
Formal Foundations of Consistency in
Model-Driven Development

Romain Pascual(B) , Bernhard Beckert , Mattias Ulbrich ,
Michael Kirsten , and Wolfram Pfeifer

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{romain.pascual, beckert, ulbrich, kirsten, wolfram.pfeifer}@kit.edu

Abstract. Models are abstractions used to precisely represent specific
aspects of a system in order to make work easier for engineers. This sep-
aration of concerns naturally leads to a proliferation of models, and thus
to the challenge of ensuring that all models actually represent the same
system. We can study this problem by considering that the property is
abstracted as a relation between models called consistency. Yet, the exact
nature of this relation remains unclear in the context of cyber-physical
systems, as such models are heterogeneous and may not be formally
described. Therefore, we propose a formal foundation for consistency
relations, by (1) providing a set-theoretical description of the virtual sin-
gle underlying model (V-SUM) methodology, (2) relating consistency to
model transformations, and (3) studying the connection between con-
sistency of models and their semantics. In particular, we show that a
relation on the semantic spaces of models can be reflected as a relation
on models and that this semantics forms a lattice, such that a canonical
semantics can be derived from a consistency relation. Our findings lay the
foundation for a formal reasoning about precise notions of consistency.

Keywords: Model-driven development · Model consistency · Model se-
mantics · Formal foundations · Cyber-physical systems

1 Introduction

Model-driven development (MDD) [1, 17] offers a mechanism to overcome the
increasing complexity of systems, where each model corresponds to a pragmatic
purpose-oriented abstraction of the system [29, p. 131–133]. MDD enables mod-
ularization via concern separation, with each model typically dedicated to some
specific aspect of the system. As a result, the complete system description is
given by an interconnected set of models with complex dependencies between
them. With an increase in both the number of models and their complexity,
handling the interconnections between these models becomes a key challenge,
usually referred to as consistency management [23, 28], i.e., detecting or repair-
ing inconsistencies.

There are two standard ways to define consistency and reason about it. The
first approach, mostly used in software engineering, is to assert that models are

https://orcid.org/0000-0003-1282-1933
https://orcid.org/0000-0002-9672-3291
https://orcid.org/0000-0002-2350-1831
https://orcid.org/0000-0001-9816-1504
https://orcid.org/0000-0002-9478-9641


2 R. Pascual et al.

consistent when derived from (usually empty) base models by a sequence of
consistency-preserving transformations. Therefore, consistency is defined by the
set of possible model transformations, such that a (set of) model(s) is consistent
whenever belonging to the language associated with the grammar underlying
the transformations. This rule-based approach demonstrates the process-oriented
nature of ensuring consistency. The second approach to defining consistency as-
sumes that inconsistencies may have a more complex manifestation, which can
only be grasped via semantic reasoning. This approach typically defines con-
sistency as the satisfiability of a set of constraints. This logic-based approach
emphasizes that consistency relates to the conformance to some desired specifi-
cations or industry standards.

In this work, we propose a unified view of these two consistency paradigms
within a set-theoretic framework. We aim to establish a formal basis for defining
and reasoning about model consistency, bridging the gap between rule-based
consistency and semantic constraints. More precisely, we formalize consistency-
related notions in the context of the virtual single underlying model (V-SUM)
methodology [20]. Then, consistency basically is a relation between the models of
possibly distinct meta-models, i.e., models that do not necessarily adhere to the
same formalism. In particular, we discuss some foundational aspects that arise
when dealing with heterogeneous models for Cyber-Physical Systems (CPS) [22],
where we consider consistency as an encoding for joint realizability [6].

More precisely, the end goal in system engineering is to ensure that the sys-
tem can be built and will satisfy some constraints. However, extensively trying to
build variations of the system for testing is usually costly and time-consuming,
especially when dealing with CPS. Therefore, the realizability of the system is
usually approximated by considering a relation over the models describing it. We
call this relation consistency and propose to study its formal foundations. We
illustrate the various introduced notions with two examples, one familiar to for-
mal methods experts, namely consistency between Linear Temporal Logic (LTL)
formulae and Büchi automata, and one that is closer to engineering concerns,
namely models for the brake system of a car.

Paper outline. Sect. 2 presents the context of our work, more precisely, the vir-
tual single underlying approach in model-driven development, further explaining
the need to reason about model consistency. Sect. 3 further details how con-
sistency is considered within database science and model-driven development.
Sect. 4 describes our motivating examples, namely linear temporal logic and
Büchi automata on the one side, and a simplified description of a car’s brake
system. Sect. 5 proposes a set-theoretic formalization of the virtual single under-
lying approach based on an abstract notion of consistency viewed as a relation
between models. Sects. 6 and 7 investigate the relations between the notion of
consistency and rule-based modification of models, resp. semantics. More pre-
cisely, Sect. 6 discusses model transformations with an emphasis on consistency
preservation rules as a practical definition of consistency, while Sect. 7 shows
that abstracting semantics as a mapping into some semantic space yields a lat-
tice that we can relate to consistency.



Formal Foundations of Consistency in Model-Driven Development 3

2 The V-SUM Approach in Model-Driven Development

Model-driven development (MDD) [1, 17] makes models, i.e., system descrip-
tions, the primary artifact of the development process. Models may encode the
structure, behavior, or some functionalities of the system, while the develop-
ment process revolves around creating and editing models. MDD embodies the
concept of abstraction, which is fundamental in computer science. While several
models may be used to describe a system, Atkinson et al. [2] propose to use a
single underlying model as the central comprehensive model of a system, such
that all user-maintained models become views, i.e., projections from the single
underlying model. Extending this idea, also the requirements, the design, and
the code artifacts become projections from the single underlying model. In par-
ticular, this approach reduces redundancy within the single underlying model to
ensure the consistency of all its views by construction.

As single underlying models correspond to monolithic system descriptions,
they suffer from practical usability issues such as incompatibility with preex-
isting (externally defined) languages and standards, poor maintainability, and
reusability due to missing modularity. The Vitruvius1 approach [20] proposes
to virtualize the single underlying model. A virtual single underlying model,
or V-SUM, is a single underlying model that is not monolithic but consists of
several coupled models, where ‘coupled’ means that semantic relationships are
provided as mappings between the models. Essentially, such a model acts as a
single underlying model for the views but internally consists of several models,
which can all have their specific meta-model. Thus, a V-SUM corresponds to a
tuple of models associated with consistency relations. More precisely, Klare et
al. [20] build consistency from rules for pairs of meta-models by considering some
a priori conditions on meta-models. A V-SUM is then deemed consistent if all its
pairs of models fulfill all required consistency rules. Theoretically, consistency
preservation rules are derived from the consistency rules, intuitively allowing
consistency to be restored by triggering further modifications on the models
that constitute the V-SUM whenever one is modified. Further explanations are
given in Sect. 6.2.

Klare et al. [20] define V-SUMs using notations from the Meta-Object Facility
(MOF) for (meta-)models. However, other standards and notations are needed
in the context of CPS design. Rather than adding other specific standards and
notations, we strive to be agnostic to the description of models and, therefore,
to the encoding of model consistency. Additionally, the Vitruvius approach
can be considered as a refinement of the single underlying model method with a
strong practical side, justifying the seemingly complex notions and importance of
enabling modifications of the models. Here, we are interested in the foundations
of consistency and not (yet) in consistency management, with the agenda of
subsequently enabling semantic reasoning for the consistency of V-SUMs. As a
result, we want to keep the discussion open, i.e., not only about the notions

1 Vitruvius is the view-centric engineering using a virtual single underlying model.



4 R. Pascual et al.

of consistency given by the structure of the models, but rather for any generic
consideration of consistency.

3 Related Work

To the best of our knowledge, existing research about consistency is domain-
dependent, and works that formally reason about consistency assume additional
information about what is being analyzed with respect to the consistency notion,
e.g., models are represented in UML [23]. Nonetheless, these domain-dependent
studies view consistency as a relation, which will be our starting definition in
Sect. 5. In the following, we briefly review consistency in database science and
model-driven development.

The issue of consistency has long been discussed in the area of data quality
in database science. In that context, inconsistencies are known as data anoma-
lies [18], a subject particularly relevant in computer-aided software engineer-
ing (CASE), such as in the Fujaba tool [25]. Initially developed for UML and
Java round-trip engineering, Fujaba was later extended into a general, plugin-
based CASE platform. This platform supports the integration of transformations
and other tools to maintain the consistency of various engineering artifacts. Stan-
dard techniques for data integration and repair [4] include integrity constraints,
functional dependencies, and data deduplication strategies [11]. These methods
are typically designed for relational databases and aim to formulate consistent
queries over inconsistent data. However, repairing inconsistencies is often chal-
lenging due to the size of the databases or the lack of necessary permissions or
expertise among the individuals responsible for data integration.

Within MDD, the question of model consistency is often related to the ques-
tion of model synchronization [14, 15, 33]. In particular, model transformations,
i.e., rule-based approaches to describe the evolution of models, allow for the
consistent propagation of changes between models. A bidirectional transforma-
tion (BX) synchronizes two models by propagating updates between them. More
precisely, a lens is an asymmetric BX where one model (the view) is determined
by another model (the source) such that modifying the source gets reflected in
the view by the lens [5,12]. Thus, bidirectional transformations provide a bidirec-
tional specification of consistency and its repair for a pair of meta-models [31].

4 Motivating Examples

4.1 Linear Temporal Logic and Büchi Automata

While our primary focus is the consistency of CPS models, we will also use Linear
Temporal Logic (LTL) and Büchi automata as a running example. These con-
cepts are well understood within the formal methods’ community, ensuring that
we can leverage the reader’s intuition without the need to understand domain-
specific models. In addition, we reexamine familiar concepts from the perspective



Formal Foundations of Consistency in Model-Driven Development 5

of model-driven engineering. Thus, some examples will appear counterintuitive
to highlight such variations.

Here, we fix the vocabulary and notation associated with LTL and Büchi
automata and refer the reader to standard textbooks for additional informa-
tion [8]. LTL is an extension of propositional logic that allows the specification
of temporal relations between events, first introduced to formally verify com-
puter programs [26]. Its temporal operators include next, written X, until U,
sometimes ♢, and always □. If we assume an infinite set P containing all propo-
sitional variables, then we obtain the set of all LTL formulae, which we denote
by FLTL. The semantics of an LTL formula is given by the set of traces that
satisfy the formula, where a trace is an infinite sequence of states, and a state
is a propositional valuation that indicates which variables are considered true
in that state. A nondeterministic Büchi automaton is a nondeterministic finite
automaton reading ω-words instead of finite ones and accepting those that visit
accepting states infinitely many times. The transition function is typically gov-
erned by an alphabet, which is considered to be given by valuation functions
over a finite set of propositional variables to describe temporal statements. In
the sequel, we write B for the set of all Büchi automata where the transition
function is built over the alphabet of propositional valuation functions.

The connection between LTL and Büchi automata is well understood. Both
an LTL formula and a Büchi automaton define a set of traces (i.e., infinite
sequences of propositional valuations) that make the formula true, respectively,
that are accepted by the automaton. Therefore, we can ask whether an LTL
formula and an automaton have the same trace semantics, i.e., define the same
ω-language. In fact, since Büchi automata are more expressive than LTL, there
is an automaton for each formula, but not vice versa. We can also describe a
system as an automaton and some properties with a formula. Checking whether
the execution of the system fulfills the property then amounts to finding a trace
that is accepted by the automaton but does not satisfy the property (i.e., a
counter-example). In this sense, we are interested in whether the intersection of
the trace semantics of the negated property and the automaton representing the
system is nonempty. These are examples of consistency relations.

4.2 A Model-Driven Description of a Car’s Brake System

In the context of CPS design, the system description is usually broken down
into various models for the different aspects and components of the system. We
introduce a simplified set of (meta) models describing a car’s brake system. The
purpose is not to be exhaustive with the set of models nor to provide all details
needed for manufacturing such a system, but to use the example to highlight
pragmatical concerns arising in MDD, especially model interactions. We consider
a brake system for which the whole model consists of a mechanical model, a
hydraulic model, a thermal model, a system control model, and a software model.

Mechanical Model. The mechanical model describes the brake system’s physical
components and behavior. It contains information about all components between



6 R. Pascual et al.

the brake pedal and the rotors, e.g., the master cylinder, the brake lines, the
calipers, and the brake pads. This model thus encodes the physical response of
pressing the brake pedal: it pushes a piston within the cylinder, forcing brake
fluid into the brake lines and actioning the calipers, which press the brake pads
onto the rotors, ensuring that the wheels are slowed down by friction. Such a
model typically uses a geometric CAD description of the various parts annotated
with semantic information.

Hydraulic Model. The hydraulic model describes fluid dynamics, such as pressure
distribution and fluid flow, relying on a finite-element system description to allow
for numerical simulations. The model encodes information about the hydraulic
brake fluid, as well as some geometric properties of some components. It can
be used to compute the pressure increase in the calipers based on the pressure
increase in the cylinder and the resulting force applied to the brake pads.

Thermal Model. The thermal model describes heat generation within the brake
pads and the rotors, as well as heat dissipation through sink mechanisms. It
ensures that the material used can withstand the temperature increase without
losing integrity.

System Control Model. The system control model contains the electronic parts
of the brake system, e.g., the sensors, the electronic control unit (ECU), and
the actuators. Its purpose is to manage and optimize the braking process, es-
pecially with electronic or anti-lock braking systems. In fact, when the brake
pedal is pressed, the sensors and the ECU adjust the brake pressure to prevent
wheel lockup. This model typically consists of block diagrams representing the
equations of the state space of the brake system.

Software Model. The software model corresponds to the code run on the ECU.
For instance, it contains the C source code for data acquisition to retrieve values
from the sensors, signal processing, and slip ratio calculation to determine the
potential sliding of the vehicle and feedback loop to modulate the braking force
to prevent lockup.

Model Relations. Several relations exist between these models. For example, the
mechanical and hydraulic models share the geometric description of some parts
of the brake system, while providing data the thermal model needs to compute
the heat generation. Similarly, the software model relies on data retrieved via
control model sensors and performs computations that should be linked to the
hydraulic and thermal models. These connections naturally entail consistency
relations, where some values and properties must be shared between models. The
Vitruvius approach [20] defines consistency preservation rules that describe
how the modification of a value or, more generally, the transformation of a
model should be propagated to the other models. Note that consistency needs
not be a binary relation. For instance, the dynamics between the mechanics
(especially the piston positions) and the hydraulics (more precisely the forces and



Formal Foundations of Consistency in Model-Driven Development 7

the pressure distribution) change drastically when the brake fluid undergoes a
phase shift (which heavily depends on the involved temperatures). A consistency
relation capturing adequate braking behavior must therefore inherently involve
three models: the mechcanical, the hydraulic and the thermal model.

In the following, we use Mmech , Mhydr , Mthml , Mctrl , Msoft to denote the
associated meta-models.

5 Set-Theoretic Foundations of the V-SUM Approach

The goal of this section is to introduce a set-theoretic counterpart to the defini-
tions of V-SUM by Klare et al. [20], abstracting from consistency rules on pairs
of (meta-)models, i.e., from a specific notion of consistency, and even abstracting
from a specific notion of models. We define a model as a purpose-driven repre-
sentation of a system. For now, we restrict the discussion to models as atomic
entities, leaving aside the possibility of decomposing a model into model ele-
ments. As a result, we consider consistency notions as relations between models
without considering more fine-grained notions that would further specify the
relations between ‘parts’ (in a loose sense) of the model.

In MDD, the set of syntactically admissible models of a certain kind is de-
scribed by a meta-model, serving a similar purpose as a formal grammar does
for a formal language. We do not consider how meta-models describe their set
of models and assume that a meta-model is the set of its possible models.

Definition 1 (Meta-model). A meta-model M is the set of its well-formed
models m ∈M .

Example 1. In this sense, an LTL formula and a Büchi automaton are models,
while the set FLTL of LTL formulae and the set B of Büchi automata where the
transition function is built over valuation functions are meta-models. Note that
(LTL) formulae are typically defined over a given signature. Here, we consider
the propositional variables used in an LTL formula to be part of the model. In
that sense, a model contains a declarative part that details the set of allowed
propositional variables (its signature) and a content part consisting of the actual
formula. These two parts also extend to Büchi automata.

Definition 2 (V-SUM meta-model). A V-SUM meta-model is a pair M =
(M,CR) where M =M1 × . . .×Mn is a Cartesian product of a finite number n
of meta-models equipped with a consistency relation CR ⊆M . The meta-models
M1, . . . ,Mn are called the components of M.

Note that our definition of a V-SUM meta-model generalizes the standard
binary conceptualization of consistency in model-driven engineering, effectively
allowing an arbitrary number of meta-models to be taken into account for the
consistency relation. Additionally, the consistency is voluntarily independent of
specific meta-models and possible (already) existing relations between them.



8 R. Pascual et al.

Example 2. As a basic example, we can consider a V-SUM meta-model composed
of FLTL and B. We then need a consistency relation between LTL formulae and
Büchi automata. Such a relation can be semantic as well as purely syntactic. For
instance, we may define that the two models are consistent if and only if they
are equivalent (i.e., recognize the same set of traces), or we may define that they
are consistent if and only if they are co-satisfiable, i.e., the intersection of their
trace semantics is non-empty. However, we can also define a weaker syntactic
consistency relation, where any two models are consistent if they use the same
subset of propositional variables P ⊂ P.

Example 3. We consider a V-SUM (MBS ,CRBS) for the brake system where
MBS =Mmech×Mhydr×Mthml×Mctrl×Msoft . We use this example to highlight
the construction of the V-SUM consistency relation by Klare et al. [20]. Thus,
CRBS is defined based on binary relations between pairs of meta-models. For
instance, the mechanical model Mmech and the hydraulic model Mhydr describe
the geometric properties of some components, e.g., the cylinder, the calipers,
and the brake pads. Thus, a relationship between Mmech and Mhydr could be
that the shape of these components is identical in both models. Let this relation
be denoted by Rmech,hydr ⊆ Mmech ×Mhydr . Then Rmech,hydr can be extended
to CRmech,hydr ⊆MBS by considering tuples (mmech ,mhydr ,mthml ,mctrl ,msoft)
such that (mmech ,mhydr ) ∈ Rmech,hydr . Similarly, the pressure increase within
the brake components leads to heat generation. In other words, the laws of ther-
modynamics yield a relation Rhydr,thml between Mhydr and Mthml , which can
again be extended to CRhydr,thml ⊆ MBS . The sensors in the control model
retrieve values associated with the mechanical, hydraulic, and thermal models,
meaning that binary relations Rctrl,mech , Rctrl,hydr , and Rctrl,thml exist to en-
sure that the computations performed by each model correctly result in the
value measured by the sensors. Each of these relations can again be extended to
relations on MBS . We can combine these relations into a consistency relation

CRBS = CRmech,hydr ∩ CRhydr,thml ∩ CRctrl,mech ∩ CRctrl,hydr ∩ CRctrl,thml

allowing to define MBS = (MBS ,CRBS).

Definition 3 (V-SUM model). A V-SUM model m of a V-SUM meta-model
M = (M,CR) is an element of the Cartesian product M =M1× . . .×Mn, hence
a tuple m = (m1, . . . ,mn) of models mi ∈Mi. A V-SUM model m is consistent
with respect to CR if m ∈ CR (we will use the notation CR(m)).

Example 4. Let us consider the product of meta-models M = FLTL × B, the
LTL formulae ϕ = □(p → ♢q) and ψ = (p → X q) and the following Büchi
automaton A:

start

¬p ∨ q
p ∧ ¬q

q

¬q



Formal Foundations of Consistency in Model-Driven Development 9

where all three models A, ϕ, and ψ have {p, q} as the declarative part. Then,
(ϕ,A) and (ψ,A) are V-SUM models.

Whether they are consistent depends on which consistency relation CR we
use. If we consider CR as the equivalence with respect to trace semantics, then
(ϕ,A) is consistent. However, (ψ,A) is not consistent: for example, the trace
whose first state has the valuation {p 7→ ⊤, q 7→ ⊤} and whose following states
all have the valuation {p 7→ ⊥, q 7→ ⊥} is accepted by A, but it does not satisfy
ψ.

If we consider CR to be co-satisfiability, then both (ϕ,A) and (ψ,A) are
consistent, since the trace where p, q are false in all states is accepted by A and
satisfies both ϕ and ψ.

Also, if CR is the simple syntactical criterion that the declarative parts are
identical, then both (ϕ,A) and (ψ,A) are trivially consistent.

While the V-SUM meta-model encompasses all abstractions needed to de-
scribe the system, some specific analyses may only require some of the models mi

of the V-SUM model. More precisely, we are interested in whether distinct parts
of the model influence each other. Thus, one may select a subset J of the integers
between 1 and n and build the Cartesian product of meta-models with indices
in J . Without loss of generality, we can consider J to consist of the first k in-
dices and reinterpret the product M1 × . . .×Mn as a binary Cartesian product
M = N0 ×N1 =

(M1 × . . .×Mk)︸ ︷︷ ︸
=:N0

× (Mk+1 × . . .×Mn)︸ ︷︷ ︸
=:N1

(1)

of two factors N0 and N1. To consider N0 and N1 as (smaller) V-SUM meta-
models, we need to equip them with a consistency relation, which naturally is
the projection of the consistency relation of M onto the subset of meta-models.

Definition 4 (Projected consistency relation and internal consistency).
Given a V-SUM meta-model M = (M,CR) and Ni (for i ∈ {0, 1}) defined as
in eq. (1), we consider the V-SUM meta-model Ni = (Ni,CRi) where

CRi = {ni | ∃ni−1 ∈ CR1−i, CR(n0, n1)} ⊆ Ni

is the projected consistency relation from M to Ni. A model ni ∈ Ni is called
internally consistent with respect to CR if it belongs to the projected consistency
relation from M to Ni, i.e., CRi(ni).

The notions of projected consistency relation and internal consistency allow
for splitting a V-SUM meta-model into smaller V-SUM meta-models such that
one can reason about the consistency of a part of the system. Essentially, internal
consistency states that a model ni is consistent in the sense that it does not
contain an inconsistency in itself and can be extended to a full V-SUM model.

Example 5. It is well known that Büchi automata are more expressive than LTL
formulae. Therefore, when considering the consistency relation to be the equiva-
lence of the semantics, the projected consistency relation CRB on B gives exactly



10 R. Pascual et al.

the set of those automata that admit an LTL counterpart. On the contrary, the
projected consistency relation CRLTL on FLTL simply yields FLTL, meaning that
any LTL formula is internally consistent. Interestingly, if a Büchi automaton is
not equivalent to any LTL formula, then it is internally inconsistent, which can
be surprising since it could still be implemented. Here, the consistency rela-
tion prevents such implementation by discarding any automata that cannot be
represented by an LTL formula.

Similarly, the non-equivalence in expressiveness between Büchi automata and
LTL formulae means that the projected consistency relations when considering
co-satisfiability differ between the two meta-models. On FLTL, the internally
consistent models are the satisfiable LTL formulae, but on B, a Büchi automaton
is internally consistent if it accepts at least one trace that can be represented by
an LTL formula.

Note that the projected consistency relations from the V-SUM defined with
the equality on the declarative part do not restrict the meta-models as one
can always build an LTL formula or a Büchi automaton using a specific set
of propositional variables. In that sense, any automaton and any formula are
internally consistent.

Definition 5 (Independent meta-models). The V-SUM meta-model M is
independent with respect to the partition into N0 and N1 if CR = CR0 × CR1.

The above definition implies that the V-SUM meta-model M is independent
with respect to the partition into N0 and N1 if for every internally consistent
sub-models n0 ∈ N0 and n1 ∈ N1 the V-SUM model (n0, n1) ∈ M is consis-
tent, i.e., CR(n0, n1). Intuitively, the modeling choices made in n0 do not take
away possibilities in n1 or vice versa. Thus, when modifying models in n0, inter-
nal consistency within N0 must be checked, but (external) consistency with n1
cannot be affected.

Definition 6 (Overlap). Two components Mx and My of the V-SUM meta-
model M are without overlap if there exists a partition of M into N0 and N1

such that Mx ∈ N0 and My ∈ N1 and M is independent with respect to the
partition into N0 and N1. The two components Mx and My have an overlap if
no such partition exists.

Example 6. While FLTL × B only contain two meta-models, making the search
for a partition trivial, one can still ask whether FLTL and B have an overlap
for the three proposed consistency relations from Example 2. Unsurprisingly,
since each criterion explicitly relates the formula with the automaton, the two
meta-models indeed have an overlap for the three consistency relations. Using
equivalence as consistency relation, CRLTL×CRB contains all pairs consisting of
an LTL formula and an automaton that admits an LTL counterpart. Similarly,
with the co-satisfiability criterion, we obtain pairs with a satisfiable formula and
an automaton that admits some trace that can be described by an LTL formula,
while with the same-signature criterion, we obtain any pair with a formula and
an automaton.



Formal Foundations of Consistency in Model-Driven Development 11

Example 7. Consider FLTL×B×FLTL×B containing four meta-models. A tuple
of models then contains two formulae and two automata, which we consider as
two pairs (formula, automaton). For each pair, we require that the automaton
implies the formula, i.e., each trace accepted by the automaton satisfies the
formula, intuitively encoding a security specification. If we consider that the
pairs describe separate traces without further consistency requirements, then
there is no overlap. However, there is an overlap as soon as we introduce an
additional constraint, e.g., the first trace must be a refinement of the second.

In this section, we investigated overlaps between meta-models composing the
V-SUM meta-model only leveraging a supposedly provided consistency relation.
In the next two sections, we discuss how these consistency relations can be built,
either from syntactic rules performing edits on the models (Sect. 6) or a mapping
into some semantic space (Sect. 7).

6 Defining V-SUM Consistency from Rules

In model-driven development, standard approaches rely on model transforma-
tions that encode the evolution of models by means of rules. In this section,
we recall the standard model transformation approaches, with an emphasis on
bidirectional transformations (Bx) in the context of the Vitruvius approach.
The goal is to explain how our formalization allows formal reasoning about con-
sistency within this approach.

6.1 Model Transformation

Model transformation is a core part of MDD and refers to the process of convert-
ing one model into another within the same or a different modeling language,
i.e., within the same or a different meta-model, thus automating the manipula-
tion of models. Model transformation enables model synchronization [15], i.e.,
propagating changes from one model to another to preserve consistency between
them. Additionally, model transformation allows for model refinement [32], i.e.,
transforming an abstract model into a more detailed one, model integration [10],
i.e., ‘joining’ models in the sense of schema integration for databases, and model
migration [27], i.e., updating models as a result of an update on the meta-model.

Example 8. Model checking deals with the verification of the system behavior
against a specification. When the behavior is given by a Büchi automaton and
the specification by an LTL formula, the standard approach involves transform-
ing the formula into an automaton. Algorithms for LTL to Büchi Automata
Translation [3, 13] can be seen as examples of model transformations.

Example 9. Given an LTL formula and a Büchi automaton, a transformation of
the V-SUM model may modify either the declarative parts, i.e., the signatures,
or the content part, i.e., the formulae. Modifications of the signature might
correspond to restrictions, extensions, or even mapping from one signature to
another, i.e., signature morphisms in the sense of institutions [24].



12 R. Pascual et al.

Model transformations are typically defined via a set of rules that define how
elements in the source model should be transformed into elements of the target
model. These rules can explicitly give input-output pairs, e.g., using graph trans-
formation, triple graph grammars, or bidirectional transformations, or describe
how to obtain the output from the input, e.g., using programming constructs
that compute the changes to be made. Model transformation is supported by
tools and frameworks, such as ATL (Atlas Transformation Language) and QVT
(Query/View/Transformation). QVT is an OMG (Object Modeling Group) stan-
dard containing several model transformation languages [21], while ATL builds
on top of the Eclipse Modeling Framework [30] and provides a language as well
as an execution environment [19].

Model transformations are used for a purpose, such as to produce user-
understandable representations or to make a model accessible to a particular
approach. It may, however, be that this purpose is not compatible with a con-
sistency relation CR. If there are two models m1,m2 ∈ M of a meta-model M
such that m1 is consistent wrt. CR within a V-SUM while m2 is inconsistent wrt.
CR that are transformed to the same model in the target meta-model (e.g. by
omitting details), then the transformation is incompatible with CR. Otherwise,
it is possible to define a consistency relation CR′, operating on the image of the
transformation instead of the original meta-model.

6.2 Rule-Based Consistency

The Vitruvius tool [20] allows the specification of consistency for structural
models that are composed of model elements. Then, a consistency rule relates
model elements that can occur in a model to model elements that have to occur in
another model. This relation ensures the consistency of the pair of models. Based
on the consistency rules, Vitruvius defines delta-based consistency preservation
rules [9]. Delta-based approaches explicitly describe the modifications between
two states of the models, called a change. A change consists of the creation,
deletion, or update of some elements and can be formally described as a function
δM : M →M from a meta-model M to itself, such that the set of all changes for
M can be written ∆M .

Example 10. We can consider the models used for the description of a car’s
brake system as structural models where the model elements correspond to the
components of the system, e.g., the brake pedal, the master cylinder, or the
calipers. Since these components occur in several models, e.g., the mechanical
and hydraulic models, the various models should agree on elements that describe
the same component. Thus, a possible consistency rule could state that the model
elements describing the same component have the same name.

A consistency preservation rule CPR for a product of meta-models M =
M1 × . . . × Mn is a function CPR : M × ∆M → ∆M , where ∆M = ∆M1

×
. . . × ∆Mn

. Given a tuple of models and a tuple of changes (one per model),
the consistency preservation rule outputs a tuple of changes. Intuitively, CPR



Formal Foundations of Consistency in Model-Driven Development 13

transforms a tuple of changes over a tuple of consistent models into a tuple
of modified changes, which, if applied to the original models, yields a tuple of
consistent models. The set of consistent tuples of models can then be derived
inductively from a tuple of models axiomatically considered consistent, e.g., the
tuple of all empty models, by applying changes returned by the consistency
preservation rule. Formally the consistency relation CRCPR associated with the
consistency preservation rule CPR and the initial tuple of models (m0

1, . . . ,m
0
n)

is the set of tuple of models (m1, . . . ,mn) for which there exist δ1M , . . . , δkM in
∆M such that for all i in {1, . . . , k}, there exists a tuple of models (mi

1, . . . ,m
i
n)

satisfying (mi
1, . . . ,m

i
n) = CPR((mi−1

1 , . . . ,mi−1
n ), δiM )((mi−1

1 , . . . ,mi−1
n )) and

(mk
1 , . . . ,m

k
n) = (m1, . . . ,mn).

Therefore, the Vitruvius tool defines the consistency relation CR of a V-
SUM meta-model by a consistency preservation rule CPR. For practical pur-
poses, CPR is usually split into several consistency preservation rules, each act-
ing on a pair of meta-models. Each consistency preservation rule then defines a
consistency relation, and CR is retrieved as the intersection of all consistency
relations, allowing modularity and reusability of the consistency preservation
rules. As a result, their execution needs to be orchestrated to restore consis-
tency. Therefore, the Vitruvius tool considers an application function that
executes the consistency preservation rules CPR1, . . . , CPRk in an order such
that applying the resulting changes to the initial models yields models that are
consistent according to the consistency relations of all consistency preservation
rules.

7 Defining V-SUM Consistency from Semantics

While consistency relations can be defined directly at the meta-model level, it
only seems natural that the relation might be defined based on some semantic
information about the models. Actually, such a construction corresponds to the
consistency relation already defined for the equivalence and co-satisfiability cri-
terion between LTL formulae and Büchi automata. After formalizing a notion of
abstract semantics as a mapping of each model to some value, we show that such
semantics form a lattice, enabling comparison, combination, and refinement of
abstract semantics. This lattice is the key to relating consistency and semantics,
more precisely, to lift semantic consistency relations to the V-SUM and to derive
semantics from consistency.

The main result is that for any consistency relation and any V-SUM meta-
model, there always exists a semantics (called the natural semantics) that cap-
tures exactly the right information from a model needed to decide if it is con-
sistent within the V-SUM. Any other semantics either abstracts too much or
contains more details than necessary. This result is quite astonishing in this gen-
eral setting where we did not make any assumptions about the nature or inner
structure of models (we did not need to introdue a notion of model elements,
e.g.).



14 R. Pascual et al.

7.1 An Abstract Semantics

There can be very different ways of defining semantics, e.g., the Tarskian ap-
proach in logic, denotational and operational semantics for programming lan-
guages or implicit semantics for most engineering models, which are given as the
output result of a tool running some computations. As to not restrict ourselves
on how semantics is defines, we propose to consider semantics abstractly.

Definition 7 (Abstract semantics). An abstract semantics is a mapping [[·]] :
M → S for a meta-model M , where S is called the semantic space.

This definition naturally raises two questions: (a) what is the codomain S of
the function [[·]]? and (b) what is the meaning of [[·]]? There is no definite answer
to these questions since the semantic space S is necessarily purpose-dependent,
meaning that the mapping is expected to vary according to user intent. In par-
ticular, that opens the way for tool-defined or user-defined semantics.

Example 11. Following Tarskian principles, the mapping [[·]] can provide the set
of satisfying structures for a model.2 This is the point of view used in Sect. 5 when
dealing with LTL formulae and Büchi automata, considered through the lens of
their satisfying traces. Formally, we considered [[·]]LTL : FLTL → P((2P)ω) and
[[·]]B : B → P((2P)ω), where P((2P)ω) is the power set of ω-words on proposi-
tional valuations.

Example 12. One could also consider different (meta-)models by fixing a given
trace τ and asking whether the trace satisfies LTL formulae. Then, the semantic
space S becomes the standard two-element Boolean algebra B of truth values
and the function [[·]]τB : FLTL → B maps formulae to their truth value for the
fixed trace τ .

Example 13. Additionally, the mapping FLTL → P corresponding to the declar-
ative part of the LTL models can also be considered as a semantic mapping, even
though it is rather trivial and syntactic in nature. Similarly, if we consider M
to be a set of Java classes, [[·]] could yield a syntactic property, such as the num-
ber of methods or attributes in the class. One could even consider the identity
function as a semantic mapping.

Similar to the definition of models, the notion of semantic mapping is inher-
ently driven by its intended purpose, meaning it depends on which properties of
the model we aim to address or discuss. We will see in Sect. 7.3 that semantics
induces consistency relations, and in Sect. 7.4 that all consistency relations come
with natural semantics for the concerned meta-models. Before that, we investi-
gate the structure of the set of all possible semantics of a single meta-model.

2 Note that we refrain from using the word ‘model’ from logic, and instead call a model
in logic a ‘satisfying structure’.



Formal Foundations of Consistency in Model-Driven Development 15

7.2 The Lattice of Semantics

At first glance, one could consider various abstract semantics for a meta-model,
even mappings to different semantic spaces, seemingly hindering the possibility
of comparing the values that a model m takes for each semantics. We will see
that the semantics for a meta-model up to isomorphism actually form a com-
plete lattice. To obtain this lattice of semantics, we shift our attention from the
semantic space to the quotients of the meta-model by equivalence relations and
then consider the equivalence lattice, i.e., the lattice of equivalence relations.
This allows for restricting the analysis of all abstract semantics to all possible
quotients of the meta-model.

We recall that the equivalence kernel of a function f is the equivalence re-
lation ≡ defined on the domain of f by x ≡ y if and only if f(x) = f(y).
Interestingly, a kernel allows shifting the focus from the codomain of the func-
tion to its domain: we can use the kernel of an abstract semantics to reason
within the meta-model and not in the semantic space.

Example 14. Consider the case of the Boolean semantics [[·]]τB from Example 12
which states whether a model (formula) is either semantically true or false. The
semantic function is entirely characterized by which models get the same truth
value. Whether B is the set {0, 1}, the set {false, true}, or the set {⊥,⊤} does
not matter. The important part is that [[·]]B partitions M into the equivalence
classes for true and false. Note that for practical purposes, i.e., when actually
working with semantic values, it does matter whether the binary semantics space
B is encoded as {0, 1}, {false, true}, or {⊥,⊤}. However, the concrete choice of
representatives (or names) for the equivalence classes is irrelevant for compar-
ing the degree of abstraction or the amount of information that is kept by the
abstract semantics.

Any function f : X → Y can be uniquely factorized (up to isomorphism) into
f = i ◦ s where i is an injection and s a surjection. Indeed, s is the canonical
surjection X → X/≡ to the quotient by the equivalence kernel. It maps any
element x of X to its equivalent class [x]≡ = {x′ ∈ X | x′ ≡ x}. Formally
restricting S to the image of [[·]]x ensures that for an abstract semantics [[·]]x :
M → S, M/≡x and S are isomorphic (where ≡x is the kernel of [[·]]x). This
isomorphism ensures that the study can be shifted from the semantic spaces to
the quotient structures M/R for the equivalence relations R ⊆M ×M , with the
benefit that these quotient structures are now comparable. Indeed, the set of all
equivalence relations on a set form a complete lattice called the equivalence lattice
(for more details, see [7, Chap. 12] or [16, Chap. IV, Sect. 4]). The equivalence
lattice has set-inclusion as the partial order,

∧
≡X =

⋂
X as the meet (infimum,

or greatest lower bound), and
∨

≡X = (
⋃
X)∗ as the join (supremum, or least

upper bound). Note that the transitive closure needs to be added in case of
∨

since the union alone does not guarantee transitivity.
The isomorphism between abstract semantics and equivalence relations al-

lows for transferring the equivalence lattice on M into a complete lattice on the
semantics, i.e., by mapping the equivalence relation R to M/R. Note that the



16 R. Pascual et al.

order of the lattice is inverted since R moves to the denominator of the quotient
structure, i.e., M/R1 ⊑ M/R2 if and only if R2 ⊆ R1. In particular, given two
abstract semantics S1 and S2, we have that S1 ⊑ S2 if and only if S2 allows
distinguishing between the same model elements as S1 and possibly more. In the
sequel, we write LM

sem for the lattice of semantics on M .

Example 15. The bottom element [[·]]⊥ : M → M/M2 ≃ {⋆} in the lattice of
semantics corresponds to the top element in the lattice of equivalence relations,
which is the trivial relation M2 that relates any two elements. This corner-case
semantic space contains a single element ⋆, meaning that all models have the
same semantics [[m]]⊥ = ⋆. All information is lost in the semantic evaluation: it
is maximally abstract.

Example 16. On the other side, the top element [[·]]⊤ : M → M/idM ≃ M cor-
responds to the smallest possible equivalence relation, the identity (also called
diagonal) relation idM = {(m,m) | m ∈ M} which relates every element only
to itself. In this extreme semantics, every model m ∈ M is its own semantic
value3 [[m]]⊤ = m. No information is lost by the semantic evaluation: there is no
abstraction.

Example 17. Let us consider again the family of abstract semantics from Ex-
ample 12, [[·]]τB : FLTL → B, where τ is a fixed trace. Each one maps an LTL
formula to the truth value indicating whether the trace τ satisfies the formula.
Two different traces τ1 and τ2 give rise to two different semantics [[·]]τ1B and [[·]]τ2B
that have the same semantic space B. However, they are not related in the lat-
tice ([[·]]τ1B ̸⊑ [[·]]τ2B and [[·]]τ2B ̸⊑ [[·]]τ1B ) if there is no refinement relation between the
equivalence relations on the formulas.

The next step is to relate our notions of abstract semantics and consistency.

7.3 Semantics-Induced Consistency

If we equip two meta-models Mi with dedicated semantic mappings [[·]]i : Mi →
Si for i ∈ {1, . . . , n}, we can impose conditions on the models within the semantic
spaces by considering a relation on S1 × . . . × Sn, i.e., we can define a relation
SCR ⊆ S1 × . . . × Sn and then define models mi ∈ Mi to be consistent if and
only if SCR([[m1]]1, . . . , [[mn]]n).

Example 18. In Sect. 5, we instantiated SCR to be the equality relation to obtain
the equivalence criterion for consistency, and we used ‘have non-empty intersec-
tion’ to obtain co-satisfiability. Formally, with [[·]]LTL : FLTL → P((2P)ω) and
[[·]]B : B → P((2P)ω), we can consider SCReq and SCRcosat such that for two
sets of traces T and T ′, SCReq(T, T

′) if and only if T = T ′ and SCRcosat(T, T
′)

if and only if T ∩ T ′ ̸= ∅. Note that other relations might have a meaningful
3 This is a generalization of the notion of the Herbrand semantics of first-order logic,

where every ground term is its own interpretation (which does also not lose any
information during the semantic mapping).



Formal Foundations of Consistency in Model-Driven Development 17

use, e.g., SCR such that SCR(T, T ′) if and only if T ⊆ T ′ yields a refinement
relation, where an automaton and a formula are consistent if each trace accepted
by the automaton also satisfies the formula.

We call SCR ⊆ S1 × . . .×Sn a semantic consistency relation, from which we
can define a semantics-induced consistency relation CRSCR by

CRSCR(m1, . . . ,mn) :⇐⇒ SCR([[m1]]1, . . . , [[mn]]n).

This semantics-induced consistency relation only considers the interpretation of
the models and not their syntactic form or identity. In particular, given mod-
els mi,m

′
i ∈ Mi for i ∈ {1, . . . , n}, the semantic consistency relation CRSCR

ensures that, if mi,m
′
i have the same semantics (i.e., [[mi]]i = [[m′

i]]i), then the
V-SUM (m1, . . . ,mn) is consistent if and only if (m′

1, . . . ,m
′
n) is consistent (i.e.,

CRSCR(m1, . . . ,mn) ⇐⇒ CRSCR(m
′
1, . . . ,m

′
n)).

Example 19. The two first V-SUM meta-models of Example 2 were built us-
ing the semantics-induced consistency relations from SCReq and SCRcosat of
Example 18.

We showed how consistency relations can be induced by given semantics.
Next, we will look at the converse question of defining a semantics from a con-
sistency relation.

7.4 Consistency-Induced Semantics

We introduced the notion of abstract semantics as a way to add some meaning
to the models of a given meta-model. Since consistency is a relation on mod-
els, it encodes some information on each model. Therefore, it is natural that
a somewhat canonical or natural semantics can be derived from a consistency
relation. In fact, we will show that this semantics is canonical in the sense that
it corresponds to a meet in the semantic lattice introduced in Sect. 7.2. This
semantics encodes precisely the information needed to determine if two models
are consistent but abstracts away everything else. Moreover, we will establish
that all abstract semantics that are compatible with a given consistency relation
CR form a lattice with the natural semantics as its bottom element.

Definition 8 (Compatible semantics). Given a V-SUM meta-model M =
(M1 × . . . × Mn,CR), a family of abstract semantics [[·]]i : Mi → Si is called
compatible with CR if and only if there is a semantic consistency relation SCR ⊆
S1 × . . . × Sn, such that CR coincides with the semantics-induced consistency
relation CRSCR (according to Sect. 7.3), i.e., CR = CRSCR.

As a first step, we can consider the two corner cases of Sect. 7.2. The se-
mantics [[·]]⊥ from Example 15 maps all models to the single value S⊥ = {⋆},
meaning that a consistency relation defined via [[·]]⊥ cannot distinguish between
any two different models and either all models are consistent, or none are. On



18 R. Pascual et al.

the opposite side of the spectrum, the semantics [[·]]⊤ from Example 16 maps
each model to itself and, while it would allow for specifying consistency, it does
not abstract away anything, meaning that all needed information still needs to
be added. The question is then whether there is always a semantics that can be
used to define a consistency relation, and, if there are several, which fits best.

In the following, we define for each and every component of the V-SUM
meta-model the largest possible equivalence relation that induces a well-suited
semantic function that can be used as part of a family of abstract semantics
compatible with CR. First, given a V-SUM meta-model M = (M,CR) with
M =M1 × . . .×Mn, we write CR∇i(ν) for the set

{(m1, . . . ,mi−1,mi+1, . . .mn) ∈M1 × . . .×Mi−1 ×Mi+1 × . . .Mn |
CR(m1, . . . ,mi−1, ν,mi+1, . . .mn)}

where ν is a model for some component Mi of the V-SUM meta-model. Then,
we define, for each component Mi of the V-SUM meta-model, the equivalence
relation ∼i⊆Mi ×Mi by

ma ∼i mb ⇐⇒ CR∇i(ma) = CR∇i(mb) .

Two models ma,mb ∈Mi are related if and only if the sets of tuples that extend
them to consistent V-SUM models are the same. Therefore, any such two models
are indistinguishable from the perspective of the other components of the V-SUM
meta-model, meaning that we can semantically identify them.

Definition 9 (Natural semantics). The semantics [[·]]nati : Mi → Mi/∼i in-
duced for the components Mi of the V-SUM meta-model by the equivalence rela-
tions ∼i are called the natural semantics for CR.

Note that the natural semantics depend on the investigated consistency re-
lation.

Proposition 1. The natural semantics are compatible with CR (according to
Def. 8).

Proof. Let us consider the semantic consistency relation

SCRnat =
{
([[m1]]

nat
1 , . . . , [[mn]]

nat
n ) | CR(m1, . . . ,mn)

}
induced by the family of natural semantics. First, let us remark that for any
two models ma and mb of some component Mi, the construction of the natural
semantics for CR ensures that ma ∼i mb if and only if [[ma]]

nat
i = [[mb]]

nat
i .

Therefore, SCRnat is a well-defined semantic consistency relation. Additionally,
the constructions of SCRnat and of the natural semantics [[·]]nati : Mi → Mi/∼i

from CR∇i directly yield that CR = CRSCRnat , i.e., that family of natural
semantics is compatible with CR.



Formal Foundations of Consistency in Model-Driven Development 19

The family of natural semantics of the components of a V-SUM meta-model
is not the only compatible family of semantics that can be used to represent CR
semantically, but it is the lower bound of all compatible semantics. In fact, we
already saw in Sect. 7.2 that the set of semantics of a meta-model M forms a
lattice LM

sem for the partial order ⊑. Given any semantics [[·]] : M → S, we can
therefore consider the quotient sublattice LM

sem/[[·]] defined as [7, Chap. 2]

LM
sem/[[·]] =

{
[[·]]x ∈ LM

sem | [[·]]x ⊑ [[·]]
}
.

The quotient sublattice inherits the join and meet operations from LM
sem and has

[[·]] as minimal element.

Proposition 2. Let M = (M1 × . . . ×Mn,CR) be a V-SUM meta-model, and
let Lnat

i be the quotient sublattice LMi
sem/[[·]]

nat
i of the lattice of semantics of the

component Mi by the natural semantics [[·]]nati . Any family of semantics [[·]]i where
each abstract semantics [[·]]i is an element of Lnat

i is compatible with CR.

Proof. By definition, an abstract semantics [[·]]i in Lnat
i refines the partition in-

duced by [[·]]nati on Mi. In particular, any equivalence class [x]∼i
is the disjoint

union of some equivalence classes [m]≡i where ≡i is the kernel of [[·]]i. In other
words, there is a function πi : Mi/≡i →Mi/∼i that maps [m]≡i to [m]∼i .

The same arguments as the proof of Prop. 1 hold, since

SCRnat =
{
(π1([[m1]]

nat
1 ), . . . , πn([[mn]]

nat
n )) | CR(m1, . . . ,mn)

}
.

In particular, any family of semantics [[·]]i where each abstract semantics [[·]]i is
an element of Lnat

i is compatible with CR.

The natural semantics is hence the canonical function [[·]]i : Mi → Mi/∼i

mapping each model in Mi to its equivalence class modulo ∼i. Since ∼i unifies
all models indistinguishable by CR, the natural semantics retains exactly the
information needed to compute consistency with respect to CR without redun-
dancy and is, in this sense, minimal.

Example 20. If the consistency relation between (m1,m2) ∈ M1 ×M2 requires
that the model m2 must contain at least as many elements as the model m1,
then the equivalence relation ∼i for both M1 and M2 relates any two models
with the same number of elements. Therefore, we have Mi/∼i ≃ N.

Example 21. If we consider a V-SUM meta-model on M1 ×M2 which has no
overlap, then models need not be distinguishable. Thus, the equivalence is uni-
versal and the natural semantics for each component is the bottom element [[·]]⊥ :
Mi →Mi/M

2
i ≃ {⋆} in the lattice of semantics from Example 15.

Example 22. If we consider models to be equivalent if and only if they are
absolutely identical, then the equivalences are the top elements [[·]]⊤ : Mi →
Mi/idMi ≃Mi from Example 16, i.e., the reflexivity relations.



20 R. Pascual et al.

8 Conclusion

The realizability of a system may be approximated by conditions on the models
used to describe the system. When several models are involved, these conditions
typically amount to relations between the models. Aggregating these relations
yields a global relation – the consistency relation – over all the models involved.
After investigating the notion of overlap that states whether the meta-model
can be modularized, we reviewed the standard approaches in model-driven de-
velopment, i.e., based on model transformations, and showed how they fit our
framework. We clarified the relation between consistency and semantics, and
explored the structure of semantics when considered abstractly. While these ab-
stract notions of consistency and semantics enable engineers to provide their
own consistency and semantics, they also allow for changing the usual notion
of consistency given by artifacts from normative consistency, i.e., consistency
defined by the artifacts themselves, to descriptive consistency, i.e., consistency
that has to be shown to conform to an already (semantically) defined consis-
tency. In other words, the abstract notions of consistency and semantics and
their highlighted relation allow for checking the correctness of a descriptive no-
tion of consistency, e.g., given by model transformations, with respect to an
already existing normative consistency notion.

For future work, some simplifying hypotheses within our work should be ad-
dressed. In particular, we plan to investigate the structure of models, e.g., given
by model elements, model components, or submodels, and their relation with
consistency. Additionally, our abstract notions should allow encoding seman-
tics within the meta-model, in order to make consistency a first-class citizen of
the V-SUM approach. On a more practical level, we plan to apply our formal
foundations to complex system designs, particularly in CPS engineering. Our for-
malization is inherently agnostic to both the meta-models involved and the way
of specifying consistency. Thus, it enables consistency between heterogeneous
models, i.e., continuous and discrete models. This practical application may also
uncover unforeseen challenges in our abstract framework, thereby deepening the
understanding of model consistency.

Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – CRC 1608 – 501798263, from the topic Engineering
Secure Systems of the Helmholtz Association (HGF), and by KASTEL Security Re-
search Labs.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Ambler, S.: The Object Primer: Agile Model-Driven Development with
UML 2.0. Cambridge University Press (2004). https://doi.org/10.1017/
CBO9780511584077

https://doi.org/10.1017/CBO9780511584077
https://doi.org/10.1017/CBO9780511584077
https://doi.org/10.1017/CBO9780511584077
https://doi.org/10.1017/CBO9780511584077


Formal Foundations of Consistency in Model-Driven Development 21

2. Atkinson, C., Stoll, D., Bostan, P.: Orthographic software modeling: A practi-
cal approach to view-based development. In: Maciaszek, L., González-Pérez, C.,
Jablonski, S. (eds.) Evaluation of Novel Approaches to Software Engineering. pp.
206–219. Springer (2010). https://doi.org/10.1007/978-3-642-14819-4_15

3. Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2012). pp. 95–
109. Springer (2012). https://doi.org/10.1007/978-3-642-28756-5_8

4. Bertossi, L.: Database Repairs and Consistent Query Answering, Synthesis Lec-
tures on Data Management, vol. 20. Morgan & Claypool Publishers (M & C)
(2011), https://dl.acm.org/doi/10.5555/2371212

5. Bohannon, A., Foster, J., Pierce, B., Pilkiewicz, A., Schmitt, A.: Boomerang: re-
sourceful lenses for string data. In: Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 407–419. POPL
’08, Association for Computing Machinery (2008). https://doi.org/10.1145/
1328438.1328487

6. Bowman, H., Steen, M., Boiten, E., Derrick, J.: A formal framework for viewpoint
consistency. Formal Methods in System Design 21(2), 111–166 (2002). https:
//doi.org/10.1023/A:1016000201864

7. Crawley, P., Dilworth, R.: Algebraic theory of lattices. Prentice-Hall (1973)
8. Demri, S., Gastin, P.: Specification and verification using temporal logics. In:

Modern Applications of Automata Theory, IISc Research Monographs Series,
vol. Volume 2, pp. 457–493. World Scientific (2011). https://doi.org/10.1142/
9789814271059_0015

9. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations. In: Tratt, L., Gogolla, M. (eds.) 3rd International Conference on
Theory and Practice of Model Transformations. pp. 61–76. Lecture Notes in Com-
puter Science, Springer (2010). https://doi.org/10.1007/978-3-642-13688-7_5

10. Dolk, D., Kottemann, J.: Model integration and a theory of models. Decision
Support Systems 9(1), 51–63 (1993). https://doi.org/10.1016/0167-9236(93)
90022-U

11. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: A sur-
vey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007).
https://doi.org/10.1109/TKDE.2007.250581

12. Foster, J., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems 29(3), 17–es (2007).
https://doi.org/10.1145/1232420.1232424

13. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) Computer Aided Verification. pp. 53–65. Springer
(2001). https://doi.org/10.1007/3-540-44585-4_6

14. Giese, H., Hildebrandt, S., Neumann, S.: Model synchronization at work: Keep-
ing SysML and AUTOSAR models consistent. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-
Driven Engineering: Essays Dedicated to Manfred Nagl on the Occasion of
his 65th Birthday, pp. 555–579. Springer (2010). https://doi.org/10.1007/
978-3-642-17322-6_24

15. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) Model Driven En-
gineering Languages and Systems (MoDELS 2006). pp. 543–557. Springer (2006).
https://doi.org/10.1007/11880240_38

https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://dl.acm.org/doi/10.5555/2371212
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1142/9789814271059_0015
https://doi.org/10.1142/9789814271059_0015
https://doi.org/10.1142/9789814271059_0015
https://doi.org/10.1142/9789814271059_0015
https://doi.org/10.1007/978-3-642-13688-7_5
https://doi.org/10.1007/978-3-642-13688-7_5
https://doi.org/10.1016/0167-9236(93)90022-U
https://doi.org/10.1016/0167-9236(93)90022-U
https://doi.org/10.1016/0167-9236(93)90022-U
https://doi.org/10.1016/0167-9236(93)90022-U
https://doi.org/10.1109/TKDE.2007.250581
https://doi.org/10.1109/TKDE.2007.250581
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-3-642-17322-6_24
https://doi.org/10.1007/978-3-642-17322-6_24
https://doi.org/10.1007/978-3-642-17322-6_24
https://doi.org/10.1007/978-3-642-17322-6_24
https://doi.org/10.1007/11880240_38
https://doi.org/10.1007/11880240_38


22 R. Pascual et al.

16. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, second edition edn. (2003)
17. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly.

IBM Systems Journal 45(3), 451–461 (2006). https://doi.org/10.1147/sj.453.
0451

18. Ilyas, I., Chu, X.: Trends in cleaning relational data: Consistency and dedupli-
cation. Foundations and Trends® in Databases 5(4), 281–393 (2015). https:
//doi.org/10.1561/1900000045

19. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1), 31–39 (2008). https://doi.org/
10.1016/j.scico.2007.08.002

20. Klare, H., Kramer, M., Langhammer, M., Werle, D., Burger, E., Reussner, R.: En-
abling consistency in view-based system development — The Vitruvius approach.
Journal of Systems and Software 171 (2021). https://doi.org/10.1016/j.jss.
2020.110815

21. Kurtev, I.: State of the art of QVT: A model transformation language standard. In:
Schürr, A., Nagl, M., Zündorf, A. (eds.) Applications of Graph Transformations
with Industrial Relevance. pp. 377–393. Springer (2008). https://doi.org/10.
1007/978-3-540-89020-1_26

22. Lee, E.: CPS foundations. In: Proceedings of the 47th Design Automation Con-
ference. pp. 737–742. DAC ’10, Association for Computing Machinery (2010).
https://doi.org/10.1145/1837274.1837462

23. Lucas, F.J., Molina, F., Toval, A.: A systematic review of UML model consistency
management. Information and Software Technology 51(12), 1631–1645 (2009).
https://doi.org/10.1016/j.infsof.2009.04.009

24. Mossakowski, T., Krumnack, U., Maibaum, T.: What is a derived signature mor-
phism? In: Codescu, M., Diaconescu, R., T, ut,u, I. (eds.) Recent Trends in Alge-
braic Development Techniques. pp. 90–109. Springer (2015). https://doi.org/
10.1007/978-3-319-28114-8_6

25. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proceedings of
the 22nd international conference on Software engineering. pp. 742–745. ICSE ’00,
Association for Computing Machinery (2000). https://doi.org/10.1145/337180.
337620

26. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). pp. 46–57 (1977). https://doi.org/10.
1109/SFCS.1977.32

27. Rose, L., Herrmannsdoerfer, M., Williams, J., Kolovos, D., Garcés, K., Paige, R.,
Polack, F.: A comparison of model migration tools. In: Petriu, D., Rouquette, N.,
Haugen, O. (eds.) 13th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2010). pp. 61–75. Springer (2010). https://
doi.org/10.1007/978-3-642-16145-2_5

28. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineer-
ing: Survey and open research issues. In: Handbook of Software Engineering and
Knowledge Engineering, pp. 329–380. World Scientific Publishing Company (2001).
https://doi.org/10.1142/9789812389718_0015

29. Stachowiak, H.: Allgemeine Modelltheorie. Springer (1973)
30. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-

work. Addison-Wesley Professional. (2008)
31. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open

questions. Software & Systems Modeling 9(1), 7–20 (2010). https://doi.org/10.
1007/s10270-008-0109-9

https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1561/1900000045
https://doi.org/10.1561/1900000045
https://doi.org/10.1561/1900000045
https://doi.org/10.1561/1900000045
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1007/978-3-540-89020-1_26
https://doi.org/10.1007/978-3-540-89020-1_26
https://doi.org/10.1007/978-3-540-89020-1_26
https://doi.org/10.1007/978-3-540-89020-1_26
https://doi.org/10.1145/1837274.1837462
https://doi.org/10.1145/1837274.1837462
https://doi.org/10.1016/j.infsof.2009.04.009
https://doi.org/10.1016/j.infsof.2009.04.009
https://doi.org/10.1007/978-3-319-28114-8_6
https://doi.org/10.1007/978-3-319-28114-8_6
https://doi.org/10.1007/978-3-319-28114-8_6
https://doi.org/10.1007/978-3-319-28114-8_6
https://doi.org/10.1145/337180.337620
https://doi.org/10.1145/337180.337620
https://doi.org/10.1145/337180.337620
https://doi.org/10.1145/337180.337620
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-642-16145-2_5
https://doi.org/10.1007/978-3-642-16145-2_5
https://doi.org/10.1007/978-3-642-16145-2_5
https://doi.org/10.1007/978-3-642-16145-2_5
https://doi.org/10.1142/9789812389718_0015
https://doi.org/10.1142/9789812389718_0015
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9


Formal Foundations of Consistency in Model-Driven Development 23

32. Van Der Straeten, R., Jonckers, V., Mens, T.: A formal approach to model refac-
toring and model refinement. Software & Systems Modeling 6(2), 139–162 (2007).
https://doi.org/10.1007/s10270-006-0025-9

33. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering. pp.
164–173. ASE ’07, Association for Computing Machinery (2007). https://doi.
org/10.1145/1321631.1321657

https://doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1321631.1321657

	Formal Foundations of Consistency in Model-Driven Development

