensor values, executes
the program, and emits newly computed actuator commands. Thus a PLC
program is in continuous interaction with its environment. Besides the sensor
and actuator values, PLC programs maintain an internal state. To work with
deterministic and causal PLC programs formally, we hence model a PLC software
as a function P : I ×Σ → O ×Σ which takes sensor readings (a value in I) and
its current state from Σ and produces actuator values (in O) and the modified
state. We lift P to P : I∗ → O∗ with P (i0, . . . , in) = (o0, . . . , on), which takes a
sequence of input values and returns the sequence of output values. P captures
the iterated sequential execution of the effects of P . Formally, P is defined by
the execution of P (ik, σk) = (ok, σk+1) for 0 ≤ k ≤ n, and a sequence of memory
states (σ0, . . . , σn) ∈ Σ∗ with a fixed initial memory state σ0.

2.3 Formal Equivalence Relations

We briefly repeat the regression verification notions from [1], as these notion form
the base of the modularisation our approach.

When we consider regression verification formally, we need to set two program
behaviours into relation. The first notion that comes to mind is perfect equivalence,
which requires that the behaviours of two PLCs programs P and Q are identical,
i.e., that they produce the same output when presented with the same input
trace. Formally, this means that they – interpreted as the two functions P and Q
– are equal:

for all i, i′ ∈ I∗ : i = i′ =⇒ P (i) = Q(i′) . (1)

However, they may very well differ on the chain of memory states reached in their
traces, i.e., P and Q need not be identical. Perfect equivalence is a very strict
notion for evolution scenarios, as it does not allow any behavioural difference

1 There are also different execution modes for PLCs (event-driven, continuous, . . .)
that we do not consider here.

between the old and new revision. Still it is useful to prove that a software
refactoring maintains the system behaviour.

In many evolution cases, behavioural differences must be taken into consider-
ation to capture intended changes, like bug fixes or performance optimisations.
The differences can be handled with the more flexible notions of conditional
and relational equivalence. They extend perfect equivalence in two ways: Firstly,
conditional equivalence allows us to filter scenarios that should not be included
in the equivalence analysis using a predicate τ on the input values. Secondly, in
relational equivalence one can replace the equalities in (1) by different relations
that express the equivalence between input (≈in) and output (≈out) values:

for all i, i′ ∈ I∗ : τ(i, i′) ∧ i ≈in i′ =⇒ P (i) ≈out Q(i′) . (2)

The triple C = (τ,≈in,≈out) that parameterises (2) is called a semantical
regression verification contract for P and Q. Perfect equivalence EQ is a special
case of a regression verification contract with EQ = (true,=,=). This generalises
the ideas of design-by-contract [10] for single program properties to multi-program
analyses. The condition (2), which we denote as RV (C,P,Q), defines when the
contract C is satisfied by the programs P and Q.

3 Modularisation

Modularisation is a technique to split up the program code into individual
separate modules with defined interfaces. The effects of a module are limited to
a specific scope, allowing a separate analysis. Wherever one module calls another
module, the effects of the call can be abstracted rather than to include the full
module implementation. Thus the complexity introduced by the control flow and
internal state of the submodule are invisible in the caller module.

We present a decomposition rule which allows us to exploit the modularisation
of reactive software to break down the regression proof obligation RV (C,P,Q)
into simpler proof obligations.

3.1 Motivational Example

Consider the plant in Fig. 1a representing an assembly line with a conveyor belt
B and two processing stations s1 and s2 (e.g., a drill and a stamp). A detector d
at the beginning of the conveyor belt recognises the arrival of a work piece W .
Once a work piece has arrived, the automatic process starts, and W is moved
from left to right, passing both processing stations, and eventually falling into
the basket at the end of the belt.

In the original software revision, every work piece is unconditionally processed
by both processing stations. While a piece is being processed, the conveyor belt
halts for a defined amount of time. Let us assume that experience has shown
that the process at s1 may occasionally fail. The software has hereupon been
adapted, and, after the revision, the plant can recognise work pieces for which s1
has failed. If a faulty work piece leaves s1, the second processing station should
be skipped and the piece should be sent to the output basket directly.

B

W

d

s1 s2

(a) Schematic of the plant consisting of
a conveyor belt B with two processing
stations s1 and s2.

Timer

Processing
Station s1

Processing
Station s2

f
g

f ′

g′

Timer

Processing
Station s1

error?

Processing
Station s2

(b) Sketch of the program flow: the orig-
inal revision on the left and the adapted
revision on the right.

Fig. 1. Motivating Example

Software structure Fig. 1b shows a sketch of the program flow of the main
program for both revisions. The difference is that a branching statement has
been introduced after s1. The modules “Timer” and the code for the processing
stations remain unchanged.

Regression Verification and Modularisation Obviously, both software revisions
behave differently when a faulty work piece occurs. To apply regression verification,
a regression verification contract is required that specifies when both revisions
should behave equally. In this example, the two revisions behave equally if no
faulty work piece occurs. The contract for this example would therefore encode
in the filter predicate that no faulty work piece is ever detected.

The non-modular approach for regression verification in [1] does not exploit
the fact that the subroutines for controlling the hardware components remain
unchanged. The full code of both programs is encoded for the translation against
the regression contract with a model checker. The evaluation [1] (revisited in
Sect. 5) shows that some evolution scenarios cannot be solved in a reasonable
amount of time.

With the approach that we introduce here, we are able to replace the imple-
mentation of the modules in the encoding by their contracts, and can hence lower
the verification effort by this abstraction which can thus become an enabler for
the regression verification for larger programs.

This abstraction does not come for free. For a successful abstraction, suf-
ficiently strong contracts that imply the necessary properties must be found.
Finding them automatically may be as difficult as the whole program analysis
itself. In the presented approach the user has to come up with suitable contracts.

3.2 Formalisation

The goal of this section is to look at composed programs and to introduce an
inference rule that allows one to modularise regression verification proofs for such

programs. Let therefore the two programs P,Q be implemented as a composition
of two subprograms, say P = f ; g and Q = f ′; g′. We have introduced programs
as functions and the semicolon operator is the forward composition of functions
(i.e. (f ; g)(x) = g(f(x))).

For the modular analysis, it must be possible to identify the similar subpro-
grams in P and Q that then become the corresponding parts between the two
revisions. In the example from Sect. 3.1, for instance, the two programs can be
split into two subprograms along the dotted line.

If one pair of corresponding subprograms can be verified in isolation (in this
example g and g′) for a contract Cg, this result can be used for the verification
of the relation of the remainder programs where g and g′ can be abstracted
by (uninterpreted) placeholder function symbols x and x′ which stand in for
the programs g and g′. As a precondition in this proof obligation, we may
assume the regression verification contract Cg for x, x′ without knowing the exact
functionality of g and g′.

The inference rule for the verification of RV (C, f ; g, f ′; g′) for a regression
verification contract C has two premises which encode (1) that Cg is a valid
regression verification contract for g and g′ and (2) that the two programs satisfy
contract C under the modular assumption that g and g′ satisfy Cg.

RV (Cg, g, g
′) ∀x, x′. RV (Cg, x, x

′)→ RV (C, f ;x, f ′;x′)

RV (C, f ; g, f ′; g′)
(3)

3.3 Modularisation for Conditional and Relational Equivalence

In this section we present how the modularisation rule (3), formulated over
functions, can be concretely used for the regression verification of programs. We
start with the definition of a very general concept of a reactive programming
language with frame structures, then introduce the decomposition rule, and close
this section with remarks on properties of the rule.

Programs We consider simple loop-free programs, containing assignment- and
if-statements. Additionally, we introduce a frame-construct for marking program
parts which should be modularised. Programs are constructed by the grammar

〈Prg〉 → 〈name〉 := 〈expr〉 | 〈Prg〉 ; 〈Prg〉
| if (〈expr〉) { 〈Prg〉 } | frame(〈name〉) { 〈Prg〉 } (4)

in which the 〈name〉 denotes identifiers and 〈expr〉 side-effect-free expressions.

The set for programs produced by Prg is rather abstract and limited. However,
it is expressive enough to encode reactive programs without (unbounded) loops.
Programs in the low-level language (4) can, e.g., be constructed from more
complex program languages like Structured Text or C by unwinding (bounded)
loops and arrays, unfolding record data types and inlining procedure calls.

Frames and the Scope of Variables Frames structure the otherwise unstructured
programs into modules. During the translation from input programs into the low-
level language (4), structuring elements from the source language, like function-
blocks or method invocations, are translated into frames. Frames can also be
manually added by a user – to be able to handle complex code refactorings which
took place across the boundaries of the structural elements in the source code,
e.g., when a computation from inside a method is pulled out to the method caller.

For a sound abstraction and modularisation, the scopes of variables must
be restricted, and the frame constructs mark these scopes. With every frame
identifier N we associate three disjoint sets of variables: input (inN), state
(stateN) and output (outN) variables. Every variable v occurring inside a frame
named N must belong to one of them. The variables in these categories are
constrained as follows: Input variables are only read within the frame, but may
be written from outside the frame. For state variables read and written access
inside the frame is allowed, but any access outside the frame is forbidden. Output
variables are write-only within the frame, and read-only outside the frame. Global
variables do not fit into this scheme, but can be encoded into it by an automatic
program transformation.2 Therefore, such a variable categorisation can always
be established.

In a modularisation step, frames will be replaced by an abstraction using
their contracts. The variables play an important role then: They manifest the
interface at which the frame is abstracted for modular treatment. The input
variables must adhere to a precondition on entry of the frame, the state variables
can be removed from the program when the frame is abstracted, and the output
variables assume values which adhere to a postcondition for the frame.

It is important to note that frame identifiers can occur on several frames within
the same program. This models the case that multiple operations are invoked on
the same module within a program. This happens, e.g., if the same function-block
is invoked twice in an IEC-61131 context, or if a (stateful) procedure is called
multiple times from the original program.

Frames that modify the same variables must have the same identifier, and all
frames with the same identifier must have the same code and the same variable
signature. This is not a restriction: If different functionalities access the same
variables (e.g., different methods of an object in an object-oriented setting),
programs can be refactored such that all frames contain the same integrated
code that implements all functionalities. An additional parameter together with
a case distinction is used to decide the concrete functionality in each frame.

Specification and Verification For both modular functional and modular regression
verification, one needs contracts for the abstraction. In Sect. 2.3 we have already

2 The program transformation introduces a new input and output variable for each
global variable, which occurs in the frame. The global variable is assigned to the
input variable at the beginning of the frame. The effect of the frame on a global
variable is captured in the output variable, which is assigned to global variable after
the frame.

encountered the concept of regression verification contracts on the semantic level.
We will refine this notion now to program entities. Let two loop-free programs
P and Q be given. A regression verification contract is a triple (φ, α, ω) of
three formulas: the functional precondition φ, the relational precondition α and
the relational postcondition ω. The semantics of these regression verification
contracts are semantical contracts (Sect. 2.3). The formula φ evaluates to the
filter predicate τ , and the interpretation of α and ω are the input and output
equivalence relations.

The programs P and Q operate on disjoint sets of variables such that their
statements programs cannot interfere with each other’s state spaces, and are
only connected in formulas within contracts. We can therefore use the sequential
composition P ;Q to obtain the effects of their independent executions. The proof
obligation which needs to be verified reads – written as a Hoare triple [7] –

{φ ∧ α} P ;Q {ω} . (5)

In Section 4 we will describe efficient techniques to encode such proof obligations
for decision procedures.

Modularisation Rule Let in the scenario introduced above, f and g be frame
identifiers such that a frame for f occurs in P and a frame for g occurs in Q. For
modular treatment, we need to look at the programs that abstract from the code
of inner frames within their enclosing programs (as a parallel to the replacement
of x for g in (2)):

Definition 1 (Factor program). Let P be a program according to (4) and f
be an identifier. The frames for f in P all have a unique occurrence number i.

The factor program P�f is then derived from P by replacing each frame i for

identifier f with the following sequence of statements:

1. ini := in for every input variable in

2. countf := countf + 1

3. out := outi for every output variable out

The freshly introduced variable countf for the factored frame f is used to
keep book about the number of invocations of f during a run of the program,
and is needed to make the upcoming modularisation rule sound.

In non-regression program verification, modularised subprograms are often
replaced by an obligation to show the precondition of the block and an assumption
of the postcondition afterwards. Since in regression verification, we deal with two
programs at a time, all we can do in the local context is to remember the values
of all invocations for a global, program-spanning argument to take them into
account. The following inference rule does precisely that. Instead of proving (5),
one can show the two formulas that together imply it: (a) f and g together satisfy
a regression verification contract (φfg, αfg, ωfg), and (b) the factored programs
satisfy the original regression contract. The intermediate variables ini and outi
introduced by the factor program allow us to specialise a formula and set it into

the context of one concrete call-site of the frame identifier. For a formula γ over
the variables of P and Q, the instantiated formula

[
γ
]
i,j

denotes the formula in

which all occurring variables from P have been replaced by the counterpart of the
i-th invocation and all variables in Q with the variables of the j-th invocation.
For perfect equivalence ε = (inf = ing → outf = outg), the instantiated formula[
ε
]
1,2

would read inf1 = ing2 → outf1 = outg2.

Definition 2 (Modular regression verification). For two programs P and
Q (with disjoint variables) and frame identifiers f and g, let πf and πg denote
the programs which are inside the corresponding frames f and g and let n (m)
be the number of occurrences of f (g) in P (Q). For a regression verification
contract (φfg, αfg, ωfg) for πf and πg the inference rule

{φfg ∧ αfg} πf ;πg {ωfg} {φ ∧ α ∧ κ ∧ Γ} P�f ;Q�g {ω ∧ κ}
{φ ∧ α} P ;Q {ω}

with Γ =
∧n
i=1

∧m
j=1

[
φfg ∧ κ ∧ αfg → ωfg

]
i,j

and κ = (countf = countg) is

called the modularity rule.

The assumption Γ of the second premise couples the variables modelling the
invocations of f and g. Whenever the input values for invocation occurrences i
and j satisfy the precondition

[
φfg∧αfg

]
i,j

of the regression verification contract,

the relational postcondition
[
ωfg

]
i,j

is known to hold on the output values.

This rule is quite similar to the differential assertion checking approach using
mutual function summaries by Lahiri et al. [9], but is applied here to frames with
potentially more than one invocation and in the context of reactive systems in
which the programs are called repeatedly. To allow for that, additional checks
(encoded using the counting variables countf and countg in κ) have to be
included that ensure that the number of invocations of the two abstracted frames
is the same in both programs.

Properties This modularisation rule is sound. Although we do not elaborate on
this here, an induction proof on the number of coupled invocations (captured
in the program variables countf and countg introduced for this reason) can be
conducted. The approach is not complete since we require that both systems
invoke their frames equally often. There are systems which fulfil a regression
contract, but do not have this property. Then this approach can currently not be
applied. The rule is compositional, in the sense that it can applied recursively on
the resulting proof obligations.

4 An Algorithm for Modular Regression Verification

In this section we construct a new regression verification algorithm for reactive
software that combines a number of different modular and non-modular verifica-
tion techniques. The algorithm takes two programs and a regression verification

function Reve(f, f ′):
Input: Two frames f, f ′

Data: A regression verification contract (φ, α, ω) for f and f ′.
Output: true iff f and f ′ together satisfy the contract
if check cache for (f, f ′, φ, α, ω) then

// earlier results are cached

return cached result;

end
if (φ, α, ω) = (true,=,=) then

// only applicable for perfect equivalence

return if true EqualSource(f, f ′);
return if true EqualSE(f, f ′);

end
return if true EqualSmt(f, f ′, φ, α, ω);
return if true EqualAbstraction(f, f ′, φ, α, ω);
return EqualityMC (f, f ′, φ, α, ω);

Algorithm 1: Algorithm to check the equivalence of two frames

contract as input and checks if the programs satisfy the relational specification.
We assume both programs have a top-level frame with the identifier main that
contains all program statements. The algorithm works recursively – comparing
first the outermost frames, trying to establish equality from going top to bottom
in the program structures, recursively verifying the equality of enclosed subframes.

The algorithm orchestrates several different checkers and runs them in se-
quence returning on the first positive result. In the orchestration, we call the
more syntactical, faster, but imprecise checkers first before falling back to more
powerful, and more precise, but slower checkers. All checkers are sound: If they
report that frames conform to their contract, then this is the case. They are not
necessarily complete, and some checkers are only applicable on a restricted set of
cases, for example perfect equivalence. The full algorithm – shown in Algorithm 1
– is complete as the last checker EqualityMC uses heavyweight model checking
without abstractions and is complete.

The following sections briefly introduce the involved checkers.

4.1 Conformance by Syntactical Congruence

In case a contract specifies perfect equivalence, the checker EqualSource checks
equivalence via a comparison of the syntax trees of the two source code artefacts.
Prior to the comparison, we normalise the code (remove comments, unify capital-
isation, . . .). Identical normalised source code implies equal software behaviour.
Despite its severe restrictions, this method is a fast and useful checker, especially
for frames resulting from often reused standard library procedures.

4.2 Conformance by Symbolic Execution

Checking equality by comparing the source code is very restricted, and fails, e.g.,
if two independent lines are swapped, or an irrelevant new variable is introduced.
The next checker in the orchestration is EqualSE , which can handle such cases.
It is still a syntactical checker; hence, it is also only able to handle perfect
equivalence. This checker is based on symbolic execution to compute the symbolic
results of a frame.

The result of the symbolic execution of a frame f is a function F : Var → Expr
which maps every state and output variable to an expression which is the
aggregation of all assignments to the variable in f . The term F (v) computes to
the value of v at the end of the frame and may depend on the input and state
variables of f .

One possibility to show perfect equivalence between two frames f and f ′ is
to establish syntactical equality between the symbolic execution results for all
output variables. The equality must also be checked for those state variables
which occur in the aggregated expressions of output variables to guarantee that
the following cycles will produce equal output.

Thus far, we described the case where all input, output and state variables
have the same name in both frames. To make this analysis more flexible, we
allow arbitrary one-to-one mappings of variables between frames where the
correspondence of input and output variables is given by a conjunction of equalities
between variables in α and ω in the regression verification contract. For state
variables, the mapping can be inferred. Furthermore, the mapping can be lifted
from equalities over variables to equalities over expressions. The equality between
output expressions given in the relational post-condition ω can be checked modulo
the equalities in the relational precondition α.

The checker EqualSE is able to show the equality of o = 2 ∗ i + s and
o′ = 2 ∗ i ′ + t ′, where s, t′ are state and i, i′ are input variable. A matching needs
to include the equality s = t′, and i = i′. Moreover, the equality of i = i′ (input
variables) must be justified by the given regression contract (α |= i = i′).

Due to its syntactical nature, this checker is incomplete, e.g., the equality
between o = 1 + 1 vs. o′ = 2, cannot be handled.

4.3 Conformance by Reduction to SMT

If these last syntactical checkers fail or are not applicable, the first semantical
checker is triggered. This checker is backed up by a reduction to a Satisfiability
Modulo Theories (SMT) problem using the previously computed symbolic execu-
tion results F (v) and F ′(v′) of the given frames. This checker is not limited to
perfect equivalence, but can be used for arbitrary regression verification contracts.

The checker EqualSMT verifies an inductive relational invariant χ over the
state variables of the two frames. In the simplest form we show that any state
variables s and s′ in f and f ′ evolve identically (i.e. s = s′). The formula to be

checked for satisfiability is then(∧
v∈V

v+ = F (v)

)
∧
(∧
v∈V ′

v+ = F ′(v)

)
∧ φ ∧ α ∧ χ ∧ ¬

(
ω+ ∧ χ+

)
(6)

where the sets of variables V and V ′ contain all output and state variables of
f and f ′. Variable v+ holds the result of the symbolic execution for v (via the
function F or F ′). It differs from v to distinguish variables before the execution
from after it. A predicate χ+ results from χ by replacing v with v+. If this
formula is not satisfiable, χ is an invariant for the frames and, additionally, they
conform to the regression verification contract (φ, α, ω).

As an example, consider the following contract (true, i = i′, o = o′) for
o = 2 ∗ i + s and o′ = t ′ + 2 ∗ i ′. The instantiated SMT formula (6) for this
example is

(o+ = 2 ∗ i + s ∧ s = s+)︸ ︷︷ ︸
v+=F (v)

∧ (o′+ = t ′ + 2 ∗ i ′ ∧ t′ = t′+)︸ ︷︷ ︸
v′+=F ′(v)

∧ i = i′︸ ︷︷ ︸
α

∧ s = t′︸ ︷︷ ︸
φ

∧ o = o′︸ ︷︷ ︸
ω

∧¬(o+ = o′+︸ ︷︷ ︸
ω+

∧ s = t′︸ ︷︷ ︸
χ+

) ,

where o and o′ are the output variables, s and t′ state variables, and i and i′

input variables, respectively. The relational invariant χ has been chosen as s = t′

in the example. It is a parameter of the checker, and in general non-trivial to
infer. In our implementation we use the equality of equally named state variables
for χ. In a further SMT verification condition (not shown here), it has to be
shown that the initial memory states (cf. Section 2.2) of f and f ′ initially satisfy
the coupling invariant χ.

4.4 Conformance by Modular Abstraction

The checker EqualAbstraction is the checker that exploits the modularisation
rule introduced in Definition 2. Therefore, given two frames f, f ′, this checker
starts with abstracting the top-level frames inside f and f ′, and uses Algorithm 1
for checking contract conformance of inner subframe pairs.

We assume that the subframes in f and f ′ are collected in pairs and that
each frame pair is specified with a regression verification contract. Let g be
a subframe in f , and g′ in f ′, respectively. After the body of all subframes
have been abstracted, we obtain the two factor programs f/g and f ′/g′ of both
original frames together with a regression verification contract that has additional
assumptions and postconditions. The regression verification algorithm is called
recursively for Reve(g, g′) of each subframe pair and for Reve(f/g, f ′/g′).

The modularisation rule may be applicable to several different subframes. In
our implementation we eagerly apply it to all possible subframe combinations. The
recursive procedure is applied recursively and exhaustively, but will eventually
terminate since the frames are always finitely nested in a program.

If the modular abstraction step fails, it produces a counterexample (a finite
trace, see Section 4.5) which may describe a genuine flaw in the system or it may
be spurious if a regression verification contract does not hold or is not strong
enough to serve as a suitable abstraction in the proof.

4.5 Conformance by Model Checking

The final checker is the most precise and most powerful one and encodes the
verification condition into a model checking problem. This checker makes use
of the non-modular regression verification approach by Beckert et al. [1] and
verifies a regression verification contract specification between two complete
frames f, f ′ without using abstraction. More precisely, the target is a problem
in which an invariant (derived from the regression verification contract) for the
system consisting of the two compared frames must be verified. Experience has
shown that invariant-inferring techniques like the IC3 [2] approach (in particular
the implementation within the model checker nuXmv [3]) work quite well for this
type of regression verification problems.

Since the state space is finite, this checker is theoretically complete, i.e.,
returns within finite time for any input. However, experience shows that it can
take hours or even days until the model checker comes back with a result. The
modularisation technique and the combination with simpler techniques in Reve
have been devised to reduce the time needed for regression verification challenges.

The model checker returns either that the inductive invariant has been proved
(implying correctness of the contract), or it produces a counterexample, which is
a concrete trace, i.e., finite sequence of assignments of input, state and output
variables for both frames exemplifying the violation of the contract. We currently
do not provide tool support, but these values can be used as inputs for a simulation
of the reactive system like it is present in many modern IDEs for reactive software.

5 Evaluation

In this section, we show the applicability of our new regression verification al-
gorithm on selected scenarios of the Pick-and-Place Unit (PPU) community

Fig. 2. Community demonstrator: the Pick-and-Place Unit

demonstrator [1, 12]. The PPU is a down-scaled model of a manufacturing plant
employing industry-level hardware components that has been designed for re-
searching the management of the evolution (hardware and software) of automated
manufacturing systems. Therefore, there are multiple evolution scenarios – with
software and/or hardware changes – of this plant. We selected representative
evolution scenarios to cover different situations.

Fig. 2 gives an impression of the PPU in a medium expansion stage, as
hardware configuration depends on the scenarios. Briefly described, the PPU
consists of a magazine for providing new work pieces, a stamp for imprinting, a
conveyor belt for sorting, and a crane for transportation of work pieces. All of
these components and their actuators are controlled by the software in a PLC
written in Structured Text (ST) and Sequential Function Chart (SFC), which we
translated into ST code automatically (cf. [8]).

5.1 Selected Evolution Scenarios

We briefly explain the three selected evolution scenarios. The software revisions
correspond to the different scenarios of the PPU in [12, Fig. 48].

Revision 1 vs. Revision 2 A new sensor is introduced for detecting metallic work
pieces as a preparation for the next evolution. The software mainly changes the
Crane module, but changes on the top-level module are needed to route the
sensors to this submodule. An influence to the system behaviour is not expected:
Both revisions are perfectly equivalent.

Revision 3 vs. Revision 5 Revision 5 introduces an optimisation which allows using
the waiting time during stamping to transport work pieces which do not need to
be stamped to the conveyor belt. The optimisation is only triggered if work pieces
of different types are present (metallic and non-metallic). If only metallic work
pieces are present, the two revisions behave perfectly equivalently. The work piece
type can be determined by the program using the input variable CapacitiveSensor .
We obtain a regression contract (CapacitiveSensor = true,=,=) which intuitively
formalises that the old and new revisions behave equivalently (equal inputs give
equal outputs) under the condition that the sensor variable CapacitiveSensor is
true in every cycle.

Revision 12 vs. Revision 13 In the old revision, the position of the crane is mea-
sured with three switches (with Boolean sensor values OnConveyor, OnMagazin
and OnStamp). These are replaced by a single angular sensor. We need to define
a relation R between the three boolean sensor values and the angle position

(16160 < AnalogPosition ∧AnalogPosition < 16260) = OnConveyor ∧
(24290 < AnalogPosition ∧AnalogPosition < 24390) = OnMagazin ∧

(8160 < AnalogPosition ∧AnalogPosition < 8260) = OnStamp

which serves the relational precondition in the regression verification contract
(true, R,=).

Table 1. Results

Runtime Code Size
Rev./Module Non-Mod. Modular Checkers [ms]

Total [s] Total [s] Src SE SMT Modul. Classic LoC #Vars

1 vs. 2 8.96 1.51 744 136
Main 0 48 65 545 – 744 136
– Main/* 0 10 0 – – 174 203
Crane 0 21 35 441 – 415 51
– Crane/* 0 19 28 – 386 403 207
Magazine 0 13 – – – 234 38

3 vs. 5 750.0 7.05 1,605 256
Main – – 90 5,213 – 1,605 256
– Main/* – – 43 – 2,846 294 364
Crane – – 101 2,130 – 810 74
– Crane/* – – 101 – 1,987 768 376
Stamp 0 – – – – 402 56
Magazine 0 – – – – 240 44

12 vs. 13 −SE t/o 34.76 4,808 520
Main 0 – 512 24,544 – 4,808 520
– Main/* 0 – 79 – 6,727 453 1,250
Conveyor 0 – – – – 468 50
Crane 0 – 227 14,408 – 1,326 77
– Crane/* 0 – 238 – 14,168 1,284 631
Pusher 3 – – – – 2,144 154
Stamp 0 – 78 4,801 – 403 57
Stamp/* 0 – – – 4,680 375 639
Magazine 0 – 61 – 2,795 241 45

12 vs. 13 +SE t/o 34.76 4,808 520
Main 0 440 – - – 4,808 520

5.2 Results

Table 1 summarises the performance of the verification. The runtimes are shown
for each checker on a frame. The first column describes the compared revisions
and modules, where Main or Crane denotes the regression verification between
the corresponding frames of both revisions. Main/* denotes the frame with all
subframes factored out. For convenience, Table 1 only shows the first and second
level of nested frames. In particular, the frequently used timer module is hidden.

“Non-Modular Total” is the comparison reference value of applying the non-
modular approach as in [1] with our pipeline. In comparison, “Modular Total”
gives the overall runtime of the modular pipeline. Both total columns state the
runtime measured from the command line. Hence they include the work needed
to prepare the programs (parsing, symbolic execution, etc.). In contrast, the
checker runtimes are given in milliseconds and are measured internally. A checker
is skipped (marked with a dash (–) in the table) if either it was not capable of
proving the regression contract, or a checker invoked earlier was able to solve
this case. Note, for the comparison of Rev 12. vs. Rev 13 (“12 vs.13 −SE”), we
have disabled EqualSE to evaluate the modularisation rule, because we want to
demonstrate the capabilities of the decomposition rule. EqualSE can solve this
comparison directly in half a second (cf. “12 vs.13 +SE” in Table 1). The lines
of code do not include empty lines or comments and cover both code modules.

Also the number of variables (#Vars) give the sum of input, state and output
variables of both frames.

The runtimes (wall clock) are the median of three samples, computed on
an Intel Core i7-8565U, 16 GB RAM, using the model checker nuXmv 1.1.1 [3]
with IC3 for invariant checking, and z3 4.8.8 for solving the SMT instances. The
time-out was set to 1 hour. Our algorithm implementation is single-threaded. All
of the verification artefacts and a link to the source code are available online3.

5.3 Discussion

The evaluation shows a huge speed-up against the previous non-modular approach
from [1]. It shows the potential of modularisation to enable the handling of large
reactive systems. For fair comparison, we repeated the experiments of [1], but
we use the default bit-width for integers on PLC languages, and also we did not
reduce the blocking time of the used timers. Rev. 12 against Rev. 13 ran into a
time-out, [1] gives a clue that the verification can take more than 22 hours. Most
of the performance should result from abstracting these timer, which are used
to wait a particular amount of time. During this time span, the system stutters
partially, resulting in long phases of forward searches in IC3.

6 Related Work

Beckert et al. [1] applies regression verification to PLC software and is the first
base for this work. Subroutines in PLC software is handled by inlining the
subroutines in its caller context. We reuse their notion of regression verification
(Sect. 2.3). Also we use their pipeline to simplify PLC programs and prepare
them for model checker.

Modularisation for regression verification is covered in [5] which serves as a
second basis to our work. Godlin and Strichman [5], who also coined the term
“regression verification” exploit both regression verification and decomposition to
prove equivalence between similar programs. They are able to handle programs
with recursive function calls and unbounded loops, both are paradigms are not
common in software for reactive systems. Nevertheless, their work does not cover
our topic completely: They only consider functions that do not have an internal
state and require them to be perfectly equivalent. Moreover, the decomposition
in [5] works bottom-up if possible. Our approach work from top to bottom.

The work on differential assertion checking [9] modularises relational proofs in
a similar fashion to the one presented in this paper. They employ mutual function
summaries to abstract two related functions blocks, which is essentially the same
concept as our regression verification contracts. They do not target reactive
systems but individual single function invocations, and use the intermediate
verification language Boogie to encode their conditions rather than a model
checking verification backend.

3 http://formal.iti.kit.edu/isola20

http://formal.iti.kit.edu/isola20

The goal of Guthmann et al. [6] is similar to ours: Modularising the equivalence
proof. For matched procedures two partial sets are computed. One contains input
states where the procedures behave equivalent and one where they differ. Both sets
are approximated. The approximation are made stronger the longer the algorithm
runs. They extended their approach work with demand-based refinement of the
approximated sets in [11].

7 Conclusion

In this paper, we have motivated and presented a new verification rule for the
modular decomposition of regression verification proof obligations for reactive
system software. Moreover, we have integrated the rule into a novel regression
verification algorithm which orchestrates five different regression verification
approaches into one proof technique. Thanks to the modularisation, simpler
equality checkers allow one to show properties more easily on subproblems.

The evaluation indicates a tremendous performance improvement: Modu-
larisation can allow regression verification proofs to run orders of magnitudes
faster.

Future Work A drawback of the decomposition technique is the need for (user-
specified) regression contracts. In most cases, these specification seem to be
automatically inferable, e.g., by using heuristics, symbolic execution or Horn
solvers. In our implementation, we have not used any sophisticated strategy to
decide whether a frame should rather be kept inlined or be abstracted. The
implementation tries to abstract all allowed frames at once, which seems to be a
good strategy. A more restrictive selection could bring further advantage.

References

[1] Beckert, B., Ulbrich, M., Vogel-Heuser, B., Weigl, A.: Regression verification
for programmable logic controller software. In: ICFEM 2015. LNCS, vol.
9407, pp. 234–251. Springer (2015)

[2] Bradley, A.R.: Sat-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) Verification, Model Checking, and Abstract Interpretation,
LNCS, vol. 6538, pp. 70–87. Springer (2011)

[3] Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli,
A., Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker.
In: CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer (2014)

[4] Cha, S., Ulbrich, M., Weigl, A., Beckert, B., Land, K., Vogel-Heuser, B.:
On the preservation of the trust by regression verification of PLC software
for cyber-physical systems of systems. In: INDIN 2019. pp. 413–418. IEEE
(2019), https://doi.org/10.1109/INDIN41052.2019.8972210

[5] Godlin, B., Strichman, O.: Regression Verification: Proving the Equivalence
of similar Programs. Software Testing, Verification and Reliability 23(3),
241–258 (2013)

https://doi.org/10.1109/INDIN41052.2019.8972210

[6] Guthmann, O., Strichman, O., Trostanetski, A.: Minimal unsatisfiable core
extraction for SMT. In: Piskac, R., Talupur, M. (eds.) FMCAD 2016. pp.
57–64. IEEE (2016), https://doi.org/10.1109/FMCAD.2016.7886661

[7] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969), https://doi.org/10.1145/363235.363259

[8] International Electrotechnical Commission: IEC 61131: Programmable con-
trollers – Part 3: Programming languages (Feb 2002)

[9] Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential as-
sertion checking. In: ESEC/FSE’13. pp. 345–355. ACM (2013), https:

//doi.org/10.1145/2491411.2491452

[10] Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51
(1992)

[11] Trostanetski, A., Grumberg, O., Kroening, D.: Modular demand-driven anal-
ysis of semantic difference for program versions. In: SAS 2017. LNCS,
vol. 10422, pp. 405–427. Springer (2017), https://doi.org/10.1007/

978-3-319-66706-5_20

[12] Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution
in industrial plant automation: Scenarios and documentation of the pick and
place unit. Tech. rep., Institute of Automation and Information Systems,
Technische Universität München (2014), https://mediatum.ub.tum.de/
node?id=1208973

https://doi.org/10.1109/FMCAD.2016.7886661
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1007/978-3-319-66706-5_20
https://mediatum.ub.tum.de/node?id=1208973
https://mediatum.ub.tum.de/node?id=1208973

	Modular Regression Verification for Reactive Systems

