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Abstract. Dynamic logic is a multi-modal logic for reasoning about
programs. In deductive verification systems, it can be used as a versatile
alternative to the Floyd-Hoare calculus with uniform syntax and seman-
tics. Dynamic logic has not only been used in functional verification,
but one can represent a plethora of verification scenarios in it, including
relational and hyperproperties, program equivalence, information flow,
incorrectness logic. Dynamic logic is the basis for three deductive verifi-
cation tools that are highly competitive in their application domain. In
this article, we present the foundations of dynamic logic and we review
its many uses in state-of-the-art deductive verification.
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1 Introduction

Dynamic logic [52, 73] is a modal logic for reasoning about programs introduced
by V. Pratt [66] in 1976. The term dynamic logic was coined in the paper [42] and
it was initially investigated by D. Harel [41] and R. Goldblatt [36]. Wolfgang’s
association with dynamic logic starts in 1984 with his Master’s Thesis [67] that
laid some of the theoretical foundations of the calculus used in the KIV deductive
verification system. Until then, excepting a short-lived attempt [57], dynamic
logic had been mainly the object of theoretical investigation and had not been
used as a program logic in an actual verification system. Then (and now) the
Floyd-Hoare calculus [47] was far more popular, despite clear advantages on the
side of dynamic logic including (i) greater expressiveness, (ii) syntactic closure
by first-order connectives and quantifiers, and (iii) the proximity to relational
program semantics.4
4 For some reasons how this might have come about, see [37, Sect. 6.2.7].
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The work of Wolfgang (together with M. Heisel and W. Stephan) was the
first serious attempt to apply the benefits of dynamic logic within the context of
a deductive verification system [38, 44]. Specifically, Wolfgang presented in his
Ph.D. work [68, 69] an elegant solution to a pivotal problem in program verifi-
cation: how to realise procedure-modular verification. For this he used abstract
data types and step-wise refinement of program modules, its correctness being
justified by dynamic logic. This approach within a few years yielded impres-
sive practical success [70]. The KIV system is still developed and maintained in
Wolfgang’s research group [32] and was used for some of the most intricate and
comprehensive formal verification efforts to date [72], see also Sect. 4.1 below.

When some of the present authors began considerations [39] on their deduc-
tive verification system KeY [4] for the Java programming language, one decision
was obvious: To use dynamic logic as its theoretical foundation. Thanks to Wolf-
gang’s work, its usefulness was abundantly clear and we did not regret the choice
for a second. In this article we celebrate the versatility of dynamic logic, not only
as a language for expressing and verifying the correctness of real programs and
case studies, but also as a language to express many other problems such as
information flow analysis or relational verification.

In Sect. 2 we review the foundations of dynamic logic in terms of modal logic,
relational semantics, and the original, “pure” programming language inspired by
regular expressions used by Pratt, Harel et al. In Sect. 3 we highlight the ex-
pressive power of dynamic logic in practical terms: its ability to characterise or
incorporate a wide range of specification approaches and program analysis tech-
niques. In Sect. 4 we collect some of the success stories achieved with deductive
verification systems based on dynamic logic, before we briefly conclude in Sect. 5.

2 Foundations of Dynamic Logic

2.1 Logics of Change

Dynamic logic belongs to the family of logics reflecting the fact that the state of
affairs (of the word, of the mind, of a system, etc.) can change. Such logics can be
referred to as logics of change. For a long time, philosophers had been thinking
about the impact of change on reasoning, for example, Aristotle and William of
Ockham. In modern times, logic became the subject of mathematical studies in
the form of mathematical logic (or meta mathematics). Within that discipline,
there evolved a branch of logic which focuses on the modelling of change, namely
modal logic, starting with the work of C. I. Lewis [55]. The first, surprisingly little
known, approach to semantics of modal logic was proposed by B. Jónsson and
A. Tarski [49]. Further attempts on semantics were contributed in the 1950s,
by A. Prior, J. Hintikka, and S. Kripke [53], where the latter had the biggest
impact by far.5 In the early years, motivating application areas of modal logic
were largely the philosophy of language, epistemology, and metaphysics. But
5 Kripke was at that point unaware of Tarski’s work on modal logic.
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over time, computation became more and more a prime application of modal
logic, and variations thereof.

In modal logic, we assume a non-modal base logic, for instance propositional
logic or first-order logic. Moreover, we assume a set of possible worlds, and a
definition of when a formula of the base logic is valid in any given world. So
far, there is no aspect of change. This comes in if we assume, in addition to
the above, a relation R between worlds, called accessibility relation. When two
worlds w and w′ are in this relation, i.e., (w,w′) ∈ R, it means that we can go
from w to w′ in one R-step (whatever an R-step is supposed to mean intuitively
in the application at hand). With these ingredients, we obtain what is called
a Kripke structure. As an example, let us consider Fig. 1 (where we ignore the
formulas containing � or ♦ for now). In two of the possible worlds, p is true,
whereas p is false in the others. The arrows depict the accessibility relation R. In
our example, R does not enjoy many properties. (In fact, R is neither reflexive,
symmetric, anti-symmetric, transitive, total, nor deterministic.)

¬p
�p
¬♦p

p
�p
♦p

p
¬�p
♦p

¬p
�p
♦p

Fig. 1. Kripke Structure: possible worlds with (one-step) accessibility relation

A given base logic, such as propositional or first-order logic, can be extended
to a modal logic by adding two logical operators, � and ♦. A formula �φ is valid
in a world w iff φ is valid in all worlds accessible from w via R (in one step).
And a formula ♦φ is valid in a world w iff φ is valid in some world accessible
from w via R (in one step). The reader may check that all formulas in Fig. 1 are
valid in the worlds they are depicted in. Assume the validity of the propositional
literals, the modal formulas follow then from this assumption and the chosen
transition relation R. A perhaps unintuitive corner case is the upper left world,
from where no world is accessible via R (not even that world itself). Therefore,
�p and ¬♦p are vacuously true that world.
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Modal logic is syntactically closed under all propositional operators, the ones
from the base logic as well as � and ♦. For instance, ♦p ∧ ¬�p and ��p are
formulas of modal logic (both are valid in the lower left world). In general, modal
logics discussed in the literature come in many flavours, called K, T, S4, S5, D,
among others, which vary in their properties of the accessibility relation.

The reader may have noticed the syntactic similarity of modal logic to tem-
poral logic as introduced by A. Pnueli [65] (even if he wrote G for � and F
for ♦). But in temporal logic, �p and ¬♦p could not be true at the same time
(see Fig. 1 upper left world), neither could ¬�p and ��p be true at the same
time (see Fig. 1 lower left world). Moreover, in temporal logic, � and ♦ refer
to arbitrarily many steps, not just one as in modal logic. Still, quoting Pnueli,
his temporal logic “is completely isomorphic to the modal logic system S4” [65].6
The reason is that, in temporal logic, the accessibility relation is reflexive and
transitive, such that arbitrarily many steps forward are at the same time a single
step in the modal reading.

2.2 Dynamic Logic as a Multi-Modal Logic

Dynamic logic was introduced in 1976 by V.R. Pratt in “Semantical consid-
erations on Floyd-Hoare Logic” [66]. It extends modal logic by a language of
actions. Actions can moreover be composed to new actions, such that they are
reminiscent of programs. Every (elementary or composed) action gives rise to its
own accessibility relation. In that sense, dynamic logic is a multi-modal logic.

In formulas of dynamic logic, the modalities are “parameterised” by actions.
Syntactically, we write the actions inside the modalities. The syntax looks as
follows, given here together with its intuitive meaning:

– 〈α〉φ means “φ holds in some state we can reach by executing α”
– [α]φ means “φ holds in all states we can reach by executing α”

Here, “reach by executing α” refers to one step in the α-accessibility relation.
Please note that the worlds of modal logic are called “states” here and in the
following.

2.3 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) [33] is typically based on non-deterministic
actions. In applications of dynamic logic, the non-determinism serves mainly two
purposes: abstraction, and the modelling of an uncontrollable environment. The
following notation and definitions are inspired by [52, 64].

Definition 1 (Propositional Dynamic Logic: Formulas and Actions).
We assume a set of atomic formulas and a set of atomic actions. If φ, ψ are
formulas, and α, β are actions, then
6 Temporal logic as introduced by Pnueli [65] did not have a “next” operator.
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– ¬φ
– φ ∨ ψ
– 〈α〉φ (“some execution of α leads to a state where φ holds”)

are also formulas, and

– α;β (sequence)
– α ∪ β (non-deterministic choice)
– α∗ (execute α a finite, non-deterministic number of times)
– ?φ (proceed if φ, otherwise fail)

are also actions.

The above action language is also called “regular programs” [33]. Further
formulas (φ ∧ ψ, φ → ψ,[α]φ) and actions (see below) can be derived from the
ones above. In particular, just like modal logic and temporal logic have dual
modalities � and ♦, dynamic logic has, for every action α, a modality [α] which
is dual to 〈α〉. The former can be defined as follows:

[α]φ ≡ ¬〈α〉¬φ (1)

The intuitive meaning of [α]φ is that “all executions of α lead to a state where
φ holds”. Let us provide some intuition by means of an example.

¬p
〈α ∪ β〉p
¬[α ∪ β]p

p
〈δ; γ〉p
¬[δ; γ]p

¬p
¬〈β;α〉p
[β;α]p

p
〈γ〉p
¬[γ]p

α

β

γ

γ

δ
β

Fig. 2. Kripke structure with multiple atomic action relations

Fig. 2 depicts, for each state, a few dynamic logic formulas that are valid
there. The example highlights the difference between box and diamond modal-
ities. For instance, in the upper left state, there exists a state accessible by
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non-deterministic choice of α or β where p holds. But in the same state, it is
not the case that p is true in all states accessible by α ∪ β. A similar situation
occurs when executing δ and γ in sequence in the upper right state. The dynamic
logic formulas given in the lower left state talk about the action β;α, which is,
however, not feasible from that state (because, after executing β, there is no α
that can be executed). We will come back to this phenomenon.

To further explain PDL, we provide semi-formal definitions of its semantics
(for a formal account, we refer to [52]). In particular, we build on notions not
fully defined in this chapter. In the following, we assume a set of states S, a
meaning function M of atomic formulas φM ⊆ S (assigning to each formula the
set of states in which it is true)7, and the (overloaded) meaning function M of
atomic actions αM ⊆ S × S (such that each action denotes a relation between
states). This relation does not have to be deterministic, neither does it have to
be total. For instance, γM in Fig. 2 is non-deterministic on the lower right state,
and undefined on all other states. The following definition extends the meaning
function M from atomic to non-atomic formulas and actions.

Definition 2 (Relational Semantics of PDL Formulas).
Meaning of formulas φM ⊆ S, meaning of actions αM ⊆ S × S:

– (¬φ)M = S − φM

– (φ ∨ ψ)M = φM ∪ ψM

– (〈α〉φ)M = {u | ∃v. (u, v) ∈ αM and v ∈ φM}
– (α;β)M = {(u, v) | ∃w. (u,w) ∈ αM and (w, v) ∈ βM}
– (α ∪ β)M = αM ∪ βM

– (α∗)M =
⋃

n∈N(α
n)M, where αn+1 ≡ α;αn and α0 ≡ {(u, u) | u ∈ S}

– (?φ)M = {(u, u) | u ∈ φM}

The meaning of non-deterministically choosing between α and β is the union
of the behaviours of α and β. The meaning of α∗ is all behaviours resulting
from choosing some n ∈ N, non-deterministically, and repeating α n times. This
includes zero repetitions of α, which is a skip operation in all states. Note that
α∗ denotes finite iterations only. The test action ?φ deserves special attention. In
states where φ holds, it behaves like skip, i.e., we stay in the same state. But in
states where φ does not hold, there is no state to go to with this action, not even
the same state. This is similar to applying a partial function outside the domain,
where it is defined. The result would be undefined, not the identity. Intuitively,
we can see a computation where this happens as a failed computation.8

According to Def. 2, α;β fails as soon as any of α or β fail. We illustrate
this with Fig. 3. The crossed out β arrow from state s1 illustrates that atomic
action β fails on s1, i.e., there is no state s′ such that (s1, s

′) ∈ βM. Therefore,
by Def. 2, there is also no state s′ such that (s0, s

′) ∈ (α;β)M, hence α;β fails
on s0. Therefore, in state s0, the choice α;β ∪ γ; δ collapses to γ; δ.

This is an important point in the interplay of choice and failure as defined
by the relational semantics. In cases where non-determinism allows numerous
7 Note that this semantic modelling avoids truth values.
8 A failed computation is sometimes referred to as abort in the DL literature.
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s0

s1

s2 s3

α

β×
α;β×

γ

δ

γ; δ

Fig. 3. Propagation of failure over sequence and choice

computation paths, any path p where a failure occurs is taken out from the set
of possible behaviours, even if the failure occurs arbitrarily late in p. Accordingly,
it is a consequence of Def. 2 that failed computations of α are not included in the
set of behaviours which are quantified over in the modalities 〈α〉φ and [α]φ. In
other words, we can think of 〈α〉φ as “some non-failing computation of α leads
to φ”, and [α]φ as “all non-failing computations of α lead to φ”.

To support a more common notion of “programs”, well-known programming
constructs are definable in PDL’s action language:

– skip ≡ ?true
– fail ≡ ?false
– if φ then α else β fi ≡ (?φ;α) ∪ (?¬φ;β)
– while φ do α od ≡ (?φ;α)∗ ; ?¬φ

skip was discussed informally already; fail is a computation that always fails:
(?false)M = {(u, u) | u ∈ falseM} = {(u, u) | u ∈ ∅} = ∅. In the definition of
the conditional, one of the choices (?φ;α) and (?¬φ;β) necessarily fails and is
discarded from the possible behaviours. The definition of loops is concise but
intricate. The ∗ operator permits an arbitrary number of iterations, whereas the
α in the while loop is supposed to be repeated exactly as long as φ is true,
not more, not less. The resolution of this seeming conundrum is illustrated in
Fig. 4, where we depict a scenario where φ becomes false after three iterations
of α. The key insight is that most choices of the number n of iterations lead to
failure and are therefore discarded. If n is chosen too small, we exit the loop
at a point where φ is still true and the following action ?¬φ will fail. If, on the
other hand, n is chosen too big, we stay in the loop even when φ became false,
and the following iteration ?φ;α will fail. In our example, all choices of n other
than 3 lead to an execution that is discarded, only the choice n = 3 leads to an
execution which is kept in ((?φ;α)∗ ; ?¬φ)M.

How is non-termination handled, given that the ∗ operator permits only a
finite number of iterations? To make the point, we consider the extreme case
of the program while true do α od, which is defined as (?true;α)∗ ; ?¬true.
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φ

φ

φ

¬φ ¬φ

?¬φ×
?φ;α ?¬φ×

?φ;α ?¬φ×
?φ;α ?¬φ

?φ;α×

(?φ;α)∗ ; ?¬φ

Fig. 4. Illustration of loop definition in dynamic logic

This can simplified to α∗ ; ?false. Regardless of which number n of iterations is
chosen (non-deterministically), the execution will fail because of the last action
?false. Instead of semantically modelling infinite executions, the relational se-
mantics models infinitely many attempts on finite executions, all of which fail.
The resulting relation is empty, i.e., the final state of the program is not defined.
(In general, a program’s final state may be defined for certain initial states, but
not for others.)

2.4 Deterministic PDL

In case the action language has a deterministic semantics, we have the special
case of deterministic PDL. We assume the atomic actions to be deterministic:
For all atomic actions α, if {(s, s′), (s, s′′)} ⊆ αM, then s′ = s′′. We further
assume that the non-deterministic constructs ∪ and ∗ appear only to abbreviate
if and while (where all but one of the non-deterministic choices fail).

In this setting, we can move from relations to partial functions as meaning
of (atomic or composed) actions: αM ∈ S ⇀ S. Note that the behaviour of
an action (program) can still be undefined. But there is at most one defined
behaviour for every initial state.

In deterministic PDL (and all other deterministic versions of DL), [α]φ de-
notes partial correctness, whereas 〈α〉φ denotes total correctness. Moreover, par-
tial correctness implies total correctness, i.e., we have 〈α〉φ→ [α]φ. (This is not
the case in general PDL, see 〈γ〉φ in Fig. 2.)

2.5 First-Order Dynamic Logic

So far, there is no notion of program variables, which is, however, essential for
imperative programs. To address this, D. Harel introduced first-order dynamic
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logic (FDL) [41], adding variables to programs, and quantification to formulas.
In FDL, atomic programs have the following form:

– v := t (deterministic assignment)
– v := ∗ (non-deterministic assignment)

where v is a program variable, and t is an expression in an underlying side
effect-free expression language. Atomic formulas are of the forms:

– p(t1, . . . , tn)
– t1

.
= t2

Regarding composite formulas, we extend the operators from PDL with quan-
tification. If φ is an FDL formula, then ∃x.φ and ∀x.φ are also FDL formulas.
Otherwise, composite programs and formulas are formed exactly as in PDL.9
FDL is syntactically closed under all its logical operators, the quantifiers as well
as the logical operators from PDL. For instance, all of the following are formulas
of FDL:

1. ∀x. (〈t := a; a := b; b := t〉b = x ↔ 〈a := a+ b; b := a− b; a := a− b〉b = x)
2. 〈α〉∃x.φ(x)
3. ∃x.〈α〉φ(x)

We see that operators from propositional and first-order logic can appear
inside or outside the scope of modalities. The first formula states equivalence of
two programs (relative to the final value of b)—a property most non-dynamic
logic program logics cannot express. The other two formulas are equivalent for a
simple programming language as the one given here. But in richer programming
languages, where resources can be generated by programming constructs (such as
object creation in object-oriented languages), these formulas can have a different
meaning when α extends the domain we quantify over (see [5] for an in-depth
discussion).

The non-deterministic assignment v := ∗ is a tool for abstracting away from
irrelevant details, or for receiving input from an unknown environment. More-
over, the combination of non-deterministic assignment and test actions allows
for a kind of declarative programming when desired. Concretely, the program
fragment v := ∗; ?φ expresses the following command: “choose v such that φ(v)
is true”. This is used when modelling assumptions on the environment during
verification of controllers, as in the KeYmaera X theorem prover, see Sect. 4.3.

3 Expressive Power of Dynamic Logic

As seen in Sect. 2, in dynamic logic, programs as the constituents of modalities
are first-class citizens of its syntax, which makes dynamic logic closed under
syntactic composition. This property sets dynamic logic apart from most other
program logic frameworks that limit the formulation of program properties to
9 Usually, FDL allows no quantifiers in ?φ.
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pre-defined patterns (like Hoare calculus), or that see programs as operators on
formulas (like Dijkstra’s weakest precondition calculus). These formulate func-
tional properties corresponding to the canonical pattern ψ → [α]φ in dynamic
logic which asserts that a postcondition φ holds in some post-state of a program
α under the assumption of a precondition ψ in the pre-state. Dynamic logic is
not restricted to this pattern, and without the need to define syntactic or seman-
tic extensions, or introducing ad-hoc notation, one can use the well-studied and
semantically clear composition operations of propositional and first-order logic
to obtain formalisations of program properties beyond the ones mentioned. For
instance, one may

– quantify over dynamic logic formulas containing modalities,
– nest dynamic logic operators so that the formula in the scope of a modality

may again contain modalities, or
– use modalities inside test operators within programs

to name only a few of the possibilities. While the functional property pattern
is prominent in functional verification and covers many application scenarios,
there are interesting properties that heavily benefit from the expressive power
of dynamic logic.

In this section, we show how the core concepts of some important program
analysis frameworks can be expressed within dynamic logic. Moreover, we look
at a number of interesting program properties beyond the functional pattern.
The advantage of the expressive power of dynamic logic is that one can rely
on a sound basis in a well-understood program logic when addressing novel
verification questions and approaches.

3.1 Hoare Calculus

The Hoare calculus [47] allows us to specify a program’s behaviour in terms of
the eponymous Hoare triple

{pre} α {post} ,

where pre, post are first-order logic formulas representing the precondition and
postcondition, respectively, of program α.10

The meaning of the triple is that if program α is executed in a state in which
formula pre is satisfied and program α terminates, then in the11 reached final
state formula post holds. In other words, a Hoare triple states the partial cor-
rectness of a program. Manna and Pnueli [58] propose an extension for reasoning
about total correctness and built-in support to access the pre-state value of vari-
ables in the postcondition. For that, they require the provision of a convergence
function whose value must be shown to decrease by each iteration of the loop.
For a general overview of the Hoare calculus and its influence, we refer to [7].
10 Originally, the syntax was “pre {α} post”, but at some point the braces were moved.
11 The Hoare calculus was formulated for deterministic programs which we assume here

as well.
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Hoare’s objective was to provide a logical framework to prove the behavioural
correctness of programs. However, this framework does not define a logic as it is
not closed under the logical connectives and, hence, not a universal algebra. This
omission results in missing compositionality and limitations of properties that are
directly expressible within the framework itself. For instance, non-interference is
not expressible within Hoare logic without self-composition [26].

Dynamic logic [41, 66] addresses this shortcoming, being a program logic,
where programs are first-class citizens (as in the Hoare calculus) of its formu-
las but which is closed under its operators (logical connectives). As mentioned
above, Hoare triples can then be expressed as pre → [α]post , total correctness
is expressible as pre → ¬[α]¬post , or simply, pre → 〈α〉post (for deterministic
programs).

3.2 Flexible Verification Patterns

A common scenario where the syntactic flexibility of dynamic logic is useful
occurs when a specification contains logic symbols whose definition is given in
terms of code (for instance, as a pure function). Consider the proof obligation
valid(x) → [p]post , where valid references a function in the programming
language. Dynamic logic allows one to formulate this as a formula

[r=valid(x)]r .
= true → [p]post

that refers to valid as a program function. Consequently, there is more than
one piece of code in the proof goals which is perfectly admissible in dynamic
logic.

In a further scenario, dynamic logic is used to specify reachability. Consider
the singly linked list Java implementation in Listing 1.1, where we

class ListNode {
ListNode next;
int cnt;

boolean contains(int e) { ... }
}

// program p for specification
ListNode l = this;
while (l != null && idx >= 0) {
l = l.next;
idx--;

}
Listing 1.1. Singly linked list and program
used for specification

navigate from one node of the list
to the next via attribute next. The
final element of the list is reached
when its attribute next is null.
Assume we want to specify that
method contains(int) returns true
if the list contains a node with the
content passed as parameter e. To
specify the intended behaviour, we use
that the precondition (and postcondi-
tion) of a dynamic logic specification
in turn can contain programs. Con-
sider program p which assigns pro-
gram variable l the value of the idx-
th element in the list (assuming pro-
gram variable idx is initially non-
negative). Then the following dynamic logic formula specifies the intended be-
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haviour of contains:(
∃k.

(
k ≥ 0 ∧ 〈idx = k; p〉(l 6 .= null ∧ l.cnt .

= e)
))

↔ 〈res = contains(e);〉(res .
= TRUE )

3.3 Dijkstra’s Weakest Precondition Calculus

Dijkstra’s weakest precondition calculus [29] defines a predicate transformer wp
that computes the weakest precondition from a given postcondition. To prove
correctness of a program, it remains to be shown that the given precondition
implies the weakest precondition. As wp is a predicate transformer and thus a
meta construct, which transforms formulas, it is not a first-class citizen of the
logic.

The original wp-operator includes to prove termination of the given program;
one variant, the weakest liberal precondition wlp formalizes partial correctness.
Although the wp-calculus semantics aligns nicely with the “diamond” semantics
of dynamic logic, there is a crucial difference when the target programming lan-
guage is non-deterministic, as is the guarded command language Dijkstra intro-
duced alongside the wp-calculus. Given a non-deterministic program α that can
choose non-deterministically between continuations α1, . . . , αn, then wp(α, post)
requires that (i) program α can make a non-deterministic choice (i.e., it does
not abort or is blocked), and (ii) that for any executable choice αi, wp(αi, post)
holds. In contrast, the diamond formula 〈α〉post holds if (i) program α can make
a non-deterministic choice (i.e., it does not abort or is blocked), and (ii) that
there is one executable choice αi for which 〈αi〉post holds.

This difference makes a canonical emulation of the wp-calculus in dynamic
logic impossible. Of course, extending dynamic logic with a dedicated modality
matching wp’s semantics is one possibility. This has been realized in KIV [32] by
introducing the strong diamond modality 〈| · |〉 ·. However, wp and wlp share not
the duality of the diamond and box operator in dynamic logic but differ only in
the termination requirement as such. This means wlp is a natural fit for dynamic
logic’s box operator and thus can be canonically emulated by inference rules for
dynamic logic.

We provide some examples to showcase how wlp-rules can be directly cast
into dynamic logic axioms (and dynamic logic inference rules):

– It is easy to see that wlp(α, post1∧post2) = wlp(α, post1)∧wlp(α, post2) cor-
responds to the valid dynamic logic formula [α](post1∧post2) ↔ ([α]post1)∧
([α]post2).

– The relation between the two systems becomes even clearer when considering
that the equation wlp(α1;α2, post) = wlp(α1,wlp(α2, post)) corresponds to
[α1;α2]post ↔ [α1][α2]post thanks to the possibility of nested modalities.

A further significant difference is that the wp-calculus analyses the program
in a backward direction from the end to the start while transforming the post-
condition into its weakest precondition. Dynamic logic provides more flexibility
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and permits the implementation of both directions of analysis. In particular,
dynamic logic allows one to analyse a program in the forward direction (see
Sect. 3.5), while still computing the weakest precondition (and not the strongest
postcondition).

For a thorough review of Dijkstra’s weakest precondition calculus, as well
as a comparison to dynamic logic, we refer to [37]. The parallels between the
wp-calculus and dynamic logic were already observed by Harel & Pratt in 1978
[43] who reproved formally many of Dijkstra’s results [30].

3.4 Relational Properties

Relational and Hyperproperties. Certain relevant program properties con-
cern not only one program but express a relationship between the effects and
results of one program relative to the effects and results of another program.
Such properties are called relational.12 A relational property may put two (or
more) different programs into relation, thus comparing the effects of two dif-
ferent, independent realisations. But relational properties can also be about the
same program in which case two different independent runs of a program α are
compared. This is called a hyperproperty of α [21]. Originally, hyperproperties
are for traces but can also be formulated for pre- and post-states. The general
pattern for formalising a relational property in dynamic logic is as follows:

pre → 〈[α1 ]〉〈[α2 ]〉...〈[αn ]〉post

Here, 〈[α]〉 is either [α] or 〈α〉 and the αi have disjoint program variable sets. For a
hyperproperty, one can take identical copies of the same program with renamed
variables. The relational precondition pre and the relational postcondition post
connect the state spaces of the different programs in the pre- and post-state.
Most relational properties relate two programs (n = 2), but there are scenarios
relating more than two program executions. Functional properties as defined
previously are relational properties for the (corner) case of n = 1.

Program Equivalence. The arguably most prominent relational property for-
mulates in its purest form that two programs α and β presented with equal input
yield equal output (provided they both terminate):

inα = inβ → [α][β](resα = resβ) (2)

Here, the equality inα = inβ correlates the corresponding input variables of the
two disjoint name spaces of α and β. An important use case of program equiv-
alence checking is regression verification, where a more recent program version
replaces a less efficient or buggy older version. In case of a bug fix, one evidently
does not want the new version to be equivalent to the old one. Hence, it makes
12 While sometimes one encounters the term relational verification, being relational is

not a characteristic of the analysis technique, but one of the property itself. Rela-
tional properties can sometimes be encoded as functional properties.
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sense to amend the premise of the implication with a relational precondition
(excluding the buggy cases) under which equivalence has to hold (conditional
regression verification). In equation (2), we referred to the corresponding inputs
in the two variable sets. It is not always and necessarily clear how the state
spaces correspond. It may very well be that the value of one variable in α is rep-
resented by two variables in β. Hence, equality (2) can take the relaxed form of a
one-to-one relationship between state spaces (relational regression verification).

Property (2) encodes “partial equivalence”, leaving termination aside. But
mutual termination [35] can also be formulated in dynamic logic (at least for
deterministic languages). A program α terminates under a precondition pre in
precisely the same cases as the program β iff the following formula is valid:

pre →
(
〈α〉true ↔ 〈β〉true

)
Refinement. A very successful concept [1, 2, 48] in formal design is the notion
of refinement: An abstract, often nondeterministic state transition description is
enriched with details about the realisation and formally shown to be compatible
with the abstract description. One program γ refines another program α if any
effects observable under γ can also be observed under α: No new behaviour is
introduced by γ, so all invariants of α hold for γ, too.

inγ = inα → [γ]〈α〉(resγ = resα) (3)

Formula (3) closely resembles (2) with the difference that opposing modal-
ities are in use. This is to accommodate the situation that for all observable
concrete behaviours there must be an abstract action. To deal with the nonde-
terminism, this alternation of modalities is necessary. As in the case of program
equivalence, data representation is not necessarily identical in α and γ. Hence,
the equalities in (3) are usually generalised to coupling predicates describing the
relation between the abstract and concrete state space.

Secure Information Flow. The best-studied hyperproperty of programs is
non-interference. Non-interference is an information-flow security property en-
suring a program does not leak confidential information. To prove this property,
one has to show that the value of program variables holding confidential infor-
mation does not influence the value of a non-confidential program variable. For
example, the following two programs do not satisfy the non-interference property
(l is a non-confidential, “low” program variable, while h denotes a confidential,
“high” one):

– l = h; is insecure, as the secret h is directly leaked to l
– if (h > 0) l = 0; else l = 1; is insecure, as it leaks the sign of h to l

As shown in [26], it is possible to express non-interference for a program α
directly in dynamic logic as

∀l̄.∃r̄.∀h̄.
(
〈α〉(l̄ .= r̄)

)
(4)
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which expresses that the final values r̄ of non-confidential program variables l̄
only depend on the initial values of the non-confidential variables, but not on
the value of the confidential variables h̄. This formalisation uses alternating
quantification over variables (which is possible in dynamic logic, but not in the
Hoare calculus).

Other techniques, such as self-composition [8, 25], can be used to express
non-interference in Hoare calculus as well as dynamic logic, but require addi-
tional encoding effort to allow for independent execution of the same program.
A compact representation of this approach in dynamic logic is

l̄ = l′ → [α][α′](r = r′) ,

where program α is identical to α, except that all program variables v in α have
been renamed to v′.

The formalisation shown in equation (4) requires providing a witness for the
result value in contrast to self-composition. This can be mitigated by delaying
the provision using free variables. In both cases, dynamic logic permits modelling
more complex information-flow security properties, such as declassification, in
a natural manner. For example, some information may be intentionally leaked,
such as the average salary of all employees, while the salary of a specific employee
is confidential.

Relational Properties of Algorithms. Hyperproperties may formally relate
more than two program runs. We show two examples and their encoding in
dynamic logic:

When determining the winner of an election, different vote counting schemes
can be applied. One desirable feature of a voting scheme ω is separability, re-
quiring that if a candidate res wins in two independent elections, then they also
win if the ballot boxes in and in ′ are joint (in ′′) [9]:

in ′′ = in ∪ in ′ → [ω][ω′][ω′′](res = res ′ → res = res ′′)

At times it is important to know whether an implemented routine possesses
desirable mathematical properties. For example, when implementing distributed
routines using the map-reduce paradigm, the independence of the result from the
distribution of the input values over computing nodes depends on the fact that
the reducers computing intermediate results are commutative and associative,
i.e. that reordering and regrouping partial results does not modify the final result.
Associativity of α with two inputs a and b and output res can be formulated in
dynamic logic as a condition relating four program runs:

[α][α′][α′′][α′′′]
(
a = a ′′′∧b = res ′∧a ′ = b′′′∧b′ = b′′∧a ′′ = res ′′′ → res = res ′′

)
Relational Reasoning For the verification of relational properties, dedicated
inference rules tailored to this scenario can be used to increase efficiency. One
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elegant inference rule for loop induction in dynamic logic is

φ→ [α ]φ

φ→ [α∗]φ

formalising that when φ is maintained by a single execution of α, then it is main-
tained by arbitrarily many iterations of α. This induction rule can be generalised
to reason about synchronised loops in two related program runs. The formula φ
serves as coupling invariant describing the relationship between the state spaces
of the two program runs under verification. In relational refinement proofs, for
example, the following rule can be applied

φ→ [α ]〈γ 〉φ
φ→ [α∗]〈γ∗〉φ .

If a single iteration of γ refines a single iteration of α (modulo φ), then the
nondeterministic iteration γ∗ refines α∗.

This relational reasoning allows us, in the case of programs with (lock-step)
synchronised loops, to reason with local relational knowledge: It does not matter
what the program computes; it is merely interesting how the state relates to the
state of the concurrent execution of the other programs. We can focus on the
differences between the states rather than describing the states explicitly.

3.5 Symbolic Execution

Symbolic execution [50] is a general program analysis that can be used to prove
programs correct. In contrast to Dijkstra’s wp-calculus, it executes a given pro-
gram in a forward-directed manner (applying forward substitutions) to compute
the weakest precondition. Besides deductive verification [20, 44], symbolic exe-
cution has shown to be advantageous for test generation [18, 50, 51] and debug-
ging [45, 51].

Dynamic logic is a suitable candidate to realise symbolic execution for de-
ductive verification, as well as for test generation and debugging. Dynamic logic
permits representing the symbolic states generated during symbolic execution
naturally, as well as recording path conditions as preconditions. The nature of
logic proof systems, such as sequent or tableaux calculi, is to represent proofs as
trees. This renders them ideal to represent the unrolled control-flow (and data)
graph obtained by symbolic execution.

The semantics of symbolic execution then serves as a design guideline for de-
veloping a deduction system. This becomes obvious when looking at the dynamic
logic sequent calculus rule for the conditional statement:

Γ, e =⇒ 〈α1; β〉post ,∆ Γ,¬e =⇒ 〈α2; β〉post ,∆
Γ =⇒ 〈if (e) then α1 else α2; β〉post ,∆

Here, the proof goal in the conclusion splits into two subgoals, one for the case
where the guard of the conditional statement evaluates to true and one where
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it evaluates to false. This maps branching of the control-flow into branching of
the proof tree at the current proof goal.

An advantage of using dynamic logic as a framework to implement symbolic
execution is that it can use the information provided by the specified precon-
dition and the accumulated path condition to simplify the state representation
and exclude unreachable code paths early on. In semi-automated deductive ver-
ification [4], the close relation between symbolic execution trees and proof trees
is helpful for proof comprehension because it facilitates navigation in a proof
and understanding the proof situation.

3.6 Incorrectness Logic

Recently, P. O’Hearn proposed incorrectness logic [60] as a program logic that
does not formalise that for all states satisfying the precondition, the postcondi-
tion holds in the poststate of the execution. Instead, it formalises that there exists
a state satisfying the precondition such that after execution the postcondition
is satisfied. The intended scenario for this specialised logic is to (automatically)
reason during bug finding that a potential bug is not spurious, but indeed reach-
able by at least one program execution.

Incorrectness logic reuses the notation of Hoare triples (with square brackets
instead of curly braces), but a triple in it is interpreted as [presumption]α [result ]
indicating that the post-relation result can be an under-approximation of the
states reachable via α, starting from states satisfying the presumption. In con-
trast, postconditions in valid Hoare triples are over-approximations.

Dynamic logic is expressive enough to model incorrectness logic if one adds
the converse program α− inverting a program α to dynamic logic.13 This operator
is well-studied in dynamic logic [74] and has the semantics that pre- and post-
states exchange places: (α−)

M
=

(
αM)−1. The inverted program α− can be

viewed as executing α backwards. The incorrectness triple [φ]α [ψ] holds if the
dynamic logic formula ψ → 〈α−〉φ is valid.

Interestingly, the Hoare triple {φ}α {ψ} corresponds to the validity of the
reversed dynamic logic formula 〈α−〉φ→ ψ. This can be read as: The strongest
postcondition of α with respect to the precondition φ of the Hoare triple implies
the postcondition ψ of the Hoare triple.

3.7 Abstract Interpretation

Abstract interpretation [24] is a static analysis technique based on a lattice model
for approximation. The rough idea is to use abstract domains to approximate the
values of (or relations between) program variables for a given program. One can
derive an abstract program semantics from these abstract domains for the target
programming language. One can then adapt standard analyses like control- or
data-flow analyses or deductive reasoning techniques to the abstract semantics.
The intention is that with dedicated abstract domains, one can automatically
13 This is already pointed out in the original publication [60].
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derive program properties for a given program with sufficient precision to avoid
false positives.

In principle, one can define a dynamic logic calculus variant for each ab-
stract program semantics and thus use deductive reasoning in combination with
abstract interpretation. A complementary approach for value abstraction of pro-
gram variables while reusing the fully precise dynamic logic calculus for the
programming language has been developed in [19]. The idea is to use partially
interpreted constants that use underspecification to act as representatives for an
abstract domain element.

4 Success Story Systems

4.1 The KIV Verification System

Overview. The KIV system14 [32], in whose design Wolfgang Reif was crucially
involved, is a powerful formal verification tool designed to ensure the correctness
of software systems.

For specification, KIV combines algebraic data type specifications with dif-
ferent formalisms for describing system behaviour. For the definition of abstract
systems, KIV supports Abstract State Machines (ASM) [17]. ASMs consist of
abstract programs (rules) that implement the steps of a transition system. Con-
crete systems to be verified can also be written in Java.

The software development process of KIV is step-wise refinement from ab-
stract specifications to implementations. One can start by verifying an abstract
model and then refine it into more concrete implementations, while ensuring
that correctness is preserved. KIV supports data refinement as well as system
refinement. It offers a graphical user interface for interactive proof development.

Dynamic Logic in KIV. KIV uses higher-order dynamic logic [32], a dynamic
logic where the base logic is typed higher-order logic and the modalities can
contain abstract imperative programs as well as sequential Java.

The system uses a sequent calculus for its logic that implements wp-style
reasoning as well as symbolic execution. It features a powerful simplifier that
automatically reduces formulas, and an extensive library of data types with
numerous pre-proven theorems.

KIV’s Success Stories. KIV was used in various case studies and applications
to prove the correctness of real-world systems:

A Prolog compiler that compiles from Prolog to the Warren Abstract Machine
was fully verified with KIV using a hierarchy of a dozen refinements [71].

KIV was applied in the area of electronic payment systems to verify a protocol
for secure money transfer between Mondex smartcards [40].
14 www.uni-augsburg.de/de/fakultaet/fai/isse/software/kiv
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KIV was used to verify part of Flashix, a file system for flash memory that
had been proposed as a case study for Hoares Grand Challenge [31]. The file
system was decomposed into a hierarchy of components with eleven levels of
refinement.

4.2 The KeY System: Deductive Verification of Java Programs

Overview. The KeY System15 [3, 4, 10, 11] is a state-of-the-art program veri-
fication tool for one of the most widely used programming languages: Java. Its
capabilities enable the formal specification and verification of unmodified indus-
trial Java code at source-code level.

In addition to its role as a program verifier, KeY serves as a versatile research
platform for implementing various formal methods for Java using the symbolic
execution engine of KeY. For instance, KeY has been used to facilitate the gener-
ation of test cases with high code coverage [6] and to implement a symbolic-state
debugger [45].

The roots of the KeY project trace back to 1999, when the continuous devel-
opment and refinement of KeY and its verification methodology were started.

Dynamic Logic in KeY. JavaDL is a dynamic logic, where the programs in the
modalities are Java code, i.e., executable fragments of Java programs. It is based
on a typed first-order logic whose type system includes all Java primitive and
reference types that are equipped with Java’s typing rules. For example, there is
a non-rigid function that returns the length of an array a in the current execution
state as length(a). JavaDL also permits Java-style syntax like a.length.

KeY’s deductive verification engine is based on a sequent calculus for JavaDL
[13]. The calculus rules perform forward symbolic execution whereby all sym-
bolic paths through a program are explored. Method contracts make verification
scalable because one can prove one method at a time to be correct relative to
its contract. Contracts do not need to be expressed in dynamic logic, but can be
given at the source code level as Java Modeling Language annotations [54].

KeY’s sequent calculus has rules for the features of Java, including opera-
tions on data types, heap operations, object creation, inheritance, polymorphism,
method invocation, loops, abrupt termination etc. Since a large number of rules
is needed, KeY features a domain-specific textual language (called taclets) to
add axioms of theories and lemmas, and to define proof rules.

KeY allows both semi-automated (user-guided) and automatic (system-driven)
verification of program properties. The tool supports modular reasoning, which
means it can verify parts of a program in isolation, making the verification pro-
cess scalable to larger systems.

KeY’s Success Stories. Over the years, a plethora of case studies were con-
ducted, where KeY was used to verify real-world algorithms and data structures;
a comprehensive list is on the KeY project website.
15 www.key-project.org
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A verification case study that received much attention is TimSort, an al-
gorithm combining merge and insertion sort. It is prominently used as Java’s
default for sorting collections of objects. However, that implementation had a
bug and crashed for certain large collections. This issue was detected and ex-
plained in [28], a fixed version has been presented and verified with KeY in [27].

While the JDK uses TimSort to sort collections of objects, collections of prim-
itive types are sorted using Dual Pivot Quicksort, which is a standard quicksort
that partitions into three instead of into two parts. The implementation pro-
vided by the JDK has been proven correct in [15], which includes the sortedness
property, the permutation property, and the absence of integer overflows.

In [16], the core of the JDK’s Identity Hash Map was specified and verified.
For that, KeY was used in combination with other JML tools: the bounded model
checker JJBMC [12] and OpenJML [23], to exploit the strengths of each of them
and jointly verify a large project.

Researchers at CWI showed that Java’s LinkedList implementation breaks
when lists with more than 231 elements are created [46]. They propose a fixed
version and verified it successfully with KeY. This case study shows the capability
of KeY to reason about bounded integer data types and handle overflows.

The most recent large case study performed with KeY is the verification of
the sorting algorithm in-place super scalar sample sort [14]. This algorithm is
efficient on modern machines, as it avoids branch mispredictions, allows high
instruction parallelism by reducing data dependencies in the innermost loops,
and it is very cache-efficient. This case study shows that with KeY it is possible to
verify state-of-the-art sorting algorithms of considerable size (in this case about
900 lines of Java) and complexity without having to modify the source code.

4.3 KeYmaera X: A Theorem Prover for Hybrid Systems

Overview. KeYmaera X16 [34] is a formal verification tool for hybrid systems
that combine continuous dynamics (for example, physical processes) and dis-
crete transitions (for example, digital control). Its verification engine is based
on differential dynamic logic (dL) [61, 63] to model and verify safety properties
of these systems. KeYmaera X is particularly useful for verifying cyber-physical
systems, such as autonomous vehicles or medical devices.

The tool is built on top of a small, soundness-critical logic kernel, ensuring
the reliability of its proofs, and it is extensible for advanced applications, such
as differential game logic [62].

KeYmaera X’s proof search is partially automated, it offers tight integration
with solvers like Z3 and Wolfram Mathematica for handling real arithmetic.
Users can guide proof search interactively by manually applying proof rules,
selecting tactics, and providing input such as loop invariants.

Dynamic Logic in KeYmaera X. In differential dynamic logic (dL) the
modalities contain hybrid programs. These programs model hybrid systems and
16 www.keymaerax.org
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can describe both continuous changes (using differential equations) and discrete
actions (using traditional program constructs like assignments and condition-
als). A dL formula might express that after following the trajectory governed
by a system of differential equations, a certain safety condition is guaranteed.
For example, consider the dL formula describing a safety property for a car
model [34]:

v ≥ 0 ∧A > 0 → [
(
(a := A ∪ a := 0); {v′ = a}

)∗
] v ≥ 0

It expresses that a car, when started with non-negative velocity v ≥ 0 and
positive acceleration A > 0 (left-hand side of the implication), will always drive
forward (v ≥ 0) after executing a := A ∪ a := 0 followed by the differential
equation v′ = a arbitrarily often.

KeYmaera X uses uniform substitution [63] to automatically or interactively
prove dL formulas and, thus, the correctness of hybrid systems. In the uniform
substitution framework, variables and formulas can be substituted uniformly
within logical rules.

KeYmaera X’s Success Stories. Common use cases include autonomous ve-
hicles, aircraft control systems, and robotics.

KeYmaera X has been used to verify collision avoidance systems for au-
tonomous cars. One notable success is the formal verification of the correctness
of adaptive cruise control, where KeYmaera X was used to prove that the system
would maintain a safe distance from other vehicles under all operating con-
ditions [56]. Another significant application involved automated lane-changing
manoeuvres in autonomous cars. The tool verified that under appropriate condi-
tions, the vehicle would change lanes safely without violating safety constraints.

KeYmaera X was involved in the verification of safety properties in robotic
systems, especially those operating in dynamic environments. For instance, it has
helped ensure that robots navigate safely around obstacles and other moving
agents by verifying the correctness of their control algorithms under different
scenarios [59].

KeYmaera X has been successfully used in verifying air traffic management
systems, particularly the Airborne Collision Avoidance System (ACAS-X), used
in airplanes to prevent mid-air collisions [22]. KeYmaera X helped prove that
the collision avoidance algorithms work reliably under a wide range of flight
scenarios, accounting for the continuous dynamics of aircraft motion and discrete
control decisions. Additionally, the tool has been applied in unmanned aerial
vehicles (UAVs) for ensuring safe flight path planning.

5 Conclusion

While dynamic logic is well established in theoretical circles as an object of
investigation17, it leads a niche existence in the area of deductive verification:
17 See, for example, the Dalí workshop series (dblp.org/db/conf/dali/index.html).
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The three tools reported in Sect. 4 represent all the major verification system
implementations using dynamic logic we are aware of.

This is a pity, because, as we show in the present paper, dynamic logic is
extremely versatile:

– It works with different base logics: Propositional, first-order or higher-order,
typed or untyped.

– It can be instantiated to a wide range of modelling and real-world program-
ming languages, including hybrid programs.

– It can express proof obligations deriving from different specification para-
digms: Refinement, abstract data types, contract-based.

– It can represent different styles of verification: Symbolic execution (unbound-
ed, bounded, concolic), weakest preconditions, abstract interpretation.

– It can express a wide variety of verification scenarios (see Sect. 3): Relational
and hyperproperties, program equivalence, information flow, incorrectness
logic.

All of this is possible in the same syntactic (multi-modal) and semantic (re-
lational) framework, without the need of ad hoc and meta constructs like Hoare
quadruples, program composition operators, etc. This makes dynamic logic also
a good choice to improve interoperability among verification tools. As witnessed
by the success stories mentioned in Sect. 4, the generality and versatility of dy-
namic logic comes without a performance overhead: Deductive verification tools
based on dynamic logic are competitive.

For all these reasons, we believe that dynamic logic deserves to be better
known and more widely used than it is. We hope that the present article can
serve as an inspiration.
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